Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage
Abstract
:1. Introduction
2. Methods
2.1. Solar PV and Marine-Current-Energy Potential in Cozumel
2.2. Home-Load Profile
2.3. Sizing and Design of the Renewable Energy Hybrid System
2.3.1. PV Solar System Sizing
2.3.2. Marine-Current-Energy System Sizing
2.4. Solar PV–Marine Current and Energy-Storage System Hybridization
2.4.1. Hybrid Energy Storage
2.4.2. Energy-Storage Selection
3. Results
3.1. Renewable-Energy Hybrid System
3.2. Hybridization Analysis Results
3.3. Evaluation System Hybridization in the Year
3.4. Energy-Storage Selection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Cross-area section of the turbine | m2 |
Cp | Power coefficient | Dimensionless |
EC | Energy consumption | kWh |
EHMCS | Electricity-power supply from MCT | kWh |
EHPVS | Electricity-power supply from PVS | kWh |
EMCS | Daily marine-current energy | kWh |
EPVOut | Energy consumption per day | kWh/day |
ESMHES | Daily electricity-power supply | kWh |
GCEM | Solar standard-test irradiance | 1 kW/m2 |
Gdm | Solar irradiation | kWh/m2 day |
PMCT | MCT instantaneous power | kW |
PPVS | Minimum power-installed capacity | kW |
t | Time | h days/months/years |
V | Current speed | m/s |
η | Overall efficiency of auxiliary equipment | Dimensionless |
ηBESS | BESS efficiency | Dimensionless |
ηHESS | HESS efficiency | Dimensionless |
ρ | Seawater density | kg/L |
Abbreviations
AHP | Analytic Hierarchy Process |
BESS | Battery Energy-Storage System |
CAES | Compressed-Air Energy Storage |
ESS | Energy-Storage Systems |
HD | Hybridization degree |
HESS | Hydrogen Energy-Storage System |
MCDA | Multi-Criteria Decision Analysis |
MCS | Marine-current system |
MCT | Marine-current turbine |
MRE | Marine Renewable Energy |
PCESS | Post-Consumption Energy-Storage System |
PHS | Pumped Hydro Storage |
PMSG | Permanent magnet synchronous generator |
PVGIS | Photovoltaic Geographical Information System |
PVS | Photovoltaic System |
RESS | Regulation Energy-Storage System |
RPCESS | Regulation & Post-Consumption Energy-Storage System |
SMHES | Solar–Marine Hybrid Energy System |
VRE | Variable Renewable Energies |
Appendix A
References
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Prospects: Mexico, REmap 2030 Analysis; IRENA: Abu Dhabi, Saudi Arabia, 2015; Available online: http://www.irena.org/remap (accessed on 24 October 2021).
- Rourke, F.O.; Boyle, F.; Reynolds, A. Marine current energy devices: Current status and possible future applications in Ireland. Renew. Sustain. Energy Rev. 2010, 14, 1026–1036. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Cueto, Y.R.; Silva, R. On the marine energy resources of Mexico. J. Mar. Sci. Eng. 2019, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Cebulla, F.; Naegler, T.; Pohl, M. Electrical energy storage in highly renewable European energy systems: Capacity requirements, spatial distribution, and storage dispatch. J. Energy Storage 2017, 14, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Guney, M.S.; Tepe, Y. Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, K.; Copping, A.E.; May, R.; Bennet, F.; Warnas, M.; Perron, M.; Elmqvist, Å.; DeGeorge, E. Resolving environmental effects of wind energy. WIREs Energy Environ. 2018, 7, e291. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Kim, J.; Suharto, Y.; Daim, T.U. Evaluation of Electrical Energy Storage (EES) technologies for renewable energy: A case from the US Pacific Northwest. J. Energy Storage 2017, 11, 25–54. [Google Scholar] [CrossRef]
- Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; Bonucci, F.; Castellini, L.; Fratini, A.; Gallorini, F.; Zuccari, A. Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants. Energy 2019, 173, 937–950. [Google Scholar] [CrossRef]
- Shoaib, M.; Siddiqui, I.; Rehman, S.; Khan, S.; Alhems, L.M. Assessment of wind energy potential using wind energy conversion system. J. Clean. Prod. 2019, 216, 346–360. [Google Scholar] [CrossRef]
- SENER Datos Abiertos de México-Regiones sin Electricidad. Available online: https://datos.gob.mx/busca/dataset/regiones-sin-electricidad (accessed on 22 June 2020).
- Sánchez-Dirzo, R.; González-Huerta, R.G.; Mendoza, E.; Silva, R.; Sandoval Pineda, J.M. From wave to jet and from jet to hydrogen: A promising hybrid system. Int. J. Hydrogen Energy 2014, 39, 16628–16636. [Google Scholar] [CrossRef]
- Ahmad, S.; Uddin, M.J.; Nisu, I.H.; Ahsan, M.M.; Rahman, I.; Samrat, N.H. Modeling of grid connected battery storage wave energy and PV hybrid renewable power generation. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 375–380. [Google Scholar]
- Wang, L.; Lee, D.J.; Lee, W.J.; Chen, Z. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. J. Power Sources 2008, 185, 1284–1292. [Google Scholar] [CrossRef]
- Murray, D.B.; Gallagher, P.; Duffy, B.; McCormack, V. Energy storage solutions for offshore wave and tidal energy prototypes. In Proceedings of the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 11–13 April 2017; pp. 1–8. [Google Scholar]
- Zhou, Z.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T. Energy storage technologies for smoothing power fluctuations in marine current turbines. IEEE Int. Symp. Ind. Electron. 2012, 1425–1430. [Google Scholar] [CrossRef] [Green Version]
- Askarzadeh, A. Electrical power generation by an optimised autonomous PV/wind/tidal/battery system. IET Renew. Power Gener. 2017, 11, 152–164. [Google Scholar] [CrossRef]
- Shirai, Y.; Minamoto, S.; Yonemura, K.; Rahman, M.L. Output power control of hybrid off-shore-wind and tidal turbine generation system with battery storage system. In Proceedings of the 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–6. [Google Scholar]
- Wang, L.; Yu, J.-Y.; Chen, Y.-T. Dynamic stability improvement of an integrated offshore wind and marine-current farm using a flywheel energy-storage system. IET Renew. Power Gener. 2011, 5, 387. [Google Scholar] [CrossRef]
- Banerjee, S.; Musa, M.N.; Jaafar, A.B. Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int. J. Hydrogen Energy 2017, 42, 26–37. [Google Scholar] [CrossRef]
- Tufa, R.A.; Pawlowski, S.; Veerman, J.; Bouzek, K.; Fontananova, E.; di Profio, G.; Velizarov, S.; Goulão Crespo, J.; Nijmeijer, K.; Curcio, E. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 2018, 225, 290–331. [Google Scholar] [CrossRef]
- Yunez-Cano, A.; González-Huerta, R.d.G.; Tufiño-Velázquez, M.; Barbosa, R.; Escobar, B. Solar-hydrogen hybrid system integrated to a sustainable house in Mexico. Int. J. Hydrogen Energy 2016, 41, 19539–19545. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types—A review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Alcérreca-Huerta, J.C.; Encarnacion, J.I.; Ordoñez-Sánchez, S.; Callejas-Jiménez, M.; Barroso, G.G.D.; Allmark, M.; Mariño-Tapia, I.; Casarín, R.S.; O’Doherty, T.; Johnstone, C.; et al. Energy yield assessment from ocean currents in the insular shelf of Cozumel Island. J. Mar. Sci. Eng. 2019, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, D.; Matera, N.; De Luca, P.; Baglivo, C.; Maria Congedo, P.; Oliveti, G. Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates. Appl. Energy 2020, 276, 115507. [Google Scholar] [CrossRef]
- Cui, D.; Liang, S.; Wang, D. Observed and projected changes in global climate zones based on Köppen climate classification. WIREs Clim. Chang. 2021, 12, e701. [Google Scholar] [CrossRef]
- Felix, A.; Mendoza, E.; Chávez, V.; Silva, R.; Rivillas-Ospina, G. Wave and wind energy potential including extreme events: A case study of Mexico. J. Coast. Res. 2018, 85, 1336–1340. [Google Scholar] [CrossRef]
- Cruz González, G.; Alejandro, M.; Saldívar, D. El consumo de energía eléctrica en los hogares de México por nivel de ingresos, 2012. Tiempo Económico 2015, X, 43–56. [Google Scholar]
- Taufiqul, M.T.; Oo, A.M.; Shawkat Ali, A.B.M. Estimation of Energy Storage and Its Feasibility Analysis. In Energy Storage-Technologies and Applications; Zobaa, A.F., Ed.; IntechOpen: Rijeka, Croatia, 2013; pp. 41–78. [Google Scholar]
- INEGI. Anuario Estadístico y Geográfico de Quintana Roo 2017; Instituto Nacional de Estadística y Geografía México: Aguascalientes, Mexico, 2017; Available online: https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825095130.pdf (accessed on 30 October 2021).
- Fernández Salgado, J.M. Compendio de Energía Solar: Fotovoltaica, Térmica y Termoeléctrica; Mundi-Prensa AMV Ediciones: Madrid, España, 2010. [Google Scholar]
- Khatib, T.; Ibrahim, I.A.; Mohamed, A. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Convers. Manag. 2016, 120, 430–448. [Google Scholar] [CrossRef]
- Zhou, Z.; Benbouzid, M.; Frédéric Charpentier, J.; Scuiller, F.; Tang, T. A review of energy storage technologies for marine current energy systems. Renew. Sustain. Energy Rev. 2013, 18, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Shirasawa, K.; Tokunaga, K.; Iwashita, H.; Shintake, T. Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents. Renew. Energy 2016, 91, 189–195. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hassani, R.; Gomes, C.; Hizam, H.; Othman, M.L.; Behmanesh, M. Hybrid energy management with respect to a hydrogen energy system and demand response. Int. J. Hydrogen Energy 2019, 45, 1499–1509. [Google Scholar] [CrossRef]
- Ibrahim, H.; Belmokhtar, K.; Ghandour, M. Investigation of usage of compressed air energy storage for power generation system improving—Application in a microgrid integrating wind energy. Energy Procedia 2015, 73, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications, a State-of-the-Art Survey, 1st ed.; Springer: Berlin, Heidelberg, 1981; ISBN 9783540105589. [Google Scholar]
- Kacprzak, D. An extended TOPSIS method based on ordered fuzzy numbers for group decision making. Artif. Intell. Rev. 2020, 53, 2099–2129. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Li, N.; Tao, X.; Xu, H.; Peng, F.; Che, Y.; Guo, S. The optimal selection of electrochemical energy storage using Bayesian BWM and TOPSIS method. In Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20–22 December 2019; pp. 610–614. [Google Scholar] [CrossRef]
- Krohling, R.A.; Pacheco, A.G.C. A-TOPSIS—An approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 2015, 55, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Garduño-Ruiz, E.P.; Silva, R.; Rodríguez-Cueto, Y.; García-Huante, A.; Olmedo-González, J.; Martínez, M.L.; Wojtarowski, A.; Martell-Dubois, R.; Cerdeira-Estrada, S. Criteria for optimal site selection for ocean thermal energy conversion (Otec) plants in Mexico. Energies 2021, 14, 2121. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
PVS | MCS | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
PPVS | 2.1 kW | PMCS | 0.458 kW |
Gdm | 4.72 kWh/day | Vmin | 0.65 m/s |
Panel array | 7 modules (300 W) | MCT | 3 turbines (153 W) |
Panel area | 1.95 m2/module | Rotor area | 3.14 m2/turbine |
Temperature | 25 °C | ||
Seawater density | 1030 kg/m3 |
Case | HD | PV System | MC System | RPESS (kWh/day) | % Reduction RPESS ** | Average Cycles/Day (Charge–Discharge) | ||
---|---|---|---|---|---|---|---|---|
Power-Installed Capacity (kW) | Energy (kWh/day) | Power-Installed Capacity (kW) | Energy (kWh/day) | |||||
1 | 0 | 2.1 | 11.55 | 0 | 0 | 5.39 | - | 1 |
2 | 0.2 | 1.68 | 9.24 | 0.09 | 5.65 | 3.17 | 59% | 3.5 |
3 | 0.5 | 1.05 | 5.77 | 0.23 | 12.4 | 1.75 | 55% | 3 |
4 | 0.8 | 0.42 | 2.31 | 0.36 | 22.6 | 1.07 | 61% | 1.5 |
5 | 1 | 0 | 0 | 0.46 | 28.26 | 0.85 | 79% | 1 |
6 * | - | 2.1 | 11.55 | 0.46 | 28.26 | - | - | 1 |
Lifetime Years (C1) | Cycle Life, No. of Cycles (C2) | Energy Efficiency % (C3) | Power Rating MW (C4) | Response Time (C5) | Storage Duration (C6) | Power Density W/L (C7) | Energy Density Wh/L (C8) | Installed System Cost USD/kWh (C9) | Maturity (C10) | |
---|---|---|---|---|---|---|---|---|---|---|
PHS (A1) | 50 | 20,000 | 80 | 3000 | minutes | hours–months | 1.5 | 2 | 100 | Mature |
CAES (A2) | 30 | 10,000 | 65 | 1000 | minutes | hours–months | 2 | 6 | 50 | Commercialized |
Small CAES (A3) | 23 | 1200 | 80 | 10 | seconds | hours–months | 2 | 6 | 200 | Early commercialized |
Pb Battery (A4) | 15 | 1500 | 85 | 40 | milliseconds | minutes–days | 200 | 100 | 300 | Mature |
Li-ion Battery (A5) | 15 | 3000 | 90 | 100 | milliseconds | minutes–days | 3000 | 400 | 1000 | Commercialized |
Flywheel (A6) | 20 | 20,000 | 85 | 20 | seconds | seconds–minutes | 1500 | 80 | 3000 | Early commercialized |
Supercapacitors (A7) | 30 | 50,000 | 90 | 0.3 | milliseconds | seconds–hours | 100,000 | 30 | 1750 | Deve-loping |
Fuel cell Hydrogen (A8) | 20 | 10,000 | 26 | 100 | seconds | hours–months | 500 | 600 | 1000 | Develop-ing |
Criteria | Type (Min/Max) | Weighting REES | Weighting PCEES | Weighting RPCESS |
---|---|---|---|---|
Lifetime (years) | max | 0.07 | 0.07 | 0.04 |
Cycle life | max | 0.08 | 0.08 | 0.07 |
Energy efficiency (%) | max | 0.10 | 0.09 | 0.09 |
Power rating (MW) | min | 0.13 | 0.13 | 0.12 |
Response time | max | 0.36 | 0.18 | 0.21 |
Storage duration | max | 0.17 | 0.35 | 0.29 |
Power density (W/L) | max | 0.03 | 0.03 | 0.03 |
Energy density (Wh/L) | max | 0.03 | 0.03 | 0.05 |
Installed system cost (USD/kWh) | min | 0.01 | 0.01 | 0.03 |
Maturity | max | 0.02 | 0.02 | 0.06 |
nmax = 11.41, CI = 0.15, CR = 0.09 | nmax = 11.41, CI = 0.15, CR= 0.09 | nmax = 10.91, CI = 0.10, CR= 0.06 |
ESS | Hierarchy RESS | Hierarchy PCESS | Hierarchy RPCESS |
---|---|---|---|
PHS (A1) | 8 | 8 | 8 |
CAES (A2) | 7 | 6 | 6 |
Small CAES (A3) | 5 | 2 | 5 |
Pb Battery (A4) | 3 | 5 | 2 |
Li-ion Battery (A5) | 2 | 4 | 1 |
Flywheel (A6) | 6 | 7 | 7 |
Supercapacitors (A7) | 1 | 3 | 3 |
Hydrogen (A8) | 4 | 1 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmedo-González, J.; Ramos-Sánchez, G.; Garduño-Ruiz, E.P.; González-Huerta, R.d.G. Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage. Energies 2022, 15, 468. https://doi.org/10.3390/en15020468
Olmedo-González J, Ramos-Sánchez G, Garduño-Ruiz EP, González-Huerta RdG. Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage. Energies. 2022; 15(2):468. https://doi.org/10.3390/en15020468
Chicago/Turabian StyleOlmedo-González, Jorge, Guadalupe Ramos-Sánchez, Erika Paola Garduño-Ruiz, and Rosa de Guadalupe González-Huerta. 2022. "Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage" Energies 15, no. 2: 468. https://doi.org/10.3390/en15020468
APA StyleOlmedo-González, J., Ramos-Sánchez, G., Garduño-Ruiz, E. P., & González-Huerta, R. d. G. (2022). Analysis of Stand-Alone Photovoltaic—Marine Current Hybrid System and the Influence on Daily and Seasonal Energy Storage. Energies, 15(2), 468. https://doi.org/10.3390/en15020468