Biomass Valorization of Walnut Shell for Liquefaction Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition Analysis
2.2. Liquefied Biomass Preparation
2.3. Undissolved Residue and Liquefaction Degree
2.4. Hydroxyl Number (OH–Number)
3. Results
3.1. Chemical Composition of Walnut Shell
3.2. Liquefaction Properties of Liquefied Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiš, D.; Jovičić, N.; Matin, A.; Kalambura, S.; Vila, S.; Guberac, S. Energy value of agricultural spelt residue (Triticum spelta L.)—forgotten cultures. Tech. Gaz. 2017, 24, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Bilandžija, N.; Voća, N.; Jelčić, B.; Jurišić, V.; Matin, A.; Grubor, M.; Krička, T. Evaluation of Croatian agricultural solid biomass energy potential. Renew. Sustain. Energy Rev. 2018, 93, 225–230. [Google Scholar] [CrossRef]
- Krička, T.; Matin, A.; Bilandžija, N.; Jurišić, V.; Antonović, A.; Voća, N.; Grubor, M. Biomass valorization of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production. Int. Agrophysics 2017, 31, 575–581. [Google Scholar] [CrossRef]
- Putro, J.; Soetaredjo, F.; Lin, S.-Y.; Ju, Y.-H.; Ismadji, S. Pretreatment and Conversion of Lignocellulose Biomass into Valuable Chemicals. R. Soc. Chem. 2016, 6, 46834–46852. [Google Scholar] [CrossRef]
- Krička, T.; Jurišić, V.; Matin, A.; Bilandžija, N.; Antonović, A. Mogućnosti pretvorbe i iskorištenja ostataka poljoprivredne biomase nakon procesa pirolize. In Proceedings of the 51st Croatian and 11th International Symposium on Agriculture, Opatija, Croatia, 15–18 February 2016; pp. 485–489. [Google Scholar]
- Bhat Subrahmanya, K.; Yashas Gowda, T.G.; Sanjay, M.R.; Yogesha, B. Polymer Matrix-Natural Fiber Composites: An Overview. Cogent Eng. 2018, 5, 1. [Google Scholar]
- Maj, G. Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector. Energies 2018, 11, 1516. [Google Scholar] [CrossRef] [Green Version]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A. The path forward for biofuels and biomaterials. Science 2006, 311, 484. [Google Scholar] [CrossRef] [Green Version]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Closing the Circle—EU Circular Economy Action Plan. 2015. Available online: https://eur-lex.europa.eu/legal-content/HR/TXT/HTML/?uri=CELEX:52015DC0614&from=EN (accessed on 1 October 2021).
- Bismarck, A.; Baltazar-Y-Jimenez, A.; Sarikakis, K. Green composites as Panacea? Socio-economic aspects of green materials. Environ. Dev. Sustain. 2006, 8, 445–463. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in valorization of lignocellulosic materials by bio-technology: An overview. BioResources 2013, 8, 3157–3176. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 2012, 38, 522–550. [Google Scholar]
- Kurimoto, Y.; Doi, S.; Tamura, Y. Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 1999, 53, 617–622. [Google Scholar] [CrossRef]
- Lee, S.Y. Deciphering bioplastic production. Nat. Biotechnol. 2006, 24, 1227–1229. [Google Scholar] [CrossRef]
- Lynd, L.R.; Larson, E.; Greene, N.; Laser, M.; Sheehan, J.; Dale, B.E.; McLaughlin, S.; Wang, M. The role of biomass in America’s energy future: Framing the analysis. Biofuels Bioprod. Biorefining 2009, 3, 113–123. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Dobado, J.A. Lignin as renewable raw material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef]
- Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef]
- Fernando, S.; Adhikari, S.; Chandrapal, C.; Murali, N. Biorefineries: Current status, challenges, and future direction. Energy Fuels 2006, 20, 1727–1737. [Google Scholar] [CrossRef]
- FitzPatrick, M.; Champagne, P.; Cunningham, M.F.; Whitney, R.A. A biorefinery processing perspective. Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 2010, 101, 8915–8922. [Google Scholar] [CrossRef]
- Clark, J.H.; Budarin, V.; Deswarte, F.E.I.; Hardy, J.J.E.; Kerton, F.M.; Hunt, A.J.; Luque, R.; Macquarrie, D.J.; Milkowski, K.; Rodriguez, A.; et al. Green chemistry and the biorefinery: A partnership for a sustainable future. Green Chem. 2006, 8, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Dodds, D.R.; Gross, R.A. CHEMISTRY: Chemicals from biomass. Science 2007, 318, 1250–1251. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S. Mechanical Behaviour of Hybrid Bio-composite Reinforced with Walnut (Juglans regia L.) Shell Particle and Coconut Fibre. Int. J. Emerg. Technol. 2017, 8, 604–608. [Google Scholar]
- Ohara, H. Biorefinery. Appl. Microbiol. Biotechnol. 2003, 62, 474–477. [Google Scholar] [CrossRef]
- Rahul, K.; Gourav, G.; Ripudaman, S.N. Walnut Shell Reinforced Composite: A Review. Int. J. Sci. Eng. Res. 2016, 7, 179–189. [Google Scholar]
- Fernandes, T.V.; Bos Klaasse, G.J.; Zeeman, G.; Sanders, J.P.M.; van Lier, J.B. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 2575–2579. [Google Scholar] [CrossRef]
- Sluiter, J.B.; Ruiz, O.R.; Scarlata, C.J.; Sluiter, A. Compositional Analysis of Lignocellulosic Feedstocks. Review and Description of Methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Ioelovich, M. Correlation analysis of enzymatic digestibility of plant biomass. Biomass Convers. Biorefinery 2014, 4, 269–275. [Google Scholar] [CrossRef]
- Biljuš, H.; Basarac Sertić, M. Potencijal i uloga biomase u hrvatskoj i europskoj energetskoj tranziciji. Drv. Ind. 2021, 72, 309–318. [Google Scholar] [CrossRef]
- Misra, M.; Mohanty, A.K.; Pandey, J. Biocomposites: Design and Mechanical Performance; Woodhead Publishing, Elsevier: London, UK, 2015. [Google Scholar]
- Antonović, A.; Jambreković, V.; Pervan, S.; Ištvanić, J.; Moro, M.; Zule, J. Utjecaj lokaliteta uzorkovanja na grupni kemijski sastav bijeli bukovine (Fagus sylvatica L.). Drv. Ind. 2007, 58, 119–125. [Google Scholar]
- Antonović, A.; Jambreković, V.; Pervan, S.; Ištvanić, J.; Greger, K.; Bublić, A. A supplement to the research of native lignin of beech sapwood (Fagus sylvatica L.). Wood Res. 2008, 53, 55–68. [Google Scholar]
- Antonović, A.; Ištvanić, J.; Medved, S.; Antolović, S.; Stanešić, J.; Kukuruzović, J.; Đurović, A.; Španić, N. Influence of Different Wood Species Chemical Composition on the Liquefaction Properties. In Implementation of Wood Science to Woodworking Sector; Sveučilište u Zagrebu Šumarski fakultet: Zagreb, Croatia, 2019; pp. 25–34. [Google Scholar]
- Antonović, A.; Barčić, D.; Kljak, J.; Ištvanić, J.; Podvorec, T.; Stanešić, J. The quality of fired Aleppo pine wood (Pinus halepensis Mill) biomass for biorefinery products. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2018, 39, 3013–3024. [Google Scholar]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Queirós, C.S.G.P.; Cardoso, S.; Lourenço, A. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefinery 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Ashok, P. Bioethanol from Lignocellulosic Biomass Part I Pretreatment 65f the Substrates. In Handbook of Plant Based Biofuels; Taylor & Francis: New York, NY, USA, 2009; pp. 121–139. [Google Scholar]
- Matin, A.; Krička, T.; Jurišić, V.; Bilandžija, N.; Voća, N.; Mrkšić, J. Energetska Iskoristivost Ljuske Oraha i Lješnjaka. Zbornik Radova 48. Hrvatskog i 8. Međunarodnog Simpozija Agronoma; Publisher: Poljoprivredni fakultet. Sveučilište Josipa Jurja Strossmayera u Osijeku. Dubrovnik, Croatia, 2013; pp. 836–840. [Google Scholar]
- Demirbas, A. Fuel characteristics of olive husk and walnut, hazelnut, sunflower, and almond shells. Energy Source 2002, 24, 215–221. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A.; Tabarsa, T. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos. Part B-Eng. 2012, 43, 3276–3280. [Google Scholar] [CrossRef]
- Nabarlatz, D.; Farriol, X.; Montané, D. Autohydrolysis of almond shells for the production of xylo-oligosaccharides: Product characteristics and reaction kinetics. Ind. Eng. Chem. Res. 2005, 44, 7746–7755. [Google Scholar] [CrossRef]
- Chen, H. Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose: Theory and Practice; Chemical Industry Press: Beijing, China, 2014; pp. 25–69. [Google Scholar]
- Chen, L.; Wang, X.; Yang, H.; Lu, Q.; Li, D.; Yang, Q.; Chen, H. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. J. Anal. Appl. Pyrolysis 2015, 113, 499–507. [Google Scholar] [CrossRef]
- Soleimani, M.; Kaghazchi, T. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones—An agricultural waste. Bioresour Technol. 2008, 99, 5374–5383. [Google Scholar] [CrossRef]
- Isfahlan, A.J.; Mahmoodzadeh, A.; Hasanzadeh, A.; Heidari, R.; Jamei, R. Antioxidant and antiradical activities of phenolic extracts from Iranian almond (Prunus amygdalus L.) hulls and shells. Turk. J. Biol. 2010, 34, 165–173. [Google Scholar] [CrossRef]
- Martin, C.; Alriksson, B.; Sjöde, A.; Nilvebrant, N.O.; Jönsson, L.J. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl. Biochem. Biotechnol. 2007, 137, 339–352. [Google Scholar] [CrossRef]
- Kacem, I.; Koubaa, M.; Maktouf, S.; Chaari, F.; Najar, T.; Chaabouni, M.; Ettis, N.; Ellouz Chaabouni, S. Multistage process for the production of bioethanol from almond shell. Bioresour. Technol. 2016, 211, 154–163. [Google Scholar] [CrossRef]
- Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 2021, 14, 102. [Google Scholar] [CrossRef]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
Walnut shell | Moisture | Ash | Coke | Fixed Carbon | Nitrogen |
(%, mass) | |||||
12.23 ± 0.10 | 1.26 ± 0.08 | 17.15 ± 0.30 | 15.89 ± 0.47 | 0.56 ± 0.14 |
Walnut shell | Carbon | Sulphur | Oxygen | Hydrogen | Volatile Matter | HHV | LHV |
(%, mass) (MJ kg−1) | |||||||
52.11 ± 2.26 | 0.23 ± 0.06 | 42.20 ± 1.08 | 5.86 ± 0.07 | 70.62 ± 0.58 | 17.93 ± 0.51 | 16.66 ± 0.47 |
Biomass | % A | % AM | % H | % C | % P | % L |
---|---|---|---|---|---|---|
Walnut shell | 1.23 ± 0.07 | 2.46 ± 0.08 | 42.45 ± 0.78 | 32.62 ± 0.22 | 9.82 ± 0.80 | 53.87 ± 0.85 |
Particle size | % UR | % LD | OH (mg KOH/g) | |||
---|---|---|---|---|---|---|
Walnut shell PS < 0.3 | 9.16 ± 1.08 a | 90.84 ± 1.08 a | 364.00 ± 3.12 a | |||
Walnut shell PS 0.3–0.6 | 902 ± 0.76 a | 90.98 ± 0.76 a | 359.33 ± 4.04 a | |||
Walnut shell PS 0.6–1.25 | 9.42 ± 2.68 a | 90.58 ± 2.68 a | 385.67 ± 5.69 b | |||
Walnut shell PS 1.25–1.4 | 10.79 ± 1.23 a | 89.21 ± 1.23 a | 426.50 ± 5.68 c | |||
Walnut shell PS > 1.4 | 10.21 ± 0.18 a | 89.79 ± 0.18 a | 450.00 ± 3.91 d | |||
F | P | F | P | F | P | |
0.817 | 0.543 | 0.817 | 0.543 | 220.8 | <0.005 |
Particle Size | Dry Matter (%) | |||
---|---|---|---|---|
102 °C | 150 °C | |||
Walnut shell PS < 0.3 | 68.71 ± 0.79 a | 53.82 ± 0.85 a | ||
Walnut shell PS 0.30–0.60 | 68.10 ± 4.13 a | 53.82 ± 1.19 a | ||
Walnut shell PS 0.60–1.25 | 69.89 ± 6.81 a | 56.10 ± 1.79 a | ||
Walnut shell PS 1.25–1.40 | 68.24 ± 3.03 a | 53.85 ± 2.16 a | ||
Walnut shell PS > 1.40 | 66.66 ± 5.12 a | 52.54 ± 1.17 a | ||
F | P | F | P | |
0.205 | 0.93 | 2.193 | 0.143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičić, N.; Antonović, A.; Matin, A.; Antolović, S.; Kalambura, S.; Krička, T. Biomass Valorization of Walnut Shell for Liquefaction Efficiency. Energies 2022, 15, 495. https://doi.org/10.3390/en15020495
Jovičić N, Antonović A, Matin A, Antolović S, Kalambura S, Krička T. Biomass Valorization of Walnut Shell for Liquefaction Efficiency. Energies. 2022; 15(2):495. https://doi.org/10.3390/en15020495
Chicago/Turabian StyleJovičić, Nives, Alan Antonović, Ana Matin, Suzana Antolović, Sanja Kalambura, and Tajana Krička. 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency" Energies 15, no. 2: 495. https://doi.org/10.3390/en15020495
APA StyleJovičić, N., Antonović, A., Matin, A., Antolović, S., Kalambura, S., & Krička, T. (2022). Biomass Valorization of Walnut Shell for Liquefaction Efficiency. Energies, 15(2), 495. https://doi.org/10.3390/en15020495