Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Model Set Up
2.2. Influence Factor Recognition
3. Analysis of a Cavity Expansion
3.1. Procedure of a Cavity Expansion
3.2. Mechanism of Confining Rock Broken and Risk Analysis
3.3. Thermal Damage Analysis
4. Evolution of Fracture Zone
5. A Model for Fracture Height and Depth
5.1. Model Setup
5.2. Model Validation
6. Conclusions
- (i)
- With the expansion of a UCG cavity, the near-field rock is initially broken. Then, a caving arch is formed due to cracks in the roof rock. Subsequently, shear fracture propagated upward due to the failure of caving arch at two springers.
- (ii)
- The grade of confining rock, depth, dimension of the cavity, and gasifying pressure are the controlling factors in the fracture evolution, especially the fracture height in roof layers.
- (iii)
- Comparison of the orthogonal test and prediction results suggests that the proposed model has a good ability to estimate the fracture zone for the assessment of safety of the UCG cavity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Underground coal gasification: From fundamentals to applications. Prog. Energy Combust. Sci. 2013, 39, 189–214. [Google Scholar] [CrossRef]
- McInnis, J.; Singh, S.; Huq, I. Mitigation and adaptation strategies for global change via the implementation of underground coal gasification. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 479–486. [Google Scholar] [CrossRef]
- Kaveh, N.S.; Barnhoorn, A.; Wolf, K. Investigation on Mechanical Behaviour of Coal and Overburden Rock for UCG. In Proceedings of the 77th EAGE Conference and Exhibition 2015. European Association of Geoscientists & Engineers, Madrid, Spain, 1–4 July 2015; Volume 2015, pp. 1–5. [Google Scholar]
- Ding, Q.L.; Ju, F.; Song, S.B.; Yu, B.Y.; Ma, D. An experimental study of fractured sandstone permeability after high-temperature treatment under different confining pressures. J. Nat. Gas Sci. Eng. 2016, 34, 55–63. [Google Scholar] [CrossRef]
- Meng, T.; Guangwu, X.; Jiwei, M.; Yang, Y.; Liu, W.; Zhang, J.; Bosen, J.; Fang, S.; Ren, G. Mixed mode fracture tests and inversion of FPZ at crack tip of overlying strata in underground coal gasification combustion cavity under real-time high temperature condition. Eng. Fract. Mech. 2020, 239, 107298. [Google Scholar] [CrossRef]
- Wiatowski, M.; Stańczyk, K.; Świądrowski, J.; Kapusta, K.; Cybulski, K.; Krause, E.; Grabowski, J.; Rogut, J.; Howaniec, N.; Smoliński, A. Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “Barbara”. Fuel 2012, 99, 170–179. [Google Scholar] [CrossRef]
- Orlov, G. The effects of rock deformation in underground coal gasification. In Underground Coal Gasification and Combustion; Elsevier: Amsterdam, The Netherlands, 2018; pp. 283–327. [Google Scholar]
- Luo, J.; Wang, L. High-temperature mechanical properties of mudstone in the process of underground coal gasification. Rock Mech. Rock Eng. 2011, 44, 749–754. [Google Scholar] [CrossRef]
- Akbarzadeh, H.; Chalaturnyk, R.J. Structural changes in coal at elevated temperature pertinent to underground coal gasification: A review. Int. J. Coal Geol. 2014, 131, 126–146. [Google Scholar] [CrossRef]
- Janoszek, T.; Łączny, M.J.; Stańczyk, K.; Smoliński, A.; Wiatowski, M. Modelling of gas flow in the underground coal gasification process and its interactions with the rock environment. J. Sustain. Min. 2013, 12, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.; Kempka, T. Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes. Energies 2015, 8, 5800–5827. [Google Scholar] [CrossRef] [Green Version]
- Wałowski, G. Gas permeability model for porous materials from underground coal gasification technology. Energies 2021, 14, 4462. [Google Scholar] [CrossRef]
- Madiutomo, N.; Hermawan, W.; Pamungkas, M. The effect of rock permeability value on groundwater influx in underground coal gasification reactor. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 882, 012054. [Google Scholar] [CrossRef]
- Ding, K.; Wang, L.; Ren, B.; Li, Z.; Wang, S.; Jiang, C. Experimental study on relative permeability characteristics for CO2 in sandstone under high temperature and overburden pressure. Minerals 2021, 11, 956. [Google Scholar] [CrossRef]
- Duan, T.H.; Zhang, J.M.; Mallett, C.; Li, H.H.; Huo, L.W.; Zhao, K.T. Numerical simulation of coupled thermal-mechanical fracturing in underground coal gasification. Proc. Inst. Mech. Eng. Part A J. Power Energy 2018, 232, 74–84. [Google Scholar] [CrossRef]
- Jin, P.; Hu, Y.; Shao, J.; Liu, Z.; Feng, G.; Song, S. Influence of temperature on the structure of pore–fracture of sandstone. Rock Mech. Rock Eng. 2020, 53, 1–12. [Google Scholar] [CrossRef]
- Zheng, H.H.; Zhang, X.H.; Liu, X.L.; Chen, L.J. Numerical Simulation of Stress Field of Surrounding Strata in Underground Gasification of Coal. Coal Min. Technol. 2011, 16, 17–19. [Google Scholar]
- Li, C.; Xin, L.; Xu, M.; Li, J.; Han, L.; An, M. Study of thermal-mechanical coupling numerical simulation of similar simulation experiment of underground coal gasification. Coal Sci. Technol. 2019, 47, 226–233. [Google Scholar]
- Škvareková, E.; Tomašková, M.; Wittenberger, G.; Zelenák, Š. Analysis of risk factors for underground coal gasification. Manag. Syst. Prod. Eng. 2019, 4, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Hosking, L.; Sandford, R.; Zagorščak, R.; Chen, M.; An, N. Deep ground and energy: Carbon sequestration and coal gasification. Proc. Int. Congr. Environ. Geotech. 2018, 1, 38–60. [Google Scholar]
- Roullier, B.; Langston, P.; Li, X. Modelling the environmental impact of underground coal gasification. In Energy Geotechnics; Springer: Cham, Switzerland, 2016; pp. 335–342. [Google Scholar]
- Jia, B.; Chen, Z.; Xian, C. Investigations of CO2 storage capacity and flow behavior in shale formation. J. Pet. Sci. Eng. 2022, 208, 109659. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Ren, B.; Ding, K. The Layout of the Combustion Cavity and the Fracture Evolution of the Overlying Rock during the Process of Underground Coal Gasification. Geofluids 2022, 2022, 9264959. [Google Scholar] [CrossRef]
- Qin, S. Study on Development Law of Water Diversion Fracture Zone of Underground Coal Gasification. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2018. [Google Scholar]
- Lu, Y.L.; Wang, L.G.; Tang, F.R.; He, Y. Fracture evolution of overlying strata over combustion cavity under thermal mechanical interaction during underground coal gasification. J. China Coal Soc. 2012, 37, 1292–1298. [Google Scholar]
- Lin, G. Numerical Analysis of the Development of Induced Water Fractured Zone and Groundwater Seepage Field in Underground Coal Gasification. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2016. [Google Scholar]
- Liu, J. Study on the Combustion Cavity Growth and Stability of the Roof during Underground Coal Gasification. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2014. [Google Scholar]
- Falshtynskyi, V.; Lozynskyi, V.; Saik, P.; Dychkovskyi, R.; Tabachenko, M. Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Min. Miner. Depos. 2016, 10, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Su, F.q.; Hamanaka, A.; Itakura, K.i.; Zhang, W.; Deguchi, G.; Sato, K.; Takahashi, K.; Kodama, J.I. Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system. Appl. Energy 2018, 223, 82–92. [Google Scholar] [CrossRef]
- Xie, J.; Xin, L.; Hu, X.; Cheng, W.; Liu, W.; Wang, Z. Technical application of safety and cleaner production technology by underground coal gasification in China. J. Clean. Prod. 2020, 250, 119487. [Google Scholar] [CrossRef]
- Feng, M.; Xin, L.; Li, K.; Wu, J.; Li, J.; Cheng, W.; Wang, B. Discussion on requirements of gasifier gas tightness for underground coal gasification production. Sustain. Energy Technol. Assess. 2021, 47, 101550. [Google Scholar] [CrossRef]
- Shahbazi, M.; Najafi, M.; Fatehi Marji, M.; Abdollahipour, A. Cavity Growth in Underground Coal Gasification Method by Considering Cleat Length and Inclination of Coal with Elasto-Brittle Behavior. J. Min. Environ. 2022, 13, 607–625. [Google Scholar]
- Gao, W.; Zagorščak, R.; Thomas, H.R. Insights into solid-gas conversion and cavity growth during Underground Coal Gasification (UCG) through Thermo-Hydraulic-Chemical (THC) modelling. Int. J. Coal Geol. 2021, 237, 103711. [Google Scholar] [CrossRef]
- Itakura, K.; Wakamatsu, M.; Sato, M.; Goto, T.; Yoshida, Y.; Ohta, M.; Shimada, K.; Belov, A.; Ram, G. Fundamental experiments for developing underground coal gasification (UCG) system. Mem. Muroran Inst. Technol. 2010, 59, 51–54. [Google Scholar]
- Huang, W.; Wang, Z.; WU, S.; Huo, L.; Zhang, X.; Yan, R. Determining Method for Length of the Shortwall Face with Thermal-Mechanical Coupling Effects of Underground Coal Gasification. J. Taiyuan Univ. Technol. 2019, 2, 153–159. [Google Scholar]
- Zhang, H.; Zhao, K.; Wang, L.; Yan, H. On the migrating regularity of the overlying strata in the combustible space area in the underground coal gasification. J. Saf. Environ. 2016, 6, 89–92. [Google Scholar]
- Wu, C.; Jiang, X. Research progress of temperature field and heat transfer characteristics in process of underground coal gasification. Coal Sci. Technol. 2022, 1, 275–285. [Google Scholar]
- Majdi, A.; Hassani, F.; Nasiri, M. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining. Int. J. Coal Geol. 2012, 98, 62–72. [Google Scholar] [CrossRef]
- Dai, S.; Han, B.; Liu, S.; Li, N.; Geng, F.; Hou, X. Neural network–based prediction methods for height of water-flowing fractured zone caused by underground coal mining. Arab. J. Geosci. 2020, 13, 495. [Google Scholar] [CrossRef]
- Palchik, V. Analysis of main factors influencing the apertures of mining-induced horizontal fractures at longwall coal mining. Geomech. Geophys.-Geo-Energy-Geo-Resour. 2020, 6, 37. [Google Scholar] [CrossRef]
- Daggupati, S.; Mandapati, R.N.; Mahajani, S.M.; Ganesh, A.; Mathur, D.; Sharma, R.; Aghalayam, P. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy 2010, 35, 2374–2386. [Google Scholar] [CrossRef]
- Xin, L.; Li, J.; Xie, J.; Li, C.; Han, L.; An, M.; Xu, M.; Wang, Z. Simulation of cavity extension formation in the early ignition stage based on a coal block gasification experiment. J. Energy Resour. Technol. 2020, 142, 062304. [Google Scholar] [CrossRef]
- Perkins, G.; Saghafi, A.; Sahajwalla, V. Numerical modeling of underground coal gasification and its application to Australian coal seam conditions. In Proceedings of the 18th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, USA, 15–19 September 2003; Volume 18, pp. 1–12. [Google Scholar]
- Khan, M.M.; Mmbaga, J.P.; Shirazi, A.S.; Liu, Q.; Gupta, R. Modelling underground coal gasification—A review. Energies 2015, 8, 12603–12668. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Yang, K.; Lu, W.; Yan, S. Statistical analysis on uniaxial compressive strength of coal measures. Coal Sci. Technol. 2013, 41, 100–103. [Google Scholar]
- Jowkar, A.; Sereshki, F.; Najafi, M. A new model for evaluation of cavity shape and volume during Underground Coal Gasification process. Energy 2018, 148, 756–765. [Google Scholar] [CrossRef]
- Pankiewicz-Sperka, M.; Kapusta, K.; Basa, W.; Stolecka, K. Characteristics of Water Contaminants from Underground Coal Gasification (UCG) Process—Effect of Coal Properties and Gasification Pressure. Energies 2021, 14, 6533. [Google Scholar] [CrossRef]
- Sadasivam, S.; Zagorščak, R.; Thomas, H.R.; Kapusta, K.; Stańczyk, K. Experimental study of methane-oriented gasification of semi-anthracite and bituminous coals using oxygen and steam in the context of underground coal gasification (UCG): Effects of pressure, temperature, gasification reactant supply rates and coal rank. Fuel 2020, 268, 117330. [Google Scholar] [CrossRef]
- Liu, X.; Guo, G.; Li, H. Thermo-mechanical coupling numerical simulation method under high temperature heterogeneous rock and application in underground coal gasification. Energy Explor. Exploit. 2020, 38, 1118–1139. [Google Scholar] [CrossRef] [Green Version]
- Pavlo, S.; Berdnyk, M. Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Min. Miner. Depos. 2022, 16, 87–94. [Google Scholar]
- Perkins, G.; Sahajwalla, V. A mathematical model for the chemical reaction of a semi-infinite block of coal in underground coal gasification. Energy Fuels 2005, 19, 1679–1692. [Google Scholar] [CrossRef]
- Tian, M.; Han, L.; Meng, Q.; Jin, Y.; Meng, L. In situ investigation of the excavation-loose zone in surrounding rocks from mining complex coal seams. J. Appl. Geophys. 2019, 168, 90–100. [Google Scholar] [CrossRef]
- Lei, G.; Wang, G.; Luo, J.; Hua, F.; Gong, X. Theoretical Study of Surrounding Rock Loose Zone Scope Based on Stress Transfer and Work–Energy Relationship Theory. Appl. Sci. 2022, 12, 7292. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, Y.; Liu, Z.; Dong, X.; Yu, J. Failure mechanism and safety control strategy for laminated roof of wide-span roadway. Eng. Fail. Anal. 2020, 111, 104489. [Google Scholar] [CrossRef]
- Bai, Q.S.; Tu, S.H.; Zhang, C.; Zhu, D. Discrete element modeling of progressive failure in a wide coal roadway from water-rich roofs. Int. J. Coal Geol. 2016, 167, 215–229. [Google Scholar] [CrossRef]
- Imran, M.; Kumar, D.; Kumar, N.; Qayyum, A.; Saeed, A.; Bhatti, M.S. Environmental concerns of underground coal gasification. Renew. Sustain. Energy Rev. 2014, 31, 600–610. [Google Scholar] [CrossRef]
- Mohanty, D. An overview of the geological controls in underground coal gasification. Proc. IOP Conf. Ser. Earth Environ. Sci. 2017, 76, 012010. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Cheng, W.; Xie, J.; Liu, W.; Xu, M. Theoretical research on heat transfer law during underground coal gasification channel extension process. Int. J. Heat Mass Transf. 2019, 142, 118409. [Google Scholar] [CrossRef]
- Kapusta, K. Effect of lignite properties on its suitability for the implementation of underground coal gasification (UCG) in selected deposits. Energies 2021, 14, 5816. [Google Scholar] [CrossRef]
Factors | Level I | Level II | Level III | Level IV | Level V |
---|---|---|---|---|---|
F1: Grade of rock | 1 | 2 | 3 | 4 | 5 |
F2: Depth of cavity (m) | 800 | 975 | 1150 | 1325 | 1500 |
F3: Grade of coal | 1 | 2 | 3 | 4 | 5 |
F4: Ratio of cavity width to height | 2 | 3 | 4 | 5 | 6 |
F5: Thickness of coal seam (m) | 5 | 10 | 15 | 20 | 25 |
F6: Gasification pressure (MPa) | 5 | 6 | 7 | 8 | 9 |
Parameters | Level I | Level II | Level III | Level IV | Level V |
---|---|---|---|---|---|
Cohesion (MPa) | 3.562 | 4.007 | 4.452 | 4.898 | 5.343 |
Friction angle () | 42 | 42 | 42 | 42 | 42 |
Tension strength | 1.067 | 1.2 | 1.333 | 1.467 | 1.6 |
Parameters | Level I | Level II | Level III | Level IV | Level V |
---|---|---|---|---|---|
Cohesion (MPa) | 1.431 | 1.908 | 2.385 | 2.862 | 3.339 |
Friction angle () | 39 | 39 | 39 | 39 | 39 |
Tension strength | 0.533 | 0.667 | 0.8 | 0.933 | 1.067 |
Parameters | Unit | Coal | Sandstone |
---|---|---|---|
Elastic modulus | GPa | 2 | 4 |
Poisson ratio | - | 0.36 | 0.3 |
Density | kg/m3 | 1360 | 2500 |
Thermal conductivity | W/m/K | 0.23 | 2.3 |
Specific heat capacity | J/kg·K | 2000 | 1363 |
Thermal expansion coefficient | K−1 | 5 × 10−6 | 1.6 × 10−5 |
Levels of Influence Factors | ||||
---|---|---|---|---|
−3.579 | −0.284 | 2.046 | 0.198 | |
1.482 | −0.05 | −0.683 | 0.086 | |
5.38 | 2.875 | 0 | −1.25 | |
1.937 | 0.65 | 0.08 | −0.2 | |
−3.296 | −1.25 | 1.28 | 0.875 | |
Intercepts | ||||
Value | −34.96 | 0.315 | −5.665 | −8.83 |
Residual square | 0.975 | 0.974 | 0.839 | 0.874 |
Cases | F1 | F2 | F3 | F4 | F5 | F6 | H (m) | D (m) |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1150 | 2 | 5 | 15 | 6 | 32.5 | −13.75 |
2 | 5 | 1150 | 5 | 2 | 25 | 8 | 7.5 | −5 |
3 | 1 | 800 | 1 | 2 | 5 | 5 | 2.5 | −5 |
4 | 2 | 1500 | 5 | 6 | 15 | 5 | 45 | −20 |
5 | 1 | 1325 | 5 | 4 | 20 | 9 | 27.5 | −10 |
6 | 4 | 1150 | 3 | 4 | 10 | 5 | 11.25 | −8.75 |
7 | 5 | 1325 | 3 | 6 | 5 | 6 | 10 | −10 |
8 | 4 | 800 | 2 | 6 | 25 | 9 | 26.25 | −8.75 |
9 | 2 | 1150 | 4 | 3 | 5 | 9 | 5 | −5 |
10 | 3 | 1500 | 2 | 4 | 5 | 8 | 7.5 | −7.5 |
11 | 3 | 1150 | 1 | 6 | 20 | 7 | 40.5 | −13.75 |
12 | 1 | 1500 | 3 | 3 | 25 | 7 | 48.75 | −17.5 |
13 | 4 | 1500 | 4 | 2 | 20 | 6 | 11.25 | −8.75 |
14 | 5 | 1500 | 1 | 5 | 10 | 9 | 18.75 | −10 |
15 | 5 | 975 | 2 | 3 | 20 | 5 | 8.75 | −6.25 |
16 | 4 | 975 | 5 | 5 | 5 | 7 | 6.25 | −6.25 |
17 | 2 | 975 | 1 | 4 | 25 | 6 | 30 | −10 |
18 | 5 | 800 | 4 | 4 | 15 | 7 | 8.75 | −7.5 |
19 | 3 | 1325 | 4 | 5 | 25 | 5 | 53.75 | −11.5 |
20 | 1 | 800 | 4 | 6 | 10 | 8 | 10 | −8.75 |
21 | 4 | 1325 | 1 | 3 | 15 | 8 | 10 | −7.5 |
22 | 3 | 975 | 3 | 2 | 15 | 9 | 6.25 | −5 |
23 | 3 | 800 | 5 | 3 | 10 | 6 | 5 | −5 |
24 | 2 | 800 | 3 | 5 | 20 | 8 | 16.25 | −8.75 |
25 | 2 | 1325 | 2 | 2 | 10 | 7 | 7.5 | −5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Yi, H.; Zhao, Y.; Wang, X.; Chu, T.; Xue, J.; Wu, H.; Chen, S.; Zhang, M.; Chen, H. Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification. Energies 2022, 15, 7373. https://doi.org/10.3390/en15197373
Dong Z, Yi H, Zhao Y, Wang X, Chu T, Xue J, Wu H, Chen S, Zhang M, Chen H. Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification. Energies. 2022; 15(19):7373. https://doi.org/10.3390/en15197373
Chicago/Turabian StyleDong, Zhen, Haiyang Yi, Yufeng Zhao, Xinggang Wang, Tingxiang Chu, Junjie Xue, Hanqi Wu, Shanshan Chen, Mengyuan Zhang, and Hao Chen. 2022. "Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification" Energies 15, no. 19: 7373. https://doi.org/10.3390/en15197373
APA StyleDong, Z., Yi, H., Zhao, Y., Wang, X., Chu, T., Xue, J., Wu, H., Chen, S., Zhang, M., & Chen, H. (2022). Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification. Energies, 15(19), 7373. https://doi.org/10.3390/en15197373