Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers
Abstract
:1. Introduction
2. Overview of EVaaS
2.1. EVaaS Framework
2.2. EVaaS Architecture
3. System Requirements
3.1. EV Battery
3.2. EV Charging Stations
3.3. Load
3.4. Advanced Metering Infrastructure
4. EVaaS Communications
4.1. V2G Communications
4.2. Data Analytics
5. Charging Strategies
5.1. Uncoordinated Charging
5.2. Coordinated Charging
6. Energy Trading and Market Design
6.1. Traditional Energy Trading
6.2. Blockchain-Based Energy Trading
7. Benefits of V2G
7.1. Ancillary Services
7.1.1. Reserve Power Supply
7.1.2. Voltage and Frequency Regulation
7.1.3. Peak Shaving and Load Levelling
7.2. Mobile Backup Power Supply
7.3. Renewable Energy Support and Balancing
7.4. Environmental Benefits
8. Challenges to V2G
8.1. Battery Degradation
8.2. Energy Conversion Losses
8.3. Effects on the Distribution System
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lieven, T. Policy measures to promote electric mobility—A global perspective. Transp. Res. Part A Policy Pract. 2015, 82, 78–93. [Google Scholar] [CrossRef]
- Harari, D. SN/EP/5177 Vehicle Scrappage Scheme; Briefing Paper; House of Commons Library: London, UK, 2009. [Google Scholar]
- Lenski, S.; Keoleian, G.; Bolon, K. The impact of ‘Cash for Clunkers’ on greenhouse gas emissions: A life cycle perspective. Environ. Res. Lett. 2010, 5, 044003. [Google Scholar] [CrossRef]
- Rokadiya, S.; Yang, Z. Overview of Global Zero-Emission Vehicle Mandate Programs; Briefing Paper; International Council on Clean Transportation: San Francisco, CA, USA, 2019. [Google Scholar]
- Corporate Average Fuel Economy. NHTSA. Available online: https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy (accessed on 8 April 2021).
- Lee, H.; Clark, A. Charging the Future: Challenges and Opportunities for Electric Vehicle Adoption; Harvard Kennedy School: Cambridge, MA, USA, 2018. [Google Scholar]
- Healy, J. Guide to the Different Types of Electric Vehicles. 2019. Available online: https://www.carkeys.co.uk/guides/guide-to-the-different-types-of-electric-vehicles (accessed on 14 March 2020).
- Hirst, D. Electric Vehicles and Infrastructure; Briefing Paper; House of Commons Library: London, UK, 2020. [Google Scholar]
- What’s Stopping the EV Revolution? 2017. Available online: https://www.ovoenergy.com/planet-ovo/electric-vehicles (accessed on 2 March 2021).
- Der Steen, M.V.; Schelven, R.V.; Kotter, R.; van Twist, M.; van Deventer MPA, P. EV Policy compared: An international comparison of governments’ policy strategy towards E-Mobility. In E-Mobility in Europe; Springer: Cham, Switzerland, 2015; pp. 27–53. [Google Scholar]
- Birrell, S.A.; McGordon, A.; Jennings, P.A. Defining the accuracy of real-world range estimations of an electric vehicle. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2590–2595. [Google Scholar]
- Wang, J.; Liu, K.; Yamamoto, T. Improving electricity consumption estimation for electric vehicles based on sparse GPS observations. Energies 2017, 10, 129. [Google Scholar] [CrossRef]
- Guille, C.; Gross, G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 2009, 37, 4379–4390. [Google Scholar] [CrossRef]
- Kempton, W.; Letendre, S. Electric Vehicles as a New Power Source for Electric Utilities. Transp. Res. Part D Transp. Environ. 1997, 2, 157–175. [Google Scholar] [CrossRef]
- Shin, H.; Baldick, R. Plug-In Electric Vehicle to Home (V2H) Operation Under a Grid Outage. IEEE Trans. Smart Grid 2017, 8, 2032–2041. [Google Scholar] [CrossRef]
- Pang, C.; Dutta, P.; Kezunovic, M. BEVs/PHEVs as Dispersed Energy Storage for V2B Uses in the Smart Grid. IEEE Trans. Smart Grid 2012, 3, 473–482. [Google Scholar] [CrossRef]
- Koufakis, A.; Rigas, E.; Bassiliades, N.; Ramchurn, S. Offline and Online Electric Vehicle Charging Scheduling With V2V Energy Transfer. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2128–2138. [Google Scholar] [CrossRef]
- Everoze. V2G Global Roadtrip: Around the World in 50 Projects. 2018. Available online: https://innovation.ukpowernetworks.co.uk/wp-content/uploads/2018/12/V2G-Global-Roadtrip-Around-the-World-in-50-Projects.pdf (accessed on 13 April 2020).
- Yilmaz, M.; Krein, P. Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- Painuli, S.; Rawat, M.; Rayudu, D.R. A comprehensive review on electric vehicles operation, development and grid stability. In Proceedings of the 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 13–14 April 2018; pp. 106–110. [Google Scholar]
- Shariff, S.; Iqbal, D.; Alam, M.S.; Ahmad, F. A state of the art review of electric vehicle to grid (V2G) technology. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012103. [Google Scholar] [CrossRef]
- Habib, S.; Khan, M.M.; Abbas, F.; Sang, L.; Shahid, M.U.; Tang, H. A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 2018, 6, 13866–13890. [Google Scholar] [CrossRef]
- Ravi, S.S.; Aziz, M. Utilization of electric vehicles for vehicle-to-grid services: Progress and perspectives. Energies 2022, 15, 589. [Google Scholar] [CrossRef]
- Umoren, I.; Shakir, M. EVaaS: A novel on-demand outage mitigation framework for electric vehicle enabled microgrids. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Aujla, G.; Jindal, A.; Kumar, N. EVaaS: Electric vehicle-as-a-service for energy trading in SDN-enabled smart transportation system. Comput. Netw. 2018, 143, 247–262. [Google Scholar] [CrossRef]
- Weiss, H.; Winkler, T.; Ziegerhofer, H. Large lithium-ion battery-powered electric vehicles—From idea to reality. In Proceedings of the 2018 ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018; pp. 1–5. [Google Scholar]
- Burke, A. Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 806–820. [Google Scholar] [CrossRef]
- BU-1003: Electric Vehicle (EV). Available online: https://batteryuniversity.com/article/bu-1003-electric-vehicle-ev (accessed on 15 June 2020).
- Hannan, M.; Wali, S.B.; Ker, P.J.; Abd Rahman, M.S.; Mansor, M.; Ramachandaramurthy, V.K.; Muttaqi, K.; Mahlia, T.; Dong, Z. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Ahmad, F.; Khalid, M.; Panigrahi, B. Development in energy storage system for electric transportation: A comprehensive review. J. Energy Storage 2021, 43, 103153. [Google Scholar] [CrossRef]
- Nissan. Nissan Price & Specifications | Electric Cars | Nissan UK. 2022. Available online: https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html (accessed on 19 September 2022).
- BMW. The All-New BMW i4: Engine & Technical Data. 2022. Available online: https://www.bmw.co.uk/en/all-models/bmw-i/i4/2021/bmw-i4-technical-data.html#tab-0-0 (accessed on 19 September 2022).
- Audi. Audi e-tron 55 Quattro (300 kW) Data Sheet. 2022. Available online: https://ev-database.org/car/1253/Audi-e-tron-55-quattro (accessed on 19 September 2022).
- Chevrolet. Chevrolet Bolt EV-2021. 2021. Available online: https://media.chevrolet.com/media/us/en/chevrolet/vehicles/bolt-ev/2021.tab1.html (accessed on 19 September 2022).
- Hyundai. Discover the Hyundai IONIQ Electric-Specs & Colours | Hyundai UK. 2022. Available online: https://www.hyundai.co.uk/new-cars/ioniq/electric (accessed on 19 September 2022).
- Volkswagen. New Volkswagen e-Golf | Volkswagen UK. 2022. Available online: https://www.volkswagen.co.uk/en/new/e-golf.html (accessed on 19 September 2022).
- Mercedes Benz. Charging and Range. 2022. Available online: https://www.mercedes-benz.co.uk/passengercars/mercedes-benz-cars/models/eqc/charging-and-range.html (accessed on 19 September 2022).
- Kia. Kia Soul EV Specifications & Features | Kia UK. 2022. Available online: https://www.kia.com/uk/new-cars/soul-ev/specification/ (accessed on 19 September 2022).
- Jaguar. Pricing & Specifications | Jaguar I-PACE | Jaguar UK. 2022. Available online: https://www.jaguar.co.uk/jaguar-range/i-pace/specifications/index.html (accessed on 19 September 2022).
- Tesla. Model S. 2022. Available online: https://www.tesla.com/ro_RO/models/design#overview (accessed on 19 September 2022).
- Renault. ZOE—Driving Range, Battery & Charging—Renault UK. 2022. Available online: https://www.renault.co.uk/electric-vehicles/zoe/battery.html (accessed on 19 September 2022).
- Peugeot. Peugeot E-208, 100% Electric. 2022. Available online: https://www.peugeot.com.ro/gama/modele/peugeot-e-208-208.html (accessed on 19 September 2022).
- Vauxhall. Corsa Electric. 2022. Available online: https://www.vauxhall.co.uk/cars/corsa/electric.html (accessed on 19 September 2022).
- Ecker, M.; Nieto, N.; Käbitz, S.; Schmalstieg, J.; Blanke, H.; Warnecke, A.; Sauer, D.U. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries. J. Power Source 2014, 248, 839–851. [Google Scholar] [CrossRef]
- Zhou, C.; Qian, K.; Allan, M.; Zhou, W. Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems. IEEE Trans. Energy Convers. 2011, 26, 1041–1050. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.; Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Rao, R.; Vrudhula, S.; Rakhmatov, D. Battery modeling for energy-aware system design. Computer 2003, 36, 77–87. [Google Scholar]
- Dogger, J.; Roossien, B.; Nieuwenhout, F. Characterization of Li-ion Batteries for Intelligent Management of Distributed Grid-Connected Storage. IEEE Trans. Energy Convers. 2011, 26, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hsieh, C.; Luo, Y. Search for an Optimal Five-Step Charging Pattern for Li-ion Batteries Using Consecutive Orthogonal Arrays. IEEE Trans. Energy Convers. 2011, 26, 654–661. [Google Scholar] [CrossRef]
- Gomadam, P.; Weidner, J.; Dougal, R.; White, R. Mathematical modeling of lithium-ion and nickel battery systems. J. Power Source 2002, 110, 267–284. [Google Scholar] [CrossRef]
- Thirugnanam, K.; Reena, E.; Singh, M.; Kumar, P. Mathematical Modeling of Li-ion Battery Using Genetic Algorithm Approach for V2G Applications. IEEE Trans. Energy Convers. 2014, 29, 332–343. [Google Scholar]
- Liaw, B.; Nagasubramanian, G.; Jungst, R.; Doughty, D. Modeling of lithium ion cells—A simple equivalent-circuit model approach. Solid State Ionics 2004, 175, 835–839. [Google Scholar]
- Kroeze, R.; Krein, P. Electrical battery model for use in dynamic electric vehicle simulations. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 1336–1342. [Google Scholar]
- Kumar, P.; Bauer, P. Parameter extraction of battery models using multiobjective optimization genetic algorithms. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. 106–110. [Google Scholar]
- Khalid, M.; Ahmad, F.; Panigrahi, B.; Al-Fagih, L. A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery. J. Energy Storage 2022, 53, 105084. [Google Scholar] [CrossRef]
- Khaligh, A.; Dusmez, S. Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles. IEEE Trans. Veh. Technol. 2012, 61, 3475–3489. [Google Scholar] [CrossRef]
- Madawala, U.; Thrimawithana, D. A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems. IEEE Trans. Ind. Electron. 2011, 58, 4789–4796. [Google Scholar] [CrossRef]
- Egan, M.; O’Sullivan, D.; Hayes, J.; Willers, M.; Henze, C. Power-Factor-Corrected Single-Stage Inductive Charger for Electric Vehicle Batteries. IEEE Trans. Ind. Electron. 2007, 54, 1217–1226. [Google Scholar] [CrossRef]
- Musavi, F.; Edington, M.; Eberle, W. Wireless power transfer: A survey of EV battery charging technologies. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 1804–1810. [Google Scholar]
- Gautam, D.; Musavi, F.; Edington, M.; Eberle, W.; Dunford, W. An Automotive Onboard 3.3-kW Battery Charger for PHEV Application. IEEE Trans. Veh. Technol. 2012, 61, 3466–3474. [Google Scholar] [CrossRef]
- Howell, D.; Boyd, S.; Cunningham, B.; Gillard, S.; Slezak, L. Enabling Fast Charging: A Technology Gap Assessment; Technical Report; U.S. Deptartment Energy, Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2017. [Google Scholar]
- Tu, H.; Feng, H.; Srdic, S.; Lukic, S. Extreme fast charging of electric vehicles: A technology overview. IEEE Trans. Transp. Electrif. 2019, 5, 861–878. [Google Scholar] [CrossRef]
- Deb, N.; Singh, R.; Brooks, R.; Bai, K. A review of extremely fast charging stations for electric vehicles. Energies 2021, 14, 7566. [Google Scholar] [CrossRef]
- CHAdeMO Association. First Next Generation, Ultra High-Power Charging Protocol Test/Demo Successfully Completed. 2020. Available online: https://www.chademo.com/next-generation-charging-demo-in-kashima (accessed on 15 September 2022).
- Blech, T. Project Chaoji: The background and challenges of harmonising DC charging standards. In Proceedings of the 33rd Electric Vehicles Symposium (EV33), Portland, OR, USA, 14–17 June 2020; pp. 1–12. [Google Scholar]
- Khan, S.; Ahmad, A.; Ahmad, F.; Shemami, M.S.; Alam, M.S.; Khateeb, S. A comprehensive review on solar powered electric vehicle charging system. Smart Sci. 2017, 6, 54–79. [Google Scholar] [CrossRef]
- Alfares, H.; Nazeeruddin, M. Electric load forecasting: Literature survey and classification of methods. Int. J. Syst. Sci. 2002, 33, 23–34. [Google Scholar] [CrossRef]
- Taylor, J.; de Menezes, L.; McSharry, P. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 2006, 22, 1–16. [Google Scholar] [CrossRef]
- Morello, R.; Mukhopadhyay, S.; Liu, Z.; Slomovitz, D.; Samantaray, S. Advances on Sensing Technologies for Smart Cities and Power Grids: A Review. IEEE Sens. J. 2017, 17, 7596–7610. [Google Scholar] [CrossRef]
- Ghosal, A.; Conti, M. Key Management Systems for Smart Grid Advanced Metering Infrastructure: A Survey. IEEE Commun. Surv. Tuts. 2019, 21, 2831–2848. [Google Scholar] [CrossRef]
- Mohassel, R.; Fung, A.; Mohammadi, F.; Raahemifar, K. A survey on Advanced Metering Infrastructure. Int. J. Electr. Power Energy Syst. 2014, 63, 473–484. [Google Scholar] [CrossRef]
- Tuttle, D.; Baldick, R. The Evolution of Plug-In Electric Vehicle-Grid Interactions. IEEE Trans. Smart Grid 2012, 3, 500–505. [Google Scholar] [CrossRef]
- Steffen, R.; Preißinger, J.; Schöllermann, T.; Müller, A.; Schnabel, I. Near Field Communication (NFC) in an automotive environment. In Proceedings of the 2010 Second International Workshop on Near Field Communication, Monaco, Monaco, 20 April 2010; pp. 15–20. [Google Scholar]
- Conti, M.; Fedeli, D.; Virgulti, M. B4V2G: Bluetooth for electric vehicle to smart grid connection. In Proceedings of the 9th International Workshop on Intelligent Solutions in Embedded Systems, Regensburg, Germany, 7–8 July 2011; pp. 1–6. [Google Scholar]
- Lam, K.; Ko, K.; Tung, H.; Tung, H.; Tsang, K.; Lai, L. ZigBee electric vehicle charging system. In Proceedings of the 2011 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2011; pp. 507–508. [Google Scholar]
- Al-Anbagi, I.; Mouftah, H. WAVE 4 V2G: Wireless access in vehicular environments for Vehicle-to-Grid applications. Veh. Commun. 2016, 3, 31–42. [Google Scholar] [CrossRef]
- Jatav, V.; Singh, V. Mobile WiMAX network security threats and solutions: A survey. In Proceedings of the 2014 International Conference on Computer and Communication Technology (ICCCT), Allahabad, India, 26–28 September 2014; pp. 135–140. [Google Scholar]
- Hoang, D.; Wang, P.; Niyato, D.; Hossain, E. Charging and discharging of plug-in electric vehicles (PEVs) in vehicle-to-grid (V2G) systems: A cyber insurance-based model. IEEE Access 2017, 5, 732–754. [Google Scholar] [CrossRef]
- Msadaa, I.; Cataldi, P.; Filali, F. A comparative study between 802. 11p and mobile WiMAX-based V2I communication networks. In Proceedings of the 2010 4th International Conference on Next Generation Mobile Applications, Services and Technologies, Amman, Jordan, 27–29 July 2010; pp. 186–191. [Google Scholar]
- Ribeiro, C. Bringing the wireless access to the automobile: A comparison of Wi-Fi, WiMAX, MBWA, and 3G. In Proceedings of the 21st Computer Science Seminar; 2005; pp. 1–7. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.9385&rep=rep1&type=pdf (accessed on 1 June 2022).
- Jansen, B.; Binding, C.; Sundstrom, O.; Gantenbein, D. Architecture and communication of an electric vehicle virtual power plant. In Proceedings of the 2010 1st IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 149–154. [Google Scholar]
- Cespedes, S.; Shen, X. A framework for ubiquitous IP communications in vehicle to grid networks. In Proceedings of the 2011 IEEE Globecom Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 149–154. [Google Scholar]
- Yuan, Z.; Xuand, H.; Han, H.; Zhao, Y. Research of smart charging management system for electric vehicles based on wireless communication networks. In Proceedings of the 2012 IEEE 6th International Conference on Information and Automation for Sustainability, Beijing, China, 27–29 September 2012; pp. 242–247. [Google Scholar]
- Bilh, A.; Naik, K.; El-Shatshat, R. Evaluating electric vehicles’ response time to regulation signals in smart grids. IEEE Trans. Ind. Inf. 2018, 14, 1210–1219. [Google Scholar] [CrossRef]
- Hussain, S.; Ustun, T.; Nsonga, P.; Ali, I. IEEE 1609 WAVE and IEC 61850 standard communication based integrated EV charging management in smart grids. IEEE Trans. Veh. Technol. 2018, 67, 7690–7697. [Google Scholar] [CrossRef]
- Huang, W.; Ding, L.; Meng, D.; Hwang, J.; Xu, Y.; Zhang, W. QoE-based resource allocation for heterogeneous multi-radio communication in software-defined vehicle networks. IEEE Access 2018, 6, 3387–3399. [Google Scholar] [CrossRef]
- Dong, Q.; Niyato, D.; Wang, P.; Han, Z. An adaptive scheduling of PHEV charging: Analysis under imperfect data communication. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; pp. 205–210. [Google Scholar]
- Umoren, I.; Shakir, M.; Tabassum, H. Resource Efficient Vehicle-to-Grid (V2G) Communication Systems for Electric Vehicle Enabled Microgrids. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4171–4180. [Google Scholar] [CrossRef]
- Shah, S.; Ahmed, E.; Imran, M.; Zeadally, S. 5G for Vehicular Communications. IEEE Commun. Mag. 2018, 56, 111–117. [Google Scholar] [CrossRef]
- Donitzky, C.; Roos, O.; Sauty, S. Digital Energy Network: The Internet of Things and the Smart Grid. Intel. 2014. Available online: https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/iot-smart-grid-paper.pdf (accessed on 30 May 2020).
- Li, B.; Kisacikoglu, M.; Liu, C.; Singh, N.; Erol-Kantarci, M. Big Data Analytics for Electric Vehicle Integration in Green Smart Cities. IEEE Commun. Mag. 2017, 55, 19–25. [Google Scholar] [CrossRef]
- Van Vliet, O.; Brouwer, A.; Kuramochi, T.; van den Broek, M.; Faaij, A. Energy use, cost and CO2 emissions of electric cars. J. Power Source 2011, 196, 2298–2310. [Google Scholar] [CrossRef]
- Liu, R.; Dow, L.; Liu, E. A survey of PEV impacts on electric utilities. In Proceedings of the ISGT 2011, Anaheim, CA, USA, 17–19 January 2011; pp. 1–8. [Google Scholar]
- Galus, M.; Zima, M.; Andersson, G. On integration of plug-in hybrid electric vehicles into existing power system structures. Energy Policy 2010, 38, 6736–6745. [Google Scholar] [CrossRef]
- Masoum, M.; Moses, P.; Hajforoosh, S. Distribution transformer stress in smart grid with coordinated charging of plug-in electric vehicles. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–8. [Google Scholar]
- Moses, P.; Masoum, M.; Hajforoosh, S. Overloading of distribution transformers in smart grid due to uncoordinated charging of plug-In electric vehicles. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–6. [Google Scholar]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 2010, 25, 371–380. [Google Scholar] [CrossRef]
- Qian, K.; Zhou, C.; Allan, M.; Yuan, Y. Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans. Power Syst. 2011, 26, 802–810. [Google Scholar] [CrossRef]
- Halbleib, A.; Turner, M.; Naber, J. Control of battery electric vehicle charging for commercial time of day demand rate payers. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–5. [Google Scholar]
- What are the Best EV Energy Tariffs in the UK? 2022. Available online: https://www.leasefetcher.co.uk/guides/electric-cars/ev-tariffs (accessed on 1 June 2022).
- Lopes, J.; Soares, F.; Almeida, P. Integration of electric vehicles in the electric power system. Proc. IEEE 2011, 99, 168–183. [Google Scholar] [CrossRef]
- Singh, M.; Kar, I.; Kumar, P. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. 196–203. [Google Scholar]
- Fernandez, L.P.; Roman, T.G.S.; Cossent, R.; Domingo, C.M.; Frias, P. Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks. IEEE Trans. Power Syst. 2011, 26, 206–213. [Google Scholar] [CrossRef]
- Sortomme, E.; Hindi, M.; MacPherson, S.; Venkata, S. Coordinated Charging of Plug-In Hybrid Electric Vehicles to Minimize Distribution System Losses. IEEE Trans. Smart Grid 2011, 2, 198–205. [Google Scholar] [CrossRef]
- Saber, A.; Venayagamoorthy, G. Plug-in Vehicles and Renewable Energy Sources for Cost and Emission Reductions. IEEE Trans. Ind. Electron. 2011, 58, 1229–1238. [Google Scholar] [CrossRef]
- Al-Awami, A.; Sortomme, E. Coordinating vehicle-to-grid services with energy trading. IEEE Trans. Smart Grid 2012, 3, 453–462. [Google Scholar] [CrossRef]
- Umoren, I.; Shakir, M. Combined Economic Emission Based Resource Allocation for Electric Vehicle Enabled Microgrids. IET Smart Grid 2020, 3, 768–776. [Google Scholar] [CrossRef]
- Nguyen, H.; Zhang, C.; Mahmud, M. Optimal coordination of G2V and V2G to support power grids with high penetration of renewable energy. IEEE Trans. Transp. Electrif. 2015, 1, 188–195. [Google Scholar] [CrossRef]
- Islam, M.; Lu, H.; Hossain, M.; Li, L. Coordinating electric vehicles and distributed energy sources constrained by user’s travel commitment. IEEE Trans. Ind. Inf. 2022, 18, 5307–5317. [Google Scholar] [CrossRef]
- Xing, H.; Fu, M.; Lin, Z.; Mou, Y. Coordinating electric vehicles and distributed energy sources constrained by user’s travel commitment. IEEE Trans. Power Syst. 2016, 31, 4118–4127. [Google Scholar] [CrossRef]
- Sundstrom, O.; Binding, C. Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Trans. Smart Grid 2012, 3, 26–37. [Google Scholar] [CrossRef]
- Shamami, M.; Alam, M.; Ahmad, F.; Shariff, S.; AlSaidan, I.; Rafat, Y.; Asghar, M. Artificial intelligence-based performance optimization of electric vehicle-to-home (V2H) energy management system. SAE J. STEEP 2020, 1, 115–125. [Google Scholar] [CrossRef]
- Bayram, I.; Shakir, M.; Abdallah, M.; Qaraqe, K. A survey on energy trading in smart grid. In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 3–5 December 2014; pp. 258–262. [Google Scholar]
- Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y.; Vinel, A.; Jonsson, M. Incentive-Driven Energy Trading in the Smart Grid. IEEE Access 2016, 4, 1243–1257. [Google Scholar] [CrossRef]
- Klemperer, P. Auction theory: A guide to the literature. J. Econ. Surv. 1999, 13, 227–286. [Google Scholar] [CrossRef]
- Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [Google Scholar] [CrossRef]
- Clarke, E. Multipart pricing of public goods. Public Choice 1971, 11, 17–33. [Google Scholar] [CrossRef]
- Groves, T. Incentives in teams. Econometrica 1973, 41, 617–631. [Google Scholar] [CrossRef]
- Zhai, H.; Chen, S.; An, D. ExPO: Exponential-based privacy preserving online auction for electric vehicles demand response in microgrid. In Proceedings of the 2017 13th International Conference on Semantics, Knowledge and Grids (SKG), Beijing, China, 13–14 August 2017; pp. 126–131. [Google Scholar]
- Saad, W.; Han, Z.; Poor, H.; Basar, T. A noncooperative game for double auction-based energy trading between PHEVs and distribution grids. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 267–272. [Google Scholar]
- Lam, A.; Huang, L.; Silva, A.; Saad, W. A multi-layer market for vehicle-to-grid energy trading in the smart grid. In Proceedings of the 2012 IEEE INFOCOM Workshops, Orlando, FL, USA, 25–30 March 2012; pp. 85–90. [Google Scholar]
- Zhong, W.; Xie, K.; Liu, Y.; Yang, C.; Xie, S. Efficient auction mechanisms for two-layer vehicle-to-grid energy trading in smart grid. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Zeng, M.; Leng, S.; Maharjan, S.; Gjessing, S.; He, J. An Incentivized Auction-Based Group-Selling Approach for Demand Response Management in V2G Systems. IEEE Trans. Ind. Inf. 2015, 11, 1554–1563. [Google Scholar] [CrossRef]
- Tushar, W.; Saad, W.; Poor, H.V.; Smith, D. Economics of Electric Vehicle Charging: A Game Theoretic Approach. IEEE Trans. Smart Grid 2012, 3, 1767–1778. [Google Scholar] [CrossRef]
- Wang, Y.; Saad, W.; Han, Z.; Poor, H.; Basar, T. A Game-Theoretic Approach to Energy Trading in the Smart Grid. IEEE Trans. Smart Grid 2014, 5, 1439–1450. [Google Scholar] [CrossRef]
- Ahmad, F.; Alam, M.; Shariff, S. A cost-efficient energy management system for battery swapping station. IEEE Syst. J. 2019, 13, 4355–4364. [Google Scholar] [CrossRef]
- Kim, B.; Ren, S.; van der Schaar, M.; Lee, J. Bidirectional Energy Trading and Residential Load Scheduling with Electric Vehicles in the Smart Grid. IEEE J. Sel. Areas Commun. 2013, 31, 1219–1234. [Google Scholar] [CrossRef]
- Aitzhan, N.; Svetinovic, D. Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams. IEEE Trans. Depend. Sec. Comput. 2018, 15, 840–852. [Google Scholar] [CrossRef]
- Musleh, A.; Yao, G.; Muyeen, S. Blockchain Applications in Smart Grid-Review and Frameworks. IEEE Access 2019, 7, 86746–86757. [Google Scholar] [CrossRef]
- Huang, X.; Xu, C.; Wang, P.; Liu, H. LNSC: A Security Model for Electric Vehicle and Charging Pile Management Based on Blockchain Ecosystem. IEEE Access 2018, 6, 13565–13574. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Trans. Ind. Inf. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE Trans. Ind. Inf. 2018, 14, 3690–3700. [Google Scholar] [CrossRef]
- Umoren, I.; Jaffary, S.; Shakir, M.; Katzis, K.; Ahmadi, H. Blockchain-Based Energy Trading in Electric Vehicle Enabled Microgrids. IEEE Consum. Electron. Mag. 2020, 9, 66–71. [Google Scholar] [CrossRef]
- Han, S.; Han, S.; Sezaki, K. Development of an Optimal Vehicle-to-Grid Aggregator for Frequency Regulation. IEEE Trans. Smart Grid 2010, 1, 65–72. [Google Scholar]
- Liu, C.; Chau, K.; Wu, D.; Gao, S. Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef]
- Deilami, S.; Masoum, A.; Moses, P.; Masoum, M. Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile. IEEE Trans. Smart Grid 2011, 2, 456–467. [Google Scholar] [CrossRef]
- Gan, L.; Topcu, U.; Low, S. Optimal Decentralized Protocol for Electric Vehicle Charging. IEEE Trans. Power Syst. 2013, 28, 940–951. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events. IEEE Syst. J. 2017, 11, 1733–1742. [Google Scholar] [CrossRef]
- Che, L.; Khodayar, M.; Shahidehpour, M. Only connect: Microgrids for distribution system restoration. IEEE Power Energy Mag. 2014, 12, 70–81. [Google Scholar]
- Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 2005, 144, 280–294. [Google Scholar] [CrossRef]
- Birnie, D. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 2009, 186, 539–542. [Google Scholar] [CrossRef]
- Pillai, J.; Bak-Jensen, B. Integration of Vehicle-to-Grid in the Western Danish Power System. IEEE Trans. Sustain. Energy 2010, 2, 12–19. [Google Scholar] [CrossRef]
- Hoehne, C.; Chester, M. Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon emissions. Energy 2016, 115, 646–657. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholmn, P. Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services. Environ. Sci. Technol. 2009, 43, 1199–1204. [Google Scholar] [CrossRef]
- Saber, A.; Venayagamoorthy, G. Intelligent unit commitment with vehicle-to-grid—A cost-emission optimization. J. Power Sources 2010, 195, 898–911. [Google Scholar] [CrossRef]
- Buekers, J.; Holderbeke, M.V.; Bierkens, J.; Panis, L.I. Health and environmental benefits related to electric vehicle introduction in EU countries. Transp. Res. Part D Transp. Environ. 2004, 33, 26–38. [Google Scholar] [CrossRef]
- Jafari, M.; Gauchia, A.; Zhao, S.; Zhang, K.; Gauchia, L. Electric Vehicle Battery Cycle Aging Evaluation in Real-World Daily Driving and Vehicle-to-Grid Services. IEEE Trans. Transport. Electrific. 2018, 4, 122–134. [Google Scholar] [CrossRef]
- Dubarry, M.; Devie, A.; McKenzie, K. Intelligent unit commitment with vehicle-to-grid—A cost-emission optimization. J. Power Sources 2017, 358, 39–49. [Google Scholar] [CrossRef]
- Hu, X.; Martinez, C.; Yang, Y. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach. Mech. Syst. Signal Process. 2017, 87, 4–16. [Google Scholar] [CrossRef]
- Wang, D.; Coignard, J.; Zeng, T.; Zhang, C.; Saxena, S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J. Power Sources 2016, 332, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Uddin, K.; Jackson, T.; Widanage, W.; Chouchelamane, G.; Jennings, P.; Marco, J. On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system. Energy 2017, 133, 710–722. [Google Scholar] [CrossRef]
- Bishop, J.; Axon, C.; Bonilla, D.; Tran, M.; Banister, D.; McCulloch, M. Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV. Appl. Energy 2013, 111, 206–218. [Google Scholar] [CrossRef]
- Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging. Energy 2017, 127, 730–742. [Google Scholar] [CrossRef]
- Wang, L.; Qin, Z.; Slangen, T.; Bauer, P.; van Wijk, T. Grid impact of electric vehicle fast charging stations: Trends, standards, issues and mitigation measures—An overview. IEEE Open J. Power Electron. 2021, 2, 56–74. [Google Scholar] [CrossRef]
- Khan, W.; Ahmad, A.; Ahmad, F.; Alam, M.S. A comprehensive review of fast charging infrastructure for electric vehicles. Smart Sci. 2018, 6, 256–270. [Google Scholar] [CrossRef]
- Farmer, C.; Hines, P.; Dowds, J.; Blumsack, S. Modeling the impact of increasing PHEV loads on the distribution infrastructure. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar]
- Gong, Q.; Midlam-Mohler, S.; Marano, V.; Rizzoni, G. Study of PEV Charging on Residential Distribution Transformer Life. IEEE Trans. Smart Grid 2012, 3, 404–412. [Google Scholar] [CrossRef]
- Putrus, G.; Suwanapingkarl, P.; Johnston, D.; Bentley, E.; Narayana, M. Impact of electric vehicles on power distribution networks. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 827–831. [Google Scholar]
- Shao, S.; Pipattanasomporn, M.; Rahman, S. Grid Integration of Electric Vehicles and Demand Response with Customer Choice. IEEE Trans. Smart Grid 2012, 3, 543–550. [Google Scholar] [CrossRef]
- Habib, S.; Kamran, M.; Rashid, U. Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks—A review. J. Power Source 2015, 277, 205–214. [Google Scholar] [CrossRef]
EV Model | Battery Technology | Capacity | Charge Times |
---|---|---|---|
Nissan Leaf e+ Tekna [31] | Li-ion | 59 kWh | 100% charge in 11.5 h on 6.6 kW AC 80% charge in 1.5 h on 50 kW DC |
BMW i4 [32] | Li-ion | 80.7 kWh | 100% charge in 8.25 h on 11 kW AC 80% charge in 31 min on 205 kW DC |
Audi e-tron [33] | Li-ion | 86 kWh | 100% charge in 9.25 h on 11 kW AC 80% charge in 30 min on 150 kW DC |
Chevrolet Bolt [34] | Li-ion | 66 kWh | 100% charge in 10 h on 7.2 kW AC 80% charge in 1 h on 50 kW DC |
Hyundai Ioniq Electric [35] | Li-ion Polymer | 38.3 kWh | 100% charge in 6 h on 7.2 kW AC 80% charge in 57 min on 50 kW DC |
Volkswagen e-Golf [36] | Li-ion | 35.8 kWh | 100% charge in 5.15 h on 7.2 kW AC 80% charge in 45 min on 50 kW DC |
Mercedes–Benz EQC [37] | Li-ion | 80 kWh | 100% charge in 8 h on 11 kW AC 80% charge in 40 min on 110 kW DC |
Kia e-Soul [38] | Li-ion Polymer | 64 kWh | 100% charge in 9.35 h on 7.2 kW AC 80% charge in 54 min on 100 kW DC |
Jaguar I-Pace [39] | Li-ion | 90 kWh | 100% charge in 12.7 h on 7 kW AC 80% charge in 40 min on 100 kW DC |
Tesla Model S [40] | Li-ion | 100 kWh | 100% charge in 9 h on 10 kW AC 80% charge in 30 min on 150 kW DC |
Renault Zoe [41] | Li-ion | 52 kWh | 100% charge in 9.25 h on 7 kW AC 80% charge in 1 h on 50 kW DC |
Peugeot e-208 [42] | Li-ion | 50 kWh | 100% charge in 7.5 h on 7 kW AC 80% charge in 30 min on 100 kW DC |
Vauxhall Corsa-e [43] | Li-ion | 50 kWh | 100% charge in 7.5 h on 7.4 kW AC 80% charge in 30 min on 100 kW DC |
Types of EV Charging | Description | Typical Usage | Interface for Energy Supply | Power Capacity (kW) | Voltage (V) | Current (A) |
---|---|---|---|---|---|---|
Level 1 (Slow) | Opportunity charger (any available outlet) | Home or office base charging | Any convenient outlet | 1.4 1.9 | 120 | 12 16 |
Level 2 (Fast) | Primary dedicated charger | Private and public base charging | Electric vehicle supply equipment | 8 19.2 | 240 | 32 80 |
Level 3 (Rapid) | Commercial fast charger | Dedicated charging stations | Electric vehicle supply equipment | 100 | 200–500 | <200 |
XFC (TBD) | Extreme fast charger | Dedicated charging stations | Electric vehicle supply equipment | 400 | 800+ | TBD |
Ultra-high- power (Ultra-fast) | Ultra-high- power charger | Dedicated charging stations | Electric vehicle supply equipment | 500 | 1500 | 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umoren, I.A.; Shakir, M.Z. Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers. Energies 2022, 15, 7207. https://doi.org/10.3390/en15197207
Umoren IA, Shakir MZ. Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers. Energies. 2022; 15(19):7207. https://doi.org/10.3390/en15197207
Chicago/Turabian StyleUmoren, Ifiok Anthony, and Muhammad Zeeshan Shakir. 2022. "Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers" Energies 15, no. 19: 7207. https://doi.org/10.3390/en15197207
APA StyleUmoren, I. A., & Shakir, M. Z. (2022). Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers. Energies, 15(19), 7207. https://doi.org/10.3390/en15197207