A Comparative Assessment of Conventional and Artificial Neural Networks Methods for Electricity Outage Forecasting
Abstract
:1. Introduction
- i
- Assessment of the dynamic and complex inter-relationship between climatic and technological factors of system failure. The application of ANNs to forecast power outages of a South African power system. The study findings are significant in the South African context, as they show that AI methods can be applied to outage forecasting and weather conditions do impact the performance of the distribution power system in South Africa;
- ii
- Development of a useful model for power utilities which will assist maintenance crews. Development of a model for power outage forecasting using meteorological data and artificial neural networks. This model uses the novel approach of expressing the outage events per season as the target output;
- iii
- Adoption of extensive statistical measures in evaluating the developed outage models. To increase the credibility of the results, real life data are used. The proposed method demonstrated an improved performance, reduced computation time and an ease of implementation as compared to other baseline methods; and
- iv
- Development of a model that will improve decision making by utilities. This can mean that they pre-position materials and crews, and proactively inform consumers of possibilities of outage. Conventionally, restoration plans of utilities are based on management discretion and experience, and not expert outage prediction models.
2. Materials and Methods
2.1. Exponential Smoothing
2.2. Multiple Linear Regression
2.3. Artificial Neural Networks
3. Description of the Study Area
4. Model Development
5. Model Evaluation
6. Results and Discussion
7. Comparison with Some Optimization Techniques
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANNs | Artificial neural networks |
CLD | Cloud (%) |
EMP | Empangeni |
ES | Exponential smoothing |
FRSD | Number of frost days (days/month) |
KZN | KwaZulu Natal |
KZNOU | KwaZulu Natal operating unit |
MAD | Mean absolute deviation |
MAE | Mean absolute error |
MAPE | Mean absolute percent error |
MLR | Multiple linear regression |
MSD | Mean squared deviation |
MSE | Mean squared error |
NWC | Newcastle |
OD | Outage date |
PET | Potential evapotranspiration (mm/month) |
PMB | Pietermaritzburg |
PRE | Precipitation (mm/month) |
R | Coefficient of determination |
RMSE | Root mean-square error |
SAWS | South African Weather Service |
SF | System failure |
TMN | Minimum temperature (°C) |
TMX | Maximum temperature (°C) |
VAPD | Vapor pressure (hPa or mb) |
WETD | Number of wet days (days/month) |
WS | Wind speed (m/s) |
References
- Ward, D.M. The effect of weather on grid systems and the reliability of electricity supply. Clim. Chang. 2013, 121, 103–113. [Google Scholar] [CrossRef]
- Zhou, Y.; Pahwa, A.; Yang, S.S. Modeling weather-related failures of overhead distribution lines. IEEE Trans. Power Syst. 2006, 21, 1683–1690. [Google Scholar] [CrossRef]
- Rodriguez, J.R.A.; Vargas, A. Fuzzy-heuristic methodology to estimate the load restoration time in MV networks. IEEE Trans. Power Syst. 2005, 20, 1095–1102. [Google Scholar] [CrossRef]
- Zhou, K.; Dobson, I.; Wang, Z.; Roitershtein, A.; Ghosh, A.P.A. Markovian influence graph formed from utility line outage data to mitigate large cascades. IEEE Trans. Power Syst. 2020, 35, 3224–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kankanala, P.; Das, S.; Pahwa, A. AdaBoost +: An Ensemble Learning Approach for Estimating Weather-Related Outages in Distribution Systems. IEEE Trans. Power Syst. 2014, 29, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Che, L.; Liu, X.; Li, Z.; Wen, Y. False data injection attacks induced sequential outages in power systems. IEEE Trans. Power Syst. 2018, 34, 1513–1523. [Google Scholar] [CrossRef]
- Eskandarpour, R.; Khodaei, A. Leveraging accuracy-uncertainty tradeoff in SVM to achieve highly accurate outage predictions. IEEE Trans. Power Syst. 2017, 33, 1139–1141. [Google Scholar] [CrossRef]
- Eskandarpour, R.; Khodaei, A. Machine learning based power grid outage prediction in response to extreme events. IEEE Trans. Power Syst. 2016, 32, 3315–3316. [Google Scholar] [CrossRef]
- Jaech, A.; Zhang, B.; Ostendorf, M.; Kirschen, D.S. Real-time prediction of the duration of distribution system outages. IEEE Trans. Power Syst. 2018, 34, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Ridolfo, C.F. Predictive Maintenance Display System. U.S. Patent 6735549 B2, 11 May 2004. [Google Scholar]
- Radmer, D.T.; Kuntz, P.A.; Christie, R.D.; Venkata, S.S.; Fletcher, R.H. Predicting vegetation-related failure rates for overhead distribution feeders. IEEE Trans. Power Deliv. 2013, 17, 103–113. [Google Scholar]
- Aguero, J.R.; Spare, J.; Phillips, E.; O’Meally, C.; Wang, J.; Brown, R.E. Distribution system reliability improvement using predictive models. In Proceedings of the IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–7. [Google Scholar]
- Rau, H.H.; Hsu, C.Y.; Lin, Y.A.; Atique, S.; Fuad, A.; Wei, L.M.; Hsu, M.H. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network. Comput. Methods Programs Biomed. 2016, 125, 58–65. [Google Scholar] [CrossRef]
- Pahwa, A. Effect of environmental factors on failure rate of overhead distribution feeders. In Proceedings of the IEEE Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; pp. 691–692. [Google Scholar]
- Yuan, S.; Quiring, S.M.; Zhu, L.; Huang, Y.; Wang, J. Development of a typhoon power outage model in Guangdong, China. J. Abbr. 2020, 117, 105711. [Google Scholar] [CrossRef]
- Alpay, B.A.; Wanik, D.; Watson, P.; Cerrai, D.; Liang, G.; Anagnostou, E. Dynamic modeling of power outages caused by thunderstorms. Forecasting 2020, 2, 151–162. [Google Scholar] [CrossRef]
- Pasqualini, D.; Kaufeld, K.A.; Dorn, M.F. Electric Power Outage Forecasting: Model; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2018; Volume 34, pp. 773–781.
- Nateghi, R.; Guikema, S.D.; Quiring, S.M. Forecasting hurricane induced power outage durations. Nat. Hazards 2014, 74, 1795–1811. [Google Scholar] [CrossRef]
- Cerrai, D.; Koukoula, M.; Watson, P.; Anagnostou, E.N. Outage prediction models for snow and ice storms. Sustain. Energy Grids Netw. 2020, 21, 100294. [Google Scholar] [CrossRef]
- Cerrai, D.; Wanik, D.W.; Bhuiyan, M.A.E.; Zhang, X.; Yang, J.; Frediani, M.E.B.; Anagnostou, E.N. Predicting storm outages through new representations of weather and vegetation. IEEE Access 2019, 7, 29639–29654. [Google Scholar] [CrossRef]
- Dokic, T.; Pavlovski, M. Spatially aware ensemble-based learning to predict weather-related outages in transmission. In Proceedings of the Hawaii International Conference on System Sciences—HICSS, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Wanik, D.; Anagnostou, E.; Hartman, B.; Frediani, M.; Astitha, M. Storm outage modeling for an electric distribution network in northeastern USA. Nat. Hazards 2015, 79, 1359–1384. [Google Scholar] [CrossRef]
- Shim, K.S.; Ahn, S.J.; Yun, S.Y.; Choi, J.H. Analysis of Low Frequency Oscillation Using the Multi-Interval Parameter Estimation Method on a Rolling Blackout in the KEPCO System. Energies 2017, 10, 484. [Google Scholar] [CrossRef]
- Jufri, F.H.; Kim, J.S.; Jung, J. Analysis of determinants of the impact and the grid capability to evaluate and improve grid resilience from extreme weather event. Energies 2017, 10, 1779. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, M.; Koloushani, M.; Ulak, M.B.; Ozguven, E.E.; Jouneghani, R.A. Statistical and spatial analysis of hurricane-induced roadway closures and power outages. Energies 2020, 13, 1098. [Google Scholar] [CrossRef] [Green Version]
- Lo Frano, R.; Cancemi, S.A.; Darnowski, P.; Ciolini, R.; Paci, S. Preliminary Analysis of an Aged RPV Subjected to Station Blackout. Energies 2021, 14, 4394. [Google Scholar] [CrossRef]
- Watson, P.L.; Koukoula, M.; Anagnostou, E. Influence of the characteristics of weather information in a thunderstorm-related power outage prediction system. Forecasting 2021, 3, 541–560. [Google Scholar] [CrossRef]
- Yang, F.; Wanik, D.W.; Cerrai, D.; Bhuiyan, M.A.E.; Anagnostou, E.N. Quantifying uncertainty in machine learning-based power outage prediction model training: A tool for sustainable storm restoration. Sustainability 2020, 12, 1525. [Google Scholar] [CrossRef] [Green Version]
- Onaolapo, A.K.; Pillay Carpanen, R.; Dorrell, D.G.; Ojo, E.E. A Comparative Evaluation of Conventional and Computational Intelligence Techniques for Forecasting Electricity Outage. In Proceedings of the Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), Potchefstroom, South Africa, 27–29 January 2021; pp. 1–6. [Google Scholar]
- Onaolapo, A.K.; Pillay Carpanen, R.; Dorrell, D.G.; Ojo, E.E. Transmission Line Fault Classification and Location Using Multi-Layer Perceptron Artificial Neural Network. In Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 5182–5187. [Google Scholar]
- Kang, J.; Lee, S. Data-driven prediction of load curtailment in incentive-based demand response system. Energies 2018, 11, 2905. [Google Scholar] [CrossRef] [Green Version]
- Oyebode, O.; Ighravwe, D.E. Urban water demand forecasting: A comparative evaluation of conventional and soft computing techniques. Resources 2019, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Forecasting with Exponential Smoothing: The State Space Approach; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Wu, L.; You, S.; Dong, J.; Liu, Y.; Bilke, T. Multiple Linear Regression Based Disturbance Magnitude Estimations for Bulk Power Systems. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Onaolapo, A.K.; Akindeji, K.T.; Adetiba, E. Simulation Experiments for Faults Location in Smart Distribution Networks using IEEE 13 Node Test Feeder and Artificial Neural Network. J. Phys. Conf. Ser. 2019, 1378, 032021. [Google Scholar] [CrossRef]
- Mafi, S.; Amirinia, G. Forecasting hurricane wave height in Gulf of Mexico using soft computing methods. Ocean. Eng. 2017, 146, 352–362. [Google Scholar] [CrossRef]
- Jarndal, A.; Hamdan, S. Forecasting of Peak Electricity Demand Using ANNGA and ANN-PSO Approaches. In Proceedings of the International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab Emirates, 4–6 April 2017; pp. 1–5. [Google Scholar]
- Hlahla, S.; Hill, T.R. Responses to Climate Variability in Urban Poor Communities in Pietermaritzburg, KwaZulu-Natal, South Africa. SAGE Open 2017, 8, 2158244018800914. [Google Scholar] [CrossRef] [Green Version]
- Aven, T. Interpretations of alternative uncertainty representations in a reliability and risk analysis context. Reliab. Eng. Syst. Saf. 2011, 96, 353–360. [Google Scholar] [CrossRef]
- Panicker, M.; Babu, C. Efficient FPGA Implementation of Sigmoid and Bipolar Sigmoid Activation Functions for Multilayer Perceptrons. IOSR J. Eng. 2012, 22, 1352–1356. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Nitis, M.; Jun, H. Confidence intervals and point estimators for a normal mean under purely sequential strategies involving Gini’s mean difference and mean absolute deviation. Seq. Anal. 2017, 36, 210–239. [Google Scholar]
- Lee, D.; Park, C.S. On the Generalized Mean Square Error and its Applications. J. Korean Inst. Ind. Eng. 2018, 44, 102–113. [Google Scholar] [CrossRef]
Study | Prediction Model | Historical Data | Meteorological Data | Simulated Data | Low Computation Time | Ease of Implemen-Tation |
---|---|---|---|---|---|---|
[4] | 🗸 | 🗸 | - | - | - | - |
[5] | 🗸 | 🗸 | 🗸 | - | - | - |
[6] | 🗸 | - | 🗸 | - | - | - |
[8] | 🗸 | - | - | 🗸 | - | - |
[9] | 🗸 | 🗸 | 🗸 | - | - | - |
[15] | 🗸 | - | 🗸 | - | - | - |
[16] | 🗸 | 🗸 | 🗸 | - | - | - |
[17] | 🗸 | 🗸 | 🗸 | - | - | - |
[19] | 🗸 | 🗸 | 🗸 | - | - | - |
[20] | 🗸 | - | 🗸 | - | - | - |
[21] | 🗸 | 🗸 | 🗸 | - | - | - |
[22] | 🗸 | - | 🗸 | - | - | - |
[23] | 🗸 | 🗸 | - | - | - | - |
[24] | 🗸 | 🗸 | 🗸 | - | - | - |
[31] | 🗸 | 🗸 | - | - | - | - |
[25] | 🗸 | 🗸 | - | - | - | - |
[26] | 🗸 | 🗸 | - | - | - | - |
[27] | 🗸 | 🗸 | 🗸 | 🗸 | - | - |
[28] | 🗸 | 🗸 | 🗸 | - | - | - |
This study | 🗸 | 🗸 | 🗸 | - | 🗸 | 🗸 |
Statistical Parameter | PRE | PET | CLD | TMN | TMX | VAPD | WETD | FRSD | WS |
---|---|---|---|---|---|---|---|---|---|
Mean | 61.51 | 89.25 | 45.74 | 9.97 | 23.77 | 13.41 | 9.57 | 1.84 | 2.96 |
Maximum | 146.80 | 136.90 | 82.10 | 16.60 | 27.80 | 20.30 | 18.80 | 8.27 | 3.45 |
Minimum | 12.80 | 57.80 | 16.50 | 3.60 | 20.00 | 8.30 | 2.74 | 0.00 | 2.08 |
Standard Deviation | 44.22 | 23.43 | 17.43 | 4.17 | 2.21 | 3.98 | 5.73 | 2.64 | 0.30 |
Variance | 549.0 | 303.7 | 17.40 | 4.88 | 15.85 | 32.84 | 6.96 | 0.09 | |
Kurtosis coefficient | 1.52 | 1.73 | 1.98 | 1.67 | 1.96 | 1.73 | 1.40 | 2.74 | 3.15 |
Skewness coefficient | 0.38 | 0.15 | 0.24 | 0.05 | −0.12 | 0.28 | 0.18 | 1.11 | −0.63 |
Season | 2014 | 2015 | 2016 | 2017 | Total |
---|---|---|---|---|---|
Summer (%) | 7 | 3 | 4 | 3 | 17 |
Autumn (%) | 10 | 3 | 4 | 10 | 27 |
Winter (%) | 8 | 14 | 11 | 2 | 35 |
Spring (%) | 8 | 7 | 6 | 0 | 21 |
S/n | Variables | Correlation Coefficients |
---|---|---|
1 | OD | −0.05051 |
2 | CLD | 0.549712 |
3 | FRSD | −0.26586 |
4 | PET | 0.471735 |
5 | PRE | 0.57765 |
6 | TMN | 0.597951 |
7 | TMX | 0.520818 |
8 | VAPD | 0.638733 |
9 | WETD | 0.534573 |
10 | WS | −0.57327 |
S/n | Year | Time of the Year | Season | Outage Events |
---|---|---|---|---|
1 | 2014 | 1 January–28 February | Summer | 16.0 |
2 | 2014 | 1 March–31 May | Autumn | 22.0 |
3 | 2014 | 1 June–31 August | Winter | 19.0 |
4 | 2014 | 1 September–30 November | Spring | 18.0 |
5 | 2014/2015 | 1 December–28 February | Summer | 7.0 |
6 | 2014/2015 | 1 March–31 May | Autumn | 8.0 |
7 | 2014/2015 | 1 June–31 August | Winter | 31.0 |
8 | 2014/2015 | 1 September–30 November | Spring | 17.0 |
9 | 2015/2016 | 1 December–28 February | Summer | 8.0 |
10 | 2015/2016 | 1 March–31 May | Autumn | 8.0 |
11 | 2015/2016 | 1 June–31 August | Winter | 26.0 |
12 | 2015/2016 | 1 September–30 November | Spring | 13.0 |
13 | 2016/2017 | 1 December–28 February | Summer | 7.0 |
14 | 2016/2017 | 1 March–31 May | Autumn | 22.0 |
15 | 2016/2017 | 1 June–31 July | Winter | 5.0 |
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Technique | RMSE | RMSE | MAPE | MAPE | MAD | MAD | MSE | MSE | MAE | MAE | ||
ES | 0.77 | 0.47 | 3.82 | 3.83 | 0.04 | 0.09 | 1.18 | 2.29 | 14.63 | 14.67 | 1.18 | 2.67 |
MLR Model 1 | 0.51 | 0.56 | 5.22 | 3.13 | 0.14 | 0.12 | 4.09 | 3.13 | 27.24 | 9.80 | 4.09 | 3.66 |
MLR Model 2 | 0.46 | 0.55 | 5.51 | 3.14 | 0.15 | 0.12 | 4.43 | 3.08 | 30.31 | 9.89 | 4.43 | 3.60 |
ANN Model 1 | 0.99 | 0.99 | 0.32 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.09 | 0.01 | 0.03 | 0.01 |
ANN Model 2 | 0.95 | 0.99 | 1.61 | 0.87 | 0.01 | 0.01 | 0.13 | 0.15 | 2.60 | 0.76 | 0.13 | 0.15 |
Method | Computation Time (s) | RMSE |
---|---|---|
ACO | 52.32 | 0.3222 |
GA | 54.35 | 0.3417 |
DE | 51.29 | 0.3365 |
DS | 45.06 | 0.3323 |
ANN model 1 | 25.14 | 0.3156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onaolapo, A.K.; Carpanen, R.P.; Dorrell, D.G.; Ojo, E.E. A Comparative Assessment of Conventional and Artificial Neural Networks Methods for Electricity Outage Forecasting. Energies 2022, 15, 511. https://doi.org/10.3390/en15020511
Onaolapo AK, Carpanen RP, Dorrell DG, Ojo EE. A Comparative Assessment of Conventional and Artificial Neural Networks Methods for Electricity Outage Forecasting. Energies. 2022; 15(2):511. https://doi.org/10.3390/en15020511
Chicago/Turabian StyleOnaolapo, Adeniyi Kehinde, Rudiren Pillay Carpanen, David George Dorrell, and Evans Eshiemogie Ojo. 2022. "A Comparative Assessment of Conventional and Artificial Neural Networks Methods for Electricity Outage Forecasting" Energies 15, no. 2: 511. https://doi.org/10.3390/en15020511
APA StyleOnaolapo, A. K., Carpanen, R. P., Dorrell, D. G., & Ojo, E. E. (2022). A Comparative Assessment of Conventional and Artificial Neural Networks Methods for Electricity Outage Forecasting. Energies, 15(2), 511. https://doi.org/10.3390/en15020511