Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Effective wind Energy Density
2.3.2. Total Solar Radiation
2.3.3. Spearman Coefficient
2.3.4. Other Research Methods
3. Results
3.1. Spatial and Temporal Variability in Wind- and Solar-Energy Resources
3.2. Complementarity of Solar and Wind Resources
3.3. Coordination and Complementarity of Water-Energy Resources
4. Discussion
5. Conclusions
- (1)
- Wind-energy resources and solar-energy resources in China fluctuate strongly on the interannual scale. Moreover, the greatest interannual variations occurred in 2017 for wind-energy resources and in 2013 for solar-energy resources. The spatial distribution of these two resources also varies significantly. The greatest spatial variations in the distribution of wind-energy resources are in Hainan Island and Shandong Peninsula, and the distribution of solar-energy resources varies most significantly in southern Tibet.
- (2)
- In China, 54.29% of the weather stations have good complementarity of wind- and solar-energy resources on the interannual scale, but 45.71% of the weather stations are not suitable for complementary development of wind- and solar-energy resources on the interannual time scale. The regions with better complementarity of wind- and solar-energy resources include the southern part of the Pearl River Basin, the southwest Yunnan-Guizhou Plateau in the Southwest River Basin, the southern part of the North China Plain in the Huaihe River Basin, the Jinjing-tang area in the Haihe River Basin, the Zhejiang coastal area in the Southeast River Basin, and the south-central region of the Northeast River Basin.
- (3)
- An analysis of resource quantity shows that hydro-energy resources are very rich in river basins where wind- and solar-energy resources are lacking and their complementarity is poor. On the contrary, wind- and solar-energy resources are abundant and complementary in river basins where hydro-energy resources are relatively poor. Therefore, it is feasible to coordinate and complement the development of wind- and solar-energy resources in the areas where the complementarity advantage is not significant. Such a strategy can improve the profits obtained from the actual complementary development of wind- and solar-energy resources.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.; Liu, L.; Gao, T.; Xue, J.; Chen, F. The quantity, flow and functional zoning of energy resources in China. Resour. Sci. 2012, 34, 1611–1621. [Google Scholar]
- Papaefthymiou, G.; Dragoon, K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- Vasilis, F.; James, E.M.; Ken, Z. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 2008, 37, 387–399. [Google Scholar]
- John, B.; Lado, K.; Daniele, P.; Allen, B. The potential of solar electric power for meeting future US energy needs: A comparison of projections of solar electric energy generation and Arctic National Wildlife Refuge oil production. Fuel Energy Abstr. 2004, 45, 268. [Google Scholar]
- Gilberto, P.; Arno, K.; Fausto, A. Canales. Complementarity Maps of Wind- and solar-energy resources for Rio Grande do Sul, Brazil. Energy Power Eng. 2017, 9, 489–504. [Google Scholar]
- Zhu, R.; Wang, Y.; Xiang, Y.; Sun, C.; Chang, R.; Hu, G.; Gao, Z. Study on climate characteristics and development potential of wind energy resources in China. Acta Energ. Sol. Sin. 2021, 42, 409–418. [Google Scholar]
- Zhao, D.; Luo, Y.; Gao, G.; Zhu, C. Essential characteristics of solar direct radiation over recent 50 years in China. Acta Energ. Sol. Sin. 2009, 30, 946–952. [Google Scholar]
- Liao, S.; Liu, K.; Li, Z. Estimation of grid based spatial distribution of wind energy resource in China. J. Geo-Inf. Sci. 2008, 10, 551–556. [Google Scholar]
- Li, K.; He, F.; Xi, J. An Analysis of utilization potential distribution of wind power in Mainland China. Resour. Sci. 2010, 32, 1672–1678. [Google Scholar]
- Li, K.; He, F. Analysis on mainland China’s solar energy distribution and potential to utilize solar energy as an alternative energy source. Prog. Geogr. 2010, 29, 1049–1054. [Google Scholar]
- Tao, S.; Qi, Y.; Shen, S.; Li, Y.; Zhou, Y. The spatial and temporal variation of solar radiation over China from 1981 to 2014. J. Arid. Land Resour. Environ. 2016, 30, 143–147. [Google Scholar]
- Feng, Y.; Que, L.; Feng, J. Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China. Atmos. Ocean. Sci. Lett. 2020, 13, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Guo, Y.; Jiang, J.; Ming, B. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals. J. Shanghai Jiaotong Univ. 2021, 55, 1499–1509. [Google Scholar]
- Ma, B.; Jia, L.; Yu, Y.; Wang, H.; Chen, J.; Zhong, S.; Zhu, J. Geoscience and carbon neutralization:current status and development direction. Geol. China 2021, 48, 347–358. [Google Scholar]
- Zhang, T.; Chai, X.; Li, Z. Management of climate resources and sustainable development. Chin. J. Agric. Resour. Reg. Plan. 2007, 6, 26–30. [Google Scholar]
- Liu, Y.; Xiao, L.; Wang, H.; Lin, L.; Dai, S.; Qi, Z. Temporospatial Complementarities Between China’s Wide-area Wind and Solar Energy at Different Time Scales. Proc. CSEE 2013, 33, 20–26+6. [Google Scholar]
- Wen, X.; Sun, Y.; Tan, Q.; Lei, X.; Ding, Z.; Liu, Z.; Wang, H. Risk and Benefit Analysis of Hydro-wind-solar Multi-energy System Considering the One-day Ahead Output Forecast Uncertainty. Adv. Eng. Sci. 2020, 52, 32–41. [Google Scholar]
- Wei, S.; Harrison, G.P. Wind-solar complementarity and effective use of distribution network capacity. Appl. Energy 2019, 247, 89–101. [Google Scholar]
- Jurasz, J.; Mikulik, J.; Dabek, P.; Guezgouz, M.; Kaźmierczak, B. Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis. Energies 2021, 14, 1118. [Google Scholar] [CrossRef]
- Handriyanti, D.P.; Baptiste, F.; Mattia, Z.; Casey, B.; Marco, B. The impact of glacier shrinkage on energy production from hydropower-solar complementarity in alpine river basins. Sci. Total Environ. 2020, 719, 137488. [Google Scholar]
- Han, S.; Zhang, L.; Liu, Y.; Zhang, H.; Yan, J.; Li, L.; Lei, X.; Wang, X. Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Appl. Energy 2019, 236, 973–984. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Zhao, W. Benefit evaluation of developing wind-solar complementary irrigation model in Northwest China. China Rural. Water Hydropower 2017, 02, 43–46. [Google Scholar]
- Zhang, M.; Wang, Z.; Yang, C. Study on adaptability of coastal wind-solar complementary system to load demand. Distrib. Energy 2021, 6, 47–55. [Google Scholar]
- Ming, B.; Liu, P.; Cheng, L.; Zhou, Y.; Wang, X. Optimal daily generation scheduling of large hydro-photovoltaic hybrid power plants. Energy Convers. Manag. 2018, 171, 528–540. [Google Scholar] [CrossRef]
- Li, F.; Qiu, J. Multi-objective optimization for integrated hydro-photovoltaic power system. Appl. Energy 2016, 167, 377–384. [Google Scholar] [CrossRef]
- DeCarolis, J.F.; Keith, D.W. The economics of large-scale wind power in a carbon constrained world. Energy Policy 2006, 34, 395–410. [Google Scholar] [CrossRef]
- Kempton, W.; Pimenta, F.; Veron, D.; Colle, B. Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA 2010, 107, 7240–7245. [Google Scholar] [CrossRef] [Green Version]
- GB/T18710-2002; Wind Energy Resource Assessment Method for Wind Farms. Standards Press of China: Beijing, China, 2002; The National Standards of People’s Republic of China.
- Peterson, E.W.; Hennessey, J.P., Jr. On the Use of Power Laws for Estimates of Wind Power Potential. J. Appl. Meteorol. 1978, 17, 390–394. [Google Scholar] [CrossRef]
- Bailey, B.H.; McDonald, S.L. Wind Resource Assessment Handbook; AWS Scientific, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Zhu, R. Evaluation of solar and wind energy resources in China. Meteorol. Mon. 1984, 10, 19–23. [Google Scholar]
- Cao, W.; Shen, S. Estimation of daily solar radiation in China. Trans. Atmos. Sci. 2008, 26, 587–591. [Google Scholar]
- Yang, K.; Toshio, K.; Baisheng, Y. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteorol. 2006, 137, 43–55. [Google Scholar] [CrossRef]
- He, Q.; Xie, Y. Research on the climatological calculation method of solar radiation in china. Journal of Natural Resources 2010, 25, 308–319. [Google Scholar]
- Jurasz, J.; Canales, F.A.; Kies, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Yan, J.; Qu, T.; Han, S.; Liu, Y.; Lei, X.; Wang, H. Reviews on characteristic of renewables: Evaluating the variability and complementarity. Int. Trans. Electr. Energy Syst. 2020, 30, e12281. [Google Scholar] [CrossRef]
- Jones, P.D. Hemispheric surface air temperature variations: Recent trent and updata to 1978. J. Clim. 1998, 1, 654–660. [Google Scholar] [CrossRef]
- Uddin, M.S.; Czajkowski, K.P. Performance Assessment of Spatial Interpolation Methods for the Estimation of Atmospheric Carbon Dioxide in the Wider Geographic Extent. J. Geovisualization Spat. Anal. 2022, 6, 10. [Google Scholar] [CrossRef]
- Longo, M.G.; Vanella, D.; Consoli, S.; Pappalardo, S.; Ramírez, C. Assessing the use of ERA5-Land reanalysis and spatial interpolation methods for retrieving precipitation estimates at basin scale. Atmos. Res. 2022, 271, 106131. [Google Scholar] [CrossRef]
- Zekai, Ş. Solar energy in progress and future research trends. Prog. Energy Combust. Sci. 2004, 30, 367–416. [Google Scholar]
- Argüeso, D.; Businger, S. Wind power characteristics of Oahu, Hawaii. Renew. Energy 2018, 128, 324–336. [Google Scholar] [CrossRef]
- Wang, X. Distribution & suggestions on exploitation and utilization of geothermal resources at areas along Yellow river of Henan province. Yellow River 2020, 42, 130–135. [Google Scholar]
- Wu, H.; Wang, X.; Li, S. Advance in the study of assessment and utilization pf tidal energy resources in China. Mar. Sci. Bull. 2015, 34, 370–376. [Google Scholar]
- Lv, A.; Han, Y.; Zhu, W.; Zhang, S.; Zhao, W. Risk Assessment of Water Resources Carrying Capacity in China. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 539–551. [Google Scholar] [CrossRef]
- Jia, S.; Lv, A.; Yan, H.; Long, Q.; Yan, H. Water Resources Security Report of China; Science Press: Beijing, China, 2014. [Google Scholar]
- Tang, Q.; Lei, W.; Jia, S.; Yang, D.; Sun, S.; Liu, X.; Zhang, X.; Xia, J.; Liu, C. Terrestrial Water Cycle and Water Resources; Springer: Singapore, 2017. [Google Scholar]
- Liang, Y.; Lv, A. Risk assessment of water resource security in China. Resour. Sci. 2019, 41, 775–789. [Google Scholar]
- Yan, J.; Jia, S.; Lv, A.; Zhu, W. Spatial-temporal variation characteristics of China terrestrial water storage in the last ten years. South-to-North Water Transf. Water Sci. Technol. 2016, 14, 21–28. [Google Scholar]
- Campana, P.E.; Zhang, T.; Yao, T.; Andersson, S.; Landelius, T.; Melton, F.; Yan, J. Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus. J. Clean. Prod. 2018, 197, 1382–1393. [Google Scholar] [CrossRef]
- Magdalena, B.; Grazia, B.; Józef, P. Time-Series PV Hosting Capacity Assessment with Storage Deployment. Energies 2020, 13, 2524. [Google Scholar]
- Zhang, F.; Wu, Z.; Di, D.; Jiang, M.; Wang, H.; Chen, X. Social values of water resources: Analyzing its spatial distribution characteristics and influencing factors using an ESSR model. Ecol. Indic. 2022, 142, 109200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, A.; Li, T.; Zhang, W.; Liu, Y. Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China. Energies 2022, 15, 7365. https://doi.org/10.3390/en15197365
Lv A, Li T, Zhang W, Liu Y. Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China. Energies. 2022; 15(19):7365. https://doi.org/10.3390/en15197365
Chicago/Turabian StyleLv, Aifeng, Taohui Li, Wenxiang Zhang, and Yonghao Liu. 2022. "Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China" Energies 15, no. 19: 7365. https://doi.org/10.3390/en15197365
APA StyleLv, A., Li, T., Zhang, W., & Liu, Y. (2022). Spatiotemporal Distribution and Complementarity of Wind and Solar Energy in China. Energies, 15(19), 7365. https://doi.org/10.3390/en15197365