Nitrogen Migration and Conversion in Chars from Co-Pyrolysis of Lignocellulose Derived Pyrolysis Model Compounds and Urea-Formaldehyde Resin Adhesive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chars by Co-Pyrolysis of Model Compounds and UF
2.3. Thermogravimetric Analysis (TGA)
2.4. Characterization of Nitrogen Content and Nitrogen Retention in Chars
2.5. Characterization of N Functional Groups in Chars
3. Results and Discussion
3.1. Analysis of Decomposition Characteristics
3.1.1. The Mass Loss Behavior of Model Compounds and UF Studied by Thermogravimetric Analysis
3.1.2. Co-Pyrolysis Characteristics of Model Compounds and UF Studied by Thermogravimetric Analysis
3.2. Effect of Model Compounds: UF Ratio on Nitrogen Migration in Co-Pyrolysis Chars
3.3. Effect of Model Compounds: UF Ratio on the Conversion of Nitrogen Functional Groups in Co-Pyrolysis Chars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- REN 21. Renewables 2021 Global Status Report. Available online: https://www.ren21.net/gsr-2021/chapters/chapter_01/chapter_01/ (accessed on 3 August 2022).
- Biomass Energy Industry Promotion Association (BEIPA). 3060 Zero Carbon Biomass Potential Blue Book. Available online: http://www.cn-bea.com/filedownload/394003 (accessed on 3 August 2020).
- Hansson, K.M.; Amand, L.E.; Habermann, A.; Winter, F. Pyrolysis of poly-L-leucine under combustion-like conditions. Fuel 2003, 82, 653–660. [Google Scholar] [CrossRef]
- Wang, K.; Brown, R.C. Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem. 2013, 15, 675–681. [Google Scholar] [CrossRef]
- Li, C.; Salas, W.; Zhang, R.; Krauter, C.; Rotz, A.; Mitloehner, F. Manure-DNDC: A biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutr. Cycl. Agroecosys 2012, 93, 163–200. [Google Scholar] [CrossRef]
- Girods, P.; Dufour, A.; Rogaume, Y.; Rogaume, C.; Zoulalian, A. Comparison of gasification and pyrolysis of thermal pre-treated wood board waste. J. Anal. Appl. Pyrol. 2009, 85, 171–183. [Google Scholar] [CrossRef]
- Fernandes, A.C. Reductive depolymerization as an efficient methodology for the conversion of plastic waste into value-added compounds. Green Chem. 2021, 23, 7330–7360. [Google Scholar] [CrossRef]
- Hansson, K.M.; Samuelsson, J.; Tullin, C.; Åmand, L.E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust. Flame 2004, 137, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Zhan, H.; Zhuang, X.; Song, Y.; Liu, J.; Li, S.; Chang, G.; Yin, X.; Wu, C.; Wang, X. A review on evolution of nitrogen-containing species during selective pyrolysis of waste wood-based panels. Fuel 2019, 253, 1214–1228. [Google Scholar] [CrossRef]
- Gu, J. Present situation and development trend of wood adhesives in China. Adhesion 2015, 36, 29–31. [Google Scholar]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energ. Combust. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Lemonon, J.; Girods, P.; Rogaume, C.; Perrin, D.; Rogaume, Y. Nitrogen removal from wood laminated flooring waste by low-temperature pyrolysis. Waste Biomass Valori. 2014, 5, 199–209. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, X.; Zhang, M.; Xu, D. Phenol adsorption on nitrogen-enriched activated carbon from wood fiberboard waste. Wood Fiber Sci. 2012, 44, 220–226. [Google Scholar]
- Liu, J.; Deng, Y.; Li, X.; Wang, L. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain. Chem. Eng. 2016, 4, 177–187. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Xu, D.; Yang, L.; Zhao, M.; Zhang, J.; Syed-Hassan, S.S.A.; Sun, H.; Hu, X.; Zhang, H.; Zhang, S. Conversion and transformation of N species during pyrolysis of wood-based panels: A review. Environ. Pollut. 2021, 270, 1–17. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Yang, H.; Xia, M.; Li, K.; Chen, X.; Chen, H. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresour. Technol. 2017, 245, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Li, S.; Zhang, Y.; Li, Y.; Mu, J. Influence of urea formaldehyde resin on the pyrolysis of biomass components: Cellulose, hemicellulose, and lignin. BioResources 2018, 13, 2218–2232. [Google Scholar] [CrossRef]
- Falco, C.; Sevilla, M.; White, R.J.; Rothe, R.; Titirici, M.M. Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem 2012, 5, 1834–1840. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yang, L.; Zhao, M.; Guo, M.; Hu, X.; Gholizadeh, M.; Zhang, H.; Zhang, S. Effects of glucose on nitrogen retention and transformation during copyrolysis with fiberboard waste. Energ. Fuel 2020, 34, 11083–11090. [Google Scholar] [CrossRef]
- Xu, D.; Yang, L.; Zhao, M.; Song, Y.; Zhang, H.; Hu, X.; Sun, H.; Zhang, S. N evolution and physiochemical structure changes in chars during co-pyrolysis: Effects of abundance of glucose in fiberboard. Energies 2020, 13, 5105. [Google Scholar] [CrossRef]
- Yang, L.; Guo, M.; Qian, Y.; Xu, D.; Gholizadeh, M.; Zhang, H.; Hu, X.; Zhang, S. The effects of interactions between fiberboard-derived volatiles and glucose-derived biochar on N retention and char structure during the decoupled pyrolysis of fiberboard and glucose using a double-bed reactor. Renew. Energ. 2022, 191, 134–140. [Google Scholar] [CrossRef]
- Carlson, T.R.; Jae, J.; Lin, Y.C.; Tompsett, G.A.; Huber, G.W. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. J. Catal. 2010, 270, 110–124. [Google Scholar] [CrossRef]
- Kawamoto, H. Review of reactions and molecular mechanisms in cellulose pyrolysis. Curr. Org. Chem. 2016, 20, 2444–2457. [Google Scholar] [CrossRef] [Green Version]
- Schwab, W. Application of stable isotope ratio analysis explaining the bioformation of 2, 5-dimethyl-4-hydroxy-3 (2 H)-furanone in plants by a biological Maillard reaction. J. Agr. Food Chem. 1998, 46, 2266–2269. [Google Scholar] [CrossRef]
- Guo, G.; Huang, Q.; Jin, F.; Wang, Q.; Fu, Q.; Liu, Y.; Chen, Y.; Wang, J.; Zhang, J. Separation of high added-value chemical compositions derived from biomass pyrolysis liquid via sequential multi-step pH adjustment. Fuel Process. Technol. 2022, 230, 107216. [Google Scholar] [CrossRef]
- Nonier, M.; Vivas, N.; De Gaulejac, N.V.; Absalon, C.; Soulié, P.; Fouquet, E. Pyrolysis-gas chromatography/mass spectrometry of Quercus sp. wood: Application to structural elucidation of macromolecules and aromatic profiles of different species. J. Anal. Appl. Pyrol. 2006, 75, 181–193. [Google Scholar] [CrossRef]
- Chen, W.; Yang, H.; Chen, Y.; Xia, M.; Chen, X.; Chen, H. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environ. Sci. Technol. 2017, 51, 6570–6579. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Mu, J.; Feng, Y. Influence of urea formaldehyde resin on the pyrolysis characteristics and gas evolution of waste MDF. Wood Res. 2015, 60, 113–124. [Google Scholar]
- Feng, Y.S.; Mu, J.; Chen, S.H.; Huang, Z.Y.; Yu, Z.M. The influence of urea formaldehyde resins on pyrolysis characteristics and products of wood-based panels. BioResources 2012, 7, 4600–4613. [Google Scholar] [CrossRef] [Green Version]
- Vamvuka, D.; Kakaras, E.; Kastanaki, E.; Grammelis, P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 2003, 82, 1949–1960. [Google Scholar] [CrossRef]
- Gao, Z.; Li, N.; Chen, M.; Yi, W. Comparative study on the pyrolysis of cellulose and its model compounds. Fuel Process. Technol. 2019, 193, 131–140. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Xue, L.; Chu, D.; Mu, J. Influence of a urea-formaldehyde resin adhesive on pyrolysis characteristics and volatiles emission of poplar particleboard. RSC Adv. 2016, 6, 12850–12861. [Google Scholar] [CrossRef]
- Li, S.; Mu, J.; Zhang, Y. Influence of urea formaldehyde resin on pyrolysis of biomass: A modeling study by TG-FTIR. Spectrosc. Spect. Anal. 2014, 34, 1497–1501. [Google Scholar]
- Huang, Y.; Gao, Y.; Zhou, H.; Sun, H.; Zhou, J.; Zhang, S. Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour. Technol. 2019, 272, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Sun, J.; Akhtar, M.A.; Zhang, S.; Wei, J.; Xu, D.; Hu, X.; Gholizadeh, M.; Zhang, H. Investigation on co-gasification of N-rich fiberboard and glucose: Nitrogen evolution and changes in char properties. J. Energy Inst. 2022, 101, 9. [Google Scholar] [CrossRef]
Sample | Elemental Analysis (d%) | ||||
---|---|---|---|---|---|
N | C | H | O | S | |
UF | 31.04 | 34.34 | 5.28 | 28.64 | 0.70 |
Sample | C (%) | H (%) | O (%) |
---|---|---|---|
Ethyl maltol | 60.00 | 5.71 | 34.29 |
White crystal of ethyl maltol | 61.44 | 5.03 | 33.53 |
DMHF | 56.25 | 6.25 | 37.50 |
White crystal of DMHF | 57.54 | 5.51 | 36.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Yu, S.; Zhang, S.; Wei, J.; Gao, W.; Bao, W.; Shi, L.; Zhang, H.; Xu, D. Nitrogen Migration and Conversion in Chars from Co-Pyrolysis of Lignocellulose Derived Pyrolysis Model Compounds and Urea-Formaldehyde Resin Adhesive. Energies 2022, 15, 7221. https://doi.org/10.3390/en15197221
Guo M, Yu S, Zhang S, Wei J, Gao W, Bao W, Shi L, Zhang H, Xu D. Nitrogen Migration and Conversion in Chars from Co-Pyrolysis of Lignocellulose Derived Pyrolysis Model Compounds and Urea-Formaldehyde Resin Adhesive. Energies. 2022; 15(19):7221. https://doi.org/10.3390/en15197221
Chicago/Turabian StyleGuo, Mengyao, Shu Yu, Shu Zhang, Juntao Wei, Wenran Gao, Weina Bao, Lei Shi, Hong Zhang, and Deliang Xu. 2022. "Nitrogen Migration and Conversion in Chars from Co-Pyrolysis of Lignocellulose Derived Pyrolysis Model Compounds and Urea-Formaldehyde Resin Adhesive" Energies 15, no. 19: 7221. https://doi.org/10.3390/en15197221
APA StyleGuo, M., Yu, S., Zhang, S., Wei, J., Gao, W., Bao, W., Shi, L., Zhang, H., & Xu, D. (2022). Nitrogen Migration and Conversion in Chars from Co-Pyrolysis of Lignocellulose Derived Pyrolysis Model Compounds and Urea-Formaldehyde Resin Adhesive. Energies, 15(19), 7221. https://doi.org/10.3390/en15197221