Quadrotor Model for Energy Consumption Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quadrotor Used as a Test Platform
2.2. Quadrotor Nonlinear Dynamic Model
2.3. Wind Model
2.4. Quadrotor Control System Model
2.4.1. Autopilot Structure
2.4.2. Attitude Channel Autopilot
2.4.3. Roll Channel Autopilot
2.4.4. Pitch Channel Autopilot
2.4.5. Yaw Channel Autopilot
2.4.6. Position Controller
2.5. Coverage Path Planning Method
2.6. Quadrotor Energy Consumption Model
2.7. Battery Model
3. Results
3.1. Model Implementation
3.2. Flight Test Methodology
3.3. Case 1 (Short Duration Trajectory)
3.4. Case 2 (Long Duration Trajectory)
3.5. Monte-Carlo Validation of the Energy Consumption
3.6. Wind Influence on the Energy Consumption: Practical Example
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Latin symbols | |
exponential voltage, (V) | |
aircraft inertia matrix | |
exponential capacity, (Ah)–1 | |
gyroscopic matrix | |
propeller chord, (mm) | |
rolling, pitching and yawing moment coefficients, (–) | |
drag, side and lift force coefficients, (–) | |
reference linear dimension, (m) | |
diameter of the rotor, (m) | |
viscous damping coefficient of the motor, (Nm·s/rad) | |
open circuit battery voltage, (V) | |
energy consumed by the onboard electronics, (J) | |
total amount of energy consumed by the quadrotor, (J) | |
energy spent on propulsion, (J) | |
electric power required by the onboard subsystems, (J/s) | |
efficiency of the -th electric motor, (–) | |
vector of aerodynamic loads, | |
vector of gravity loads, | |
vector of propulsion loads, | |
vector of gravity forces, (N) | |
vector of aerodynamic forces, (N) | |
vector of propulsion forces, (N) | |
gravity acceleration, (m/s2) | |
flight altitude, (m) | |
transfer functions for Dryden wind model, | |
current of the -th electric motor, (A) | |
quadrotor moments of inertia, (kg·m2) | |
quadrotor products of inertia, (kg·m2) | |
moment of inertia of the of the rotating parts (propeller + motor shaft), (kg·m2) | |
rotor thrust coefficient, (N/RPM2) | |
rotor torque coefficient, (Nm/RPM2) | |
battery polarization constant, (V/Ah) | |
, , | vertical speed controller settings, |
, , | altitude controller settings, |
, , | roll rate controller settings, |
, , | roll angle controller settings, |
, , | pitch rate controller settings, |
, , | pitch angle controller settings, |
, , | yaw rate controller settings, |
, , | yaw angle controller settings, |
, , | speed controller settings, |
, , | speed controller settings, |
, , | position controller settings, |
, , | position controller settings, |
turbulence scale lengths, (m) | |
drone mass, (kg) | |
vector of aerodynamic moments, (Nm) | |
torque produced by the -th rotor, (Nm) | |
vector of moments generated by propellers, (Nm) | |
number of discrete sample points, | |
quadrotor angular velocities in reference frame, (rad/s) | |
dynamic pressure, (kg/(m·s2)) | |
battery capacity, (Ah) | |
radial distance from the propeller axis of rotation, (mm) | |
vector of the quadrotor position in the frame, (m) | |
position vector of the -th rotor in the frame, (m) | |
battery internal resistance, (Ω) | |
radius of the rotor, (m) | |
reference area, (m2) | |
rotor disc area, (m2) | |
time, (s) | |
initial time, (s) | |
final time, (s) | |
-th discrete time step, (s) | |
time constant, (s) | |
thrust produced by the -th rotor, (N) | |
matrix of linear velocities and angular rates | |
velocity transformation matrix | |
angle transformation matrix | |
control signals for climb rate, roll rate, pitch rate and yaw rate control respectively, (rad/s) | |
components of linear velocity in reference frame, (m/s) | |
components of linear velocity in reference frame, (m/s) | |
components of wind velocity in reference frame, (m/s) | |
components of uniform wind velocity in reference frame, (m/s) | |
components of turbulence velocity in reference frame, (m/s) | |
components of wind velocity in reference frame, (m/s) | |
battery voltage, (V) | |
voltage of the -th motor, (V) | |
airspeed, (m/s) | |
linear velocity vector in reference frame, (m/s) | |
drone airspeed, (m/s) | |
total wind speed, (m/s) | |
wind speed at altitude 6 m, (kts) | |
state vector | |
coordinates of aircraft position in reference frame, (m) | |
model output vector | |
aircraft position and attitude vector | |
measurement vector | |
Greek symbols | |
angle of attack, (rad) | |
angle of sideslip, (rad) | |
rotor blade twist, (rad) | |
chord center shift distribution along the rotor span, (mm) | |
velocity correction function of the thrust, (N) | |
velocity correction function of the torque, (Nm) | |
nominal value of the parameter | |
air density, (kg/m3) | |
standard deviation of the pseudorandom disturbance | |
turbulence intensities, | |
torque generated by the -th motor, (Nm) | |
quadrotor attitude angles, (rad) | |
wind direction (direction of oncoming flow), (rad) | |
vector of angular velocity, (rad/s) | |
angular rate of -th motor, (rad/s) | |
-th rotor demanded value of angular rates, (rad/s) | |
the vector of the angular velocity of the rotors, (rad/s) | |
Abbreviations | |
BLDC | Brushless Direct Current |
CAD | Computer Aided-design |
GPS | Global Positioning System |
GNSS | Global Navigation Satellite System |
IMU | Inertial Measurement Unit |
UAV | Unmanned Aerial Vehicle |
PID | proportional-integral-derivative |
RMSE | Root Mean Square Errors |
RPM | revolutions per minute |
battery State Of Charge, (%) | |
initial battery State Of Charge, (%) | |
TIC | Theil’s Inequality Coefficient |
Appendix A. Flight Data and MATLAB Scripts
References
- Bibik, P.; Narkiewicz, J.; Zasuwa, M.; Żugaj, M. Modeling of Quadrotor Dynamics for Research and Training Simulator. In Proceedings of the 39th European Rotorcraft Forum, Moscow, Russia, 3–6 September 2013. [Google Scholar]
- Lu, H.; Chen, K.; Zhai, X.B.; Chen, B.; Zhao, Y. Tradeoff between Duration and Energy Optimization for Speed Control of Quadrotor Unmanned Aerial Vehicle. In Proceedings of the ISPCE-CN 2018—IEEE International Symposium on Product Compliance Engineering—Asia, Shenzhen, China, 5–7 December 2018. [Google Scholar]
- Aleksandrov, D.; Penkov, I. Energy Consumption of Mini UAV Helicopters with Different Number of Rotors. In Proceedings of the 11th International Symposium Topical Problems in the Field of Electrical and Power Engineering, Pärnu, Estonia, 16–21 January 2012; pp. 259–262. [Google Scholar]
- Morbidi, F.; Pisarski, D. Practical and Accurate Generation of Energy-Optimal Trajectories for a Planar Quadrotor. In Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May 2021–5 June2021; pp. 355–361. [Google Scholar]
- Bibik, P.; Narkiewicz, J.; Zasuwa, M.; Żugaj, M.; Górski, T.; Komorniczak, W. Development of an Unmanned Quadrotor: System and Simulator. Available online: https://5dok.net/document/ozlrv66z-development-of-an-unmanned-quadrotor-system-and-simulator.html (accessed on 18 August 2022).
- Gandolfo, D.C.; Salinas, L.R.; Brandao, A.; Toibero, J.M. Stable Path-Following Control for a Quadrotor Helicopter Considering Energy Consumption. IEEE Trans. Control Syst. Technol. 2017, 25, 1423–1430. [Google Scholar] [CrossRef]
- Roberts, J.F.; Zufferey, J.C.; Floreano, D. Energy Management for Indoor Hovering Robots. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Nice, France, 22–26 September 2008; pp. 1242–1247. [Google Scholar]
- Chan, C.W.; Kam, T.Y. A Procedure for Power Consumption Estimation of Multi-Rotor Unmanned Aerial Vehicle. J. Phys. Conf. Ser. 2020, 1509, 012015. [Google Scholar] [CrossRef]
- Penkov, I.; Aleksandrov, D. Analysis and Study of the Influence of the Geometrical Parameters of Mini Unmanned Quad-Rotor Helicopters to Optimise Energy Saving. Int. J. Automot. Mech. Eng. 2017, 14, 4730–4746. [Google Scholar] [CrossRef]
- Henninger, H.C.; Von Ellenrieder, K.D.; Licht, S.C. Energy-Minimal Target Retrieval for Quadrotor UAVs: Trajectory Generation and Tracking. In Proceedings of the 2020 28th Mediterranean Conference on Control and Automation, MED 2020, Saint-Raphaël, France, 15–18 September 2020; pp. 727–732. [Google Scholar]
- Korneyev, A.; Gorobetz, M.; Alps, I.; Ribickis, L. Adaptive Traction Drive Control Algorithm for Electrical Energy Consumption Minimisation of Autonomous Unmanned Aerial Vehicle. Electr. Control Commun. Eng. 2019, 15, 62–70. [Google Scholar] [CrossRef]
- Thu, A.; Lupin, S.; Oo, T.M.; Khaing, M.T. Comparing a Quadrotor Energy Consumption for Different Flight Trajectories in Windy Conditions. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, St. Petersburg, Moscow, Russia, 26–29 January 2021; pp. 2064–2066. [Google Scholar]
- Shivgan, R.; Dong, Z. Energy-Efficient Drone Coverage Path Planning Using Genetic Algorithm. In Proceedings of the IEEE International Conference on High Performance Switching and Routing, HPSR, Newark, NJ, USA, 11–14 May 2020. [Google Scholar]
- Yacef, F.; Rizoug, N.; Degaa, L.; Hamerlain, M. Energy-Efficiency Path Planning for Quadrotor UAV under Wind Conditions. In Proceedings of the 7th International Conference on Control, Decision and Information Technologies, CoDIT 2020, Prague, Czech Republic, 29 June–2 July 2020; pp. 1133–1138. [Google Scholar]
- Dietrich, T.; Krug, S.; Zimmermann, A. An Empirical Study on Generic Multicopter Energy Consumption Profiles. In Proceedings of the 11th Annual IEEE International Systems Conference, SysCon 2017—Proceedings, Montreal, QC, Canada, 24–27 April 2017; pp. 406–411. [Google Scholar]
- Chen, Y.; Baek, D.; Bocca, A.; Macii, A.; Macii, E.; Poncino, M. A Case for a Battery-Aware Model of Drone Energy Consumption. In Proceedings of the INTELEC, International Telecommunications Energy Conference (Proceedings), Turin, Italy, 7–11 October 2019. [Google Scholar]
- Lee, C.; Son, J.J.; Lee, H.; Han, S. Energy Consumption Analysis of Downward-Tethered Quadcopter. In Proceedings of the 21st International Conference on Control, Automation and Systems (ICCAS 2021), ICROS: Ramada Plaza Hotel, Jeju, Korea, 12–15 October 2021; pp. 1212–1215. [Google Scholar]
- Zhang, J.; Campbell, J.F.; Sweeney, D.C.; Hupman, A.C. Energy Consumption Models for Delivery Drones: A Comparison and Assessment. Transp. Res. Part D Transp. Environ. 2021, 90, 102668. [Google Scholar] [CrossRef]
- Beigi, P.; Rajabi, M.S.; Aghakhani, S. An Overview of Drone Energy Consumption Factors and Models. arXiv 2022, arXiv:2206.10775. [Google Scholar]
- Morbidi, F.; Cano, R.; Lara, D.; Morbidi, F.; Cano, R.; Lara, D.; Generation, M.P.; Morbidi, F.; Cano, R.; Lara, D. Minimum-Energy Path Generation for a Quadrotor UAV. In Proceedings of the International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 2–8. [Google Scholar]
- Yacef, F.; Rizoug, N.; Degaa, L.; Bouhali, O.; Hamerlain, M. Trajectory Optimisation for a Quadrotor Helicopter Considering Energy Consumption. In Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT 2017, Barcelona, Spain, 5–7 April 2017; pp. 1030–1035. [Google Scholar]
- Fouad, Y.; Rizoug, N.; Bouhali, O.; Hamerlain, M. Optimization of Energy Consumption for Quadrotor UAV. In Proceedings of the International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017, Toulouse, France, 18–21 September 2017; pp. 215–222. [Google Scholar]
- Jee, S.; Cho, H. Comparing Energy Consumption Following Flight Pattern for Quadrotor. J. IKEEE 2018, 22, 747–753. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Zeng, Y.; Rong, Y.; Zhang, R. 3D Trajectory Optimization for Energy-Efficient UAV Communication: A Control Design Perspective. IEEE Trans. Wirel. Commun. 2022, 21, 4579–4593. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Ren, B. Energy Saving Quadrotor Control for Field Inspections. IEEE Trans. Syst. Man, Cybern. Syst. 2022, 52, 1768–1777. [Google Scholar] [CrossRef]
- Salameh, I.M.; Ammar, E.M.; Tutunji, T.A. Identification of Quadcopter Hovering Using Experimental Data. In Proceedings of the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2015, Amman, Jordan, 3–5 November 2015. [Google Scholar]
- Gao, N.; Zeng, Y.; Wang, J.; Wu, D.; Zhang, C.; Song, Q.; Qian, J.; Jin, S. Energy Model for UAV Communications: Experimental Validation and Model Generalization. China Commun. 2021, 18, 253–264. [Google Scholar] [CrossRef]
- Aguilar-Lopez, J.M.; Garcia, R.A.; Bordons, C.; Camacho, E.F. Development of the Energy Consumption Model of a Quadrotor Using Voltage Data from Experimental Flights. In Proceedings of the 2022 IEEE 17th International Conference on Control & Automation (ICCA), Naples, Italy, 27–30 June 2022; pp. 432–437. [Google Scholar] [CrossRef]
- Alyassi, R.; Khonji, M.; Karapetyan, A.; Chau, S.C.-K.; Elbassioni, K.; Tseng, C.-M. Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones. IEEE Trans. Autom. Sci. Eng. 2022, 1–13. [Google Scholar] [CrossRef]
- Abeywickrama, H.V.; Jayawickrama, B.A.; He, Y.; Dutkiewicz, E. Empirical Power Consumption Model for UAVs. In Proceedings of the IEEE Vehicular Technology Conference, Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
- Abeywickrama, H.V.; Jayawickrama, B.A.; He, Y.; Dutkiewicz, E. Comprehensive Energy Consumption Model for Unmanned Aerial Vehicles, Based on Empirical Studies of Battery Performance. IEEE Access 2018, 6, 58383–58394. [Google Scholar] [CrossRef]
- Steup, C.; Parlow, S.; Mai, S.; Mostaghim, S. Generic Component-Based Mission-Centric Energy Model for Micro-Scale Unmanned Aerial Vehicles. Drones 2020, 4, 63. [Google Scholar] [CrossRef]
- Kreciglowa, N.; Karydis, K.; Kumar, V. Energy Efficiency of Trajectory Generation Methods for Stop-and-Go Aerial Robot Navigation. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, ICUAS 2017, Miami, FL, USA, 13–16 June 2017; pp. 656–662. [Google Scholar]
- Rodrigues, T.A.; Patrikar, J.; Wagner, B.; Scherer, S.; Samaras, C. Development of an Energy Model for Quadcopter Package Delivery Drones. Available online: https://www.microstrain.com/sites/default/files/energy_model_for_quadcopter_drones_lord-compressed.pdf (accessed on 13 August 2022).
- Wu, F.; Yang, D.; Xiao, L.; Cuthbert, L. Energy Consumption and Completion Time Tradeoff in Rotary-Wing UAV Enabled WPCN. IEEE Access 2019, 7, 79617–79635. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, J.; Zhang, R. Energy Minimization for Wireless Communication with Rotary-Wing UAV. IEEE Trans. Wirel. Commun. 2019, 18, 2329–2345. [Google Scholar] [CrossRef]
- Pradeep, P.; Park, S.G.; Wei, P. Trajectory Optimization of Multirotor Agricultural UAVs. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–7. [Google Scholar]
- Sekander, S.; Tabassum, H.; Hossain, E. On the Performance of Renewable Energy-Powered UAV-Assisted Wireless Communications. arXiv 2019, arXiv:1907.07158. [Google Scholar]
- Bangura, M.; Mahony, R. Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor. In Proceedings of the Australasian Conference on Robotics and Automation 2012, Wellington, New Zealand, 3–5 December 2012; pp. 1–10. [Google Scholar]
- Huang, H.; Hoffmann, G.M.; Waslander, S.L.; Tomlin, C.J. Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive Maneuvering. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3277–3282. [Google Scholar]
- Liu, Z.; Sengupta, R.; Kurzhanskiy, A. A Power Consumption Model for Multi-Rotor Small Unmanned Aircraft Systems. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, ICUAS 2017, Miami, FL, USA, 13–16 June 2017; pp. 310–315. [Google Scholar]
- Stolaroff, J.K.; Samaras, C.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Energy Use and Life Cycle Greenhouse Gas Emissions of Drones for Commercial Package Delivery. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Ware, J.; Roy, N. An Analysis of Wind Field Estimation and Exploitation for Quadrotor Flight in the Urban Canopy Layer. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1507–1514. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Patrikar, J.; Choudhry, A.; Feldgoise, J.; Arcot, V.; Gahlaut, A.; Lau, S.; Moon, B.; Wagner, B.; Matthews, H.S.; et al. In-Flight Positional and Energy Use Data Set of a DJI Matrice 100 Quadcopter for Small Package Delivery. Sci. Data 2021, 8, 6–13. [Google Scholar] [CrossRef]
- The Cube Orange. Available online: https://docs.px4.io/master/en/flight_controller/cubepilot_cube_orange.html (accessed on 18 August 2022).
- Benic, Z.; Piljek, P.; Kotarski, D. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors. Interdiscip. Descr. Complex Syst. 2016, 14, 88–100. [Google Scholar] [CrossRef]
- Żugaj, M.; Bibik, P.; Jacewicz, M. UAV Aircraft Model for Control System Failures Analysis. J. Theor. Appl. Mech. 2016, 54, 1405–1415. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, P. Modeling and Simulation of Aerospace Vehicle Dynamics; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2000. [Google Scholar]
- Pounds, P.; Mahony, R.; Corke, P. Modelling and Control of a Large Quadrotor Robot. Control Eng. Pract. 2010, 18, 691–699. [Google Scholar] [CrossRef]
- Bezzo, N.; Mohta, K.; Nowzari, C.; Lee, I.; Kumar, V.; Pappas, G. Online Planning for Energy-Efficient and Disturbance-Aware UAV Operations. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016; pp. 5027–5033. [Google Scholar]
- Peters, D.A.; He, C.J. Finite State Induced Flow Models. II—Three-Dimensional Rotor Disk. J. Aircr. 2012, 32, 323–333. [Google Scholar] [CrossRef]
- MIL-F-8785C Military Specification. Flying Qualities of Piloted Airplanes. Available online: http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-F/MIL-F-8785C_5295/ (accessed on 11 September 2022).
- Dryden Wind Turbulence Model (Continuous). Available online: https://www.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinuous.html (accessed on 13 September 2022).
- Watkins, S.; Vino, G. The Turbulent Wind Environment of Birds, Insects and MAVs. In Proceedings of the 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 13–17 December 2004. [Google Scholar]
- Yacef, F.; Bouhali, O.; Hamerlain, M.; Rizoug, N. Observer-Based Adaptive Fuzzy Backstepping Tracking Control of Quadrotor Unmanned Aerial Vehicle Powered by Li-Ion Battery. J. Intell. Robot. Syst. Theory Appl. 2016, 84, 179–197. [Google Scholar] [CrossRef]
- Tang, G.; Tang, C.; Zhou, H.; Claramunt, C.; Men, S. R-Dfs: A Coverage Path Planning Approach Based on Region Optimal Decomposition. Remote Sens. 2021, 13, 1525. [Google Scholar] [CrossRef]
- Di Franco, C.; Buttazzo, G. Coverage Path Planning for UAVs Photogrammetry with Energy and Resolution Constraints. J. Intell. Robot. Syst. Theory Appl. 2016, 83, 445–462. [Google Scholar] [CrossRef]
- Majeed, A.; Hwang, S.O. A Multi-Objective Coverage Path Planning Algorithm for Uavs to Cover Spatially Distributed Regions in Urban Environments. Aerospace 2021, 8, 343. [Google Scholar] [CrossRef]
- Fevgas, G.; Lagkas, T.; Argyriou, V.; Sarigiannidis, P. Coverage Path Planning Methods Focusing on Energy Efficient and Cooperative Strategies for Unmanned Aerial Vehicles. Sensors 2022, 22, 1235. [Google Scholar] [CrossRef] [PubMed]
- Otote, D.A.; Li, B.; Ai, B.; Gao, S.; Xu, J.; Chen, X.; Lv, G. A Decision-Making Algorithm for Maritime Search and Rescue Plan. Sustainability 2019, 11, 2084. [Google Scholar] [CrossRef]
- Cabreira, T.M.; Brisolara, L.B.; Ferreira Paulo, R. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019, 3, 4. [Google Scholar] [CrossRef]
- Choutri, K.; Lagha, M.; Dala, L. A Fully Autonomous Search and Rescue System Using Quadrotor UAV. Int. J. Comput. Digit. Syst. 2021, 10, 403–414. [Google Scholar] [CrossRef]
- Andersen, H. Path Planning for Search and Rescue Mission Using Multicopters. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Jaafar, W.; Yanikomeroglu, H. Dynamics of Quadrotor UAVs for Aerial Networks: An Energy Perspective. arXiv 2019, arXiv:1905.06703. [Google Scholar]
- Pradeep, P.; Wei, P. Energy-Efficient Arrival with RTA Constraint for Multirotor EVToL in Urban Air Mobility. J. Aerosp. Inf. Syst. 2019, 16, 263–277. [Google Scholar] [CrossRef]
- Prasetia, A.S.; Wai, R.J.; Wen, Y.L.; Wang, Y.K. Mission-Based Energy Consumption Prediction of Multirotor Uav. IEEE Access 2019, 7, 33055–33063. [Google Scholar] [CrossRef]
- Li, M.; Jia, G.; Gong, S.; Guo, R. Energy Consumption Model of BLDC Quadrotor UAVs for Mobile Communication Trajectory Planning. TechRxiv 2022, arXiv:19181228.v1. [Google Scholar]
- Aoun, C.; Daher, N.; Shammas, E. An Energy Optimal Path-Planning Scheme for Quadcopters in Forests. In Proceedings of the IEEE Conference on Decision and Control, Nice, France, 11–13 December 2019; pp. 8323–8328. [Google Scholar]
- Tremblay, O.; Dessaint, L.A. Experimental Validation of a Battery Dynamic Model for EV Applications. World Electr. Veh. J. 2009, 2, 289–298. [Google Scholar] [CrossRef]
- Mousavi, G.S.M.; Nikdel, M. Various Battery Models for Various Simulation Studies and Applications. Renew. Sustain. Energy Rev. 2014, 32, 477–485. [Google Scholar] [CrossRef]
- Azam, S.M. Battery Identification, Prediction and Modelling. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2018. [Google Scholar]
- Raszmann, E.; Baker, K.; Shi, Y.; Christensen, D. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control. In Proceedings of the 2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 23–24 February 2017. [Google Scholar] [CrossRef]
- Hemi, H.; M’sirdi, N.K.; Naamane, A. A New Proposed Shepherd Model of a Li-Ion Open Circuit Battery Based on Data Fitting. In Proceedings of the International Conference on Integrated Modeling and Analysis in Applied Control and Automation, Lisbon, Portugal, 18–20 September 2019; pp. 83–92. [Google Scholar]
- Simulink Generic Battery Model. Available online: https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html (accessed on 16 August 2022).
- Onboard Message Log Messages. Available online: https://ardupilot.org/copter/docs/logmessages.html (accessed on 18 August 2022).
- MAVLink Messages. Available online: https://mavlink.io/en/messages/ardupilotmega.html#messages (accessed on 13 August 2022).
- UAV Log Viewer. Available online: https://plot.ardupilot.org/#/ (accessed on 13 August 2022).
- Mission Planner Home. Available online: https://ardupilot.org/planner/ (accessed on 16 August 2022).
- Jimenez, P.; Lichota, P.; Agudelo, D.; Rogowski, K. Experimental Validation of Total Energy Control System for UAVs. Energies 2020, 13, 14. [Google Scholar] [CrossRef]
- Dorobantu, A.; Seiler, P.J.; Balas, G.J. Validating Uncertain Aircraft Simulation Models Using Flight Test Data. In Proceedings of the AIAA Atmospheric Flight Mechanics (AFM) Conference, Boston, MA, USA, 19–22 August 2013. [Google Scholar]
- Jategaonkar, R.V. Flight Vehicle System Identification: A Time-Domain Methodology, 2nd ed.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015. [Google Scholar]
- Jacewicz, M.; Głębocki, R.; Ożóg, R. Monte-Carlo Based Lateral Thruster Parameters Optimization for 122 mm Rocket. In Proceedings of the Automation 2020: Towards Industry of the Future. AUTOMATION 2020, Warsaw, Poland, 18–20 March 2020; Advances in Intelligent Systems and Computing. Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Głębocki, R.; Jacewicz, M. Parametric Study of Guidance of a 160-Mm Projectile Steered with Lateral Thrusters. Aerospace 2020, 7, 61. [Google Scholar] [CrossRef]
- Szklarski, A.; Głębocki, R.; Jacewicz, M. Impact Point Prediction Guidance Parametric Study for 155 mm Rocket Assisted Artillery Projectile with Lateral Thrusters. Arch. Mech. Eng. 2020, 67, 31–56. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, T. Mersenne Twister. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [Google Scholar] [CrossRef]
- Charles, C.; Jean-Francois, G.; Abolfazl, M.; Ugo, C.; Sofiane, A. Applying Robust Design Methodology to a Quadrotor Drone. In Proceedings of the 21st International Conference on Engineering Design, ICED 17, Vancouver, BC, Canada, 21–25 August 2017. [Google Scholar]
- Cabreira, T.M.; Franco, C.D.; Ferreira, P.R.; Buttazzo, G.C. Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric Applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668. [Google Scholar] [CrossRef]
Parameter [Unit] | Symbol | Value |
---|---|---|
Drone take-off mass (kg) | 4.689 | |
Moments of inertia (kg·m2) | 0.075716 | |
0.084124 | ||
0.126437 | ||
Products of inertia (kg·m2) | 0 | |
First propeller position vector (m) | [0.2475, 0.2475, −0.074] | |
Second propeller position vector (m) | [−0.2475, 0.2475, −0.074] | |
Third propeller position vector (m) | [−0.2475, −0.2475, −0.074] | |
Fourth propeller position vector (m) | [0.2475, −0.2475, −0.074] | |
Propeller diameter (m) | 0.4572 | |
Propeller pitch (m) | – | 0.1549 |
Propeller mass (kg) | – | 0.017 |
Propeller moment of inertia (kg) | 0.0002964 | |
Battery mass (kg) | – | 2.013 |
Max. propeller angular rate (RPM) | – | 6000 |
Propeller angular rate at hover (119 m above sea level) (RPM) | – | 3203.82 |
Maximum flight altitude (m) | – | 6500 |
Flight endurance (500 g payload) (min) | – | ≥71 |
Flight endurance (1000 g payload) (min) | – | ≥60 |
(mm) | (mm) | (mm) | (°) |
---|---|---|---|
25 | 19.75 | −0.12 | 1.16 |
37.5 | 25.13 | 0.64 | 23.50 |
50 | 32.8 | 3.23 | 23.09 |
62.5 | 40.33 | 5.96 | 20.83 |
75 | 44.15 | 7.37 | 17.00 |
87.5 | 43.5 | 7.04 | 14.84 |
100 | 41.69 | 6.21 | 13.49 |
125 | 37.26 | 4.46 | 12.17 |
150 | 32.87 | 2.8 | 11.30 |
175 | 28.62 | 1.37 | 9.92 |
200 | 23.92 | 0.1 | 8.69 |
210 | 21.99 | −0.19 | 8.42 |
220 | 16.72 | 0.99 | 7.15 |
225 | 11.19 | 3.46 | 7.83 |
Parameter (Unit) | Symbol | Value |
---|---|---|
torque constant of the electric motor (Nm/A) | 0.9 × 10–2 | |
power required by the onboard subsystems (J/s) | 11 | |
rotor thrust coefficient (N/RPM2) | 9.32 × 10–5 | |
rotor torque coefficient (Nm/RPM2) | 9.37 × 10–6 | |
viscous damping coefficient of the motor (Nm·s/rad) | 0.17 × 10–3 | |
reference linear dimension (m) | 1 |
Parameter (Unit) * | Symbol | Value |
---|---|---|
constant voltage (V) | 16.8 | |
polarization constant (V/Ah) | 0.038603 | |
battery capacity (Ah)/(Wh) | 29.7/439.6 | |
exponential voltage (V) | 0.2468 | |
exponential capacity (Ah)−1 | 30 | |
internal battery resistance (Ω) | 0.025 |
Pattern Part | Mean (kWs) | Up. CI Limit (kWs) | Low. CI Limit (kWs) |
---|---|---|---|
N–S leg | 14.709 | 13.975 | 15.442 |
E–W leg | 22.457 | 21.696 | 23.218 |
Turn | 5.137 | 5.439 | 4.835 |
Parameter | RMSE (Case 1) | RMSE (Case 2) | TIC (Case 1) | TIC (Case 2) |
---|---|---|---|---|
0.548276 | 0.579551 | 0.104042 | 0.057415 | |
0.593253 | 0.522913 | 0.121544 | 0.212000 | |
0.176107 | 0.113729 | 0.101274 | 0.746461 | |
0.122986 | 0.145171 | 0.729782 | 0.701991 | |
0.158896 | 0.164072 | 0.749323 | 0.723037 | |
0.069834 | 0.075242 | 0.145792 | 0.143996 | |
3.400182 | 6.449190 | 0.031059 | 0.020022 | |
3.673267 | 1.658888 | 0.049805 | 0.006499 | |
0.394301 | 0.038004 | 0.008108 | 0.000633 | |
3.252205 | 3.070044 | 0.376330 | 0.279653 | |
3.398018 | 3.590691 | 0.264716 | 0.223927 | |
2.593932 | 2.742482 | 0.011790 | 0.005076 |
Parameter | Unit | (Case 1) | (Case 2) | |
---|---|---|---|---|
kg | 4.689 | 4.689 | 0.05 | |
kg·m2 | 0.075716 | 0.075716 | 0.005 | |
kg·m2 | 0.084124 | 0.084124 | 0.005 | |
kg·m2 | 0.126437 | 0.126437 | 0.005 | |
m/s | −0.119418 | 4.453111 | 0.5 | |
m/s | −0.136043 | 0.305209 | 0.5 | |
m/s | −0.377093 | −0.011963 | 0.5 | |
°/s | 4.846231 | −7.667591 | 3 | |
°/s | 0.217045 | 3.023915 | 3 | |
°/s | 1.886309 | 7.652848 | 3 | |
m | −2.904065 | −48.228010 | 3 | |
m | 0.151600 | −117.651900 | 3 | |
m | −0.095660 | −30.040323 | 3 | |
° | −0.570000 | −2.610000 | 1 | |
° | 0.390000 | 0.280000 | 1 | |
° | 198.020000 | 289.050000 | 5 | |
m/s | 4.5 | 7 | 1 | |
° | 220 | 225 | 10 |
Case | Mean (kWs) | Minimum (kWs) | Maximum (kWs) |
---|---|---|---|
1 (all disturbances) | 48.6747 | 47.2688 | 49.9513 |
1 (wind only) | 48.6949 | 48.6335 | 48.9322 |
1 (mass, moments of inertia) | 48.6563 | 47.2500 | 49.8289 |
2 (all disturbances) | 542.9812 | 528.1782 | 558.7417 |
2 (wind only) | 543.3368 | 539.3126 | 548.5094 |
2 (mass, moments of inertia) | 543.2884 | 527.8764 | 556.1354 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacewicz, M.; Żugaj, M.; Głębocki, R.; Bibik, P. Quadrotor Model for Energy Consumption Analysis. Energies 2022, 15, 7136. https://doi.org/10.3390/en15197136
Jacewicz M, Żugaj M, Głębocki R, Bibik P. Quadrotor Model for Energy Consumption Analysis. Energies. 2022; 15(19):7136. https://doi.org/10.3390/en15197136
Chicago/Turabian StyleJacewicz, Mariusz, Marcin Żugaj, Robert Głębocki, and Przemysław Bibik. 2022. "Quadrotor Model for Energy Consumption Analysis" Energies 15, no. 19: 7136. https://doi.org/10.3390/en15197136
APA StyleJacewicz, M., Żugaj, M., Głębocki, R., & Bibik, P. (2022). Quadrotor Model for Energy Consumption Analysis. Energies, 15(19), 7136. https://doi.org/10.3390/en15197136