A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review
Abstract
:1. Introduction
2. MDC Performance Indicators and Limiting Factors
3. Cathodic Limitations
3.1. Ohmic Losses
3.2. Activation Losses
3.3. Mass Transport Losses
3.4. Other Losses
4. Cathode Surface Modification
Air-Cathode Catalyst | Load (mg/cm2) | Cathode | Type of MDC | MDC Performance | Anode | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Max. Power Output | DEmax % | COD% | CE% | ||||||
Precious metal-based electrocatalysts on Air-cathode MDC | |||||||||
Pt/C | - | - | 3-C MDC | 0.42 W/m2 | 43 | 77 | 68 | CC | [19] |
Pt/C | 0.5 | CC | 3-C MDC | 1.4 A/m2 | ~68 | ~38 | ~48 | CC | [72] |
Pt | 0.5 | CC | 5-C SMDC | 7.4 mA | 99 | - | - | CF | [52] |
Pt/C | 0.5 | - | 5-C SMDC | 1.14 W/m2 | 98 | 91 | 80 | GFB | [83] |
Pt | 0.5 | CC | 3-C MDC | 0.66 A/m2 | 24 | 25 | - | GB | [84] |
Pt | 0.5 | CC | 5-C cSMDC | 5.9 A/m2 | 65 | ~64 | ~30 | GR | [85] |
Pt/C | 0.35 | CC | 3-C MDC | 9.3 W/m2 | 39 | 79 | 25 | CFB | [73] |
Pt/C | 0.5 | CC | Multi-A MDC | 6850 W/m2 | ~26.0 | ~62.8 | 84 | CFB | [86] |
Pt/C | 0.5 | CC | 3-C MDC | 1980 W/m2 | ~97 | ~60 | ~35 | CGFB | [87] |
Pt/C | 0.5 | CC | MEDIC | 0.65 W/m2 | ~ 40 | ~78 | ~54 | GFB | [88] |
Pt/C | 0.5 | CC | 7-C SMEDIC | ~0.65 W/m2 | 94 | ~88 | 61 | GFB | [89] |
Pt/C | 0.5 | CC | 3-C MDC | 28.6 mA | - | - | - | GAC | [44] |
Pt/C | 0.5 | CC | 5-C SMDC | - | 36 | - | - | CGFB | [34] |
Pt | 0.5 | CC | 3-C MDC | - | 91(Na+) | - | - | CB | [56] |
Pt | 0.5 | CC | 7-C USMDC | 32.91 W/m3 | 96 | - | - | CF | [51] |
Pt | 0.5 | CC | 5-C QMDC | 17.18 mW | 48.12 (mg/h) | - | - | CFB | [50] |
Pt | 0.5 | CC | 2-C UMDC | 8 mW | 85 | 24.3 (mg/h) | 84 | CFB | [11] |
Pt | 0.5 | CC | 3-C MDC | 4.54 mA | >99 | 51.74 | 88.67 | CB | [74] |
Pt/C | 0.4 | CC | Pt/C 2-C UMDC | 30.8 W/m3 | 99 | - | - | GG | [8] |
Pt/C | 0.4 | CC | 2-C UMDC | 28.9 W/m3 | 94 | - | 92 | GG | [90] |
Pt/C | 0.5 | CC | 4-C SMDC | 2.5 mA | 70 | - | - | - | [91] |
Pt/C | 0.2 | CC | 2-C UMDC | 11 mA | 100 | - | - | CFB | [92] |
Pt/C | 0.2 | CC | 2-C UMDC | ~12.3 A/m3 | ~88.1 | 70 | 5–10 | CFB | [93] |
Pt/C | 0.1 | CC | 2-C UMDC-FO | - | 99.4 | 93 | ~83.6 | CB | [94] |
Pt/C | 0.5 | CC | 3-C MCDC | - | 70 | - | CFB | [95] | |
Pt/C | 0.1 | CC | 2-C UMDC-FO | 32.9 mA | 94 | 70.6 | 83.6 | CB | [94] |
Pt/C | 0.4 | CC | 2-C UMDC | 300 A/m3 | ∼80 | ∼80 | ∼80 | GG | [96] |
Pt/C | 5 | CC | Flow backwater | 1929 W/m2 | - | 68.9 | - | CB | [97] |
Metal-oxides and their composites | |||||||||
Ag/SnO2 | 0.05 (Ag-NPs), 1 (SnO2) | CF | 5-C MDC | 1.47 W/m3 | 72.6 | - | ~14.4 | - | [98] |
MnO2 | 1–2 | CP | 3-C MDC | 41 A/m2 | 56.30 | 1.16 (kg/m3/d) | 31.59 | CF | [13] |
Activated carbon (AC)-based | |||||||||
AC | 5 | CC | 2-C UMDC-AD | 2000 mA | 42 | 96 | 15.5 | CB | [78] |
AC | - | CC | 5-C MEDCC | ~32.8 A/m2, | ~39.7 (mg/h) | - | ~105 | CB | [99] |
AC/CB | 40 | - | 3-C MDC | ~3.01 W/m2 | >60 | 94 | - | CB | [100] |
AC/CB | 40 | SSM | 3-C MDC | ~ 2350 W/m2 | ~ 78.6 | - | - | CB | [81] |
AC/CB | 40 | SSM | 3-C MDC | ~1890 W/m2 | ~53 | - | - | CB | [82] |
AC/CB | - | SSM | 3-C PMDC | 340 W/m2 | ~83.4 | - | - | CFB | [101] |
Carbon black (CB) composites | |||||||||
PMo/CB | 25 | CC | Flow backwater | 3372 W/m2 | - | >90 | - | CB | [97] |
CB | - | CC | Flow backwater | 1627 W/m2 | - | 32.7 | - | CB | [97] |
Nonprecious M–N–C | |||||||||
Fe-N−C | 0.1–0.4 | - | 3C MDC | ~49 W/m2 | 46–55 % | 73–83% | 39 ± 7% | - | [100] |
Graphene composite | |||||||||
MnO2/graphene | - | CC | 3-C MDC | 125 W/m2 | ~15.7 | ~85.1 | ~1.52 | CC | [30] |
CNF | |||||||||
Fe/CNF | - | CF | 3-C MDC | 13 A/m2 | 48.33 | 1.14 (kg/m3/d) | 13.11 | CF | [13] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayak, J.K.; Gautam, R.; Ghosh, U.K. Bioremediation Potential of Bacterial Consortium on Different Wastewaters for Electricity and Biomass Feedstock Generation. Biomass Convers. Biorefinery 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Zahid, M.; Savla, N.; Pandit, S.; Thakur, V.K.; Jung, S.P.; Gupta, P.K.; Prasad, R.; Marsili, E. Microbial Desalination Cell: Desalination through Conserving Energy. Desalination 2022, 521, 115381. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy Use for Membrane Seawater Desalination—Current Status and Trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy Consumption for Water Use Cycles in Different Countries: A Review. Appl. Energy 2016, 178, 868–885. [Google Scholar] [CrossRef]
- Shatat, M.; Riffat, S.B. Water Desalination Technologies Utilizing Conventional and Renewable Energy Sources. Int. J. Low-Carbon Technol. 2014, 9, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, H.; Deng, Y.; Zha, Y.; Abu-Reesh, I.M.; He, Z.; Yuan, C. Life Cycle Assessment of a Microbial Desalination Cell for Sustainable Wastewater Treatment and Saline Water Desalination. J. Clean. Prod. 2018, 200, 900–910. [Google Scholar] [CrossRef]
- Jacobson, K.S.; Drew, D.M.; He, Z. Bioresource Technology Efficient Salt Removal in a Continuously Operated Upflow Microbial Desalination Cell with an Air Cathode. Bioresour. Technol. 2011, 102, 376–380. [Google Scholar] [CrossRef]
- Al-mamun, A.; Ahmad, W.; Said, M.; Khadem, M. A Review of Microbial Desalination Cell Technology: Configurations, Optimization and Applications. J. Clean. Prod. 2018, 183, 458–480. [Google Scholar] [CrossRef]
- Al-Mamun, A. Effect of External Resistance on Microbial Electrochemical Desalination, Sewage Treatment, Power and Resource Recovery. Sustain. Energy Technol. Assess. 2022, 49, 101718. [Google Scholar] [CrossRef]
- Jafary, T.; Al-mamun, A.; Alhimali, H.; Said, M.; Rahman, S.; Tarpeh, W.A.; Ranjan, B.; Hong, B. Novel Two-Chamber Tubular Microbial Desalination Cell for Bioelectricity Production, Wastewater Treatment and Desalination with a Focus on Self- Generated PH Control. Desalination 2020, 481, 114358. [Google Scholar] [CrossRef]
- Jatoi, A.S.; Hashmi, Z.; Mazari, S.A.; Mubarak, N.M.; Karri, R.R.; Ramesh, S.; Rezakazemi, M. A Comprehensive Review of Microbial Desalination Cells for Present and Future Challenges. Desalination 2022, 535, 115808. [Google Scholar] [CrossRef]
- Aliaguilla, M.; Bossa, N.; Martinez-crespiera, S.; Huidobro, L.; Schweiss, R.; Schwenke, A.; Bosch-jimenez, P. Nanomaterials-Based Air-Cathodes Use in Microbial Desalination Cells for Drinking Water Production: Synthesis, Performance and Release Assessment. J. Environ. Chem. Eng. 2021, 9, 105779. [Google Scholar] [CrossRef]
- Rahman, S.; Jafary, T.; Al-Mamun, A.; Baawain, M.S.; Choudhury, M.R.; Alhaimali, H.; Siddiqi, S.A.; Dhar, B.R.; Sana, A.; Lam, S.S.; et al. Towards Upscaling Microbial Desalination Cell Technology: A Comprehensive Review on Current Challenges and Future Prospects. J. Clean. Prod. 2021, 288, 125597. [Google Scholar] [CrossRef]
- Al Hinai, A.; Jafary, T.; Alhimali, H.; Rahman, S.; Al-Mamun, A. Desalination and Acid-Base Recovery in a Novel Design of Microbial Desalination and Chemical Recovery Cell. Desalination 2022, 525, 115488. [Google Scholar] [CrossRef]
- Khazraee Zamanpour, M.; Kariminia, H.R.; Vosoughi, M. Electricity Generation, Desalination and Microalgae Cultivation in a Biocathode-Microbial Desalination Cell. J. Environ. Chem. Eng. 2017, 5, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Zhang, H.; Chen, Z.; Li, Y.; Nan, J.; Feng, Y. Bioresource Technology Using Bacterial Catalyst in the Cathode of Microbial Desalination Cell to Improve Wastewater Treatment and Desalination. Bioresour. Technol. 2012, 125, 108–113. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, Q.; An, Z.; Chen, Z.; Nan, J. Analysis of Long-Term Performance and Microbial Community Structure in Bio-Cathode Microbial Desalination Cells. Environ. Sci. Pollut. Res. 2016, 23, 5931–5940. [Google Scholar] [CrossRef]
- Mehanna, M.; Saito, T.; Yan, J.; Hickner, M.; Cao, X.; Huang, X.; Logan, B.E. Using Microbial Desalination Cells to Reduce Water Salinity Prior to Reverse Osmosis. Energy Environ. Sci. 2010, 3, 1114–1120. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, Z.; Chen, X.; Zhang, X.; Zuo, J.; Liang, P.; Huang, X. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell. Environ. Sci. Technol. 2016, 50, 7254–7262. [Google Scholar] [CrossRef]
- Rahman, S.; Siddiqi, S.A.; Al-Mamun, A.; Jafary, T. Sustainable Leachate Pre-Treatment Using Microbial Desalination Cell for Simultaneous Desalination and Energy Recovery. Desalination 2022, 532, 115708. [Google Scholar] [CrossRef]
- Saeed, H.M.; Husseini, G.A.; Yousef, S.; Saif, J.; Al-Asheh, S.; Abu Fara, A.; Azzam, S.; Khawaga, R.; Aidan, A. Microbial Desalination Cell Technology: A Review and a Case Study. Desalination 2015, 359, 1–13. [Google Scholar] [CrossRef]
- Sophia, A.C.; Bhalambaal, V.M.; Lima, E.C.; Thirunavoukkarasu, M. Journal of Environmental Chemical Engineering Microbial Desalination Cell Technology: Contribution to Sustainable Waste Water Treatment Process, Current Status and Future Applications. Biochem. Pharmacol. 2016, 4, 3468–3478. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Jafary, T.; Baawain, M.S.; Rahman, S.; Choudhury, M.R.; Tabatabaei, M.; Lam, S.S. Energy Recovery and Carbon/Nitrogen Removal from Sewage and Contaminated Groundwater in a Coupled Hydrolytic-Acidogenic Sequencing Batch Reactor and Denitrifying Biocathode Microbial Fuel Cell. Environ. Res. 2020, 183, 109273. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Baawain, M.S. Accumulation of Intermediate Denitrifying Compounds Inhibiting Biological Denitrification on Cathode in Microbial Fuel Cell. J. Environ. Health Sci. Eng. 2015, 13, 81. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Singh, S.; Kumar, P.; Pada, D.; Singh, B.; Akram, M.; Singh, S. Advancements in Spontaneous Microbial Desalination Technology for Sustainable Water Purification and Simultaneous Power Generation: A Review. J. Environ. Manag. 2021, 297, 113374. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Zakaria, B.S.; Al-Mamun, A.; Dhar, B.R. Anodic Performance of Microbial Electrolysis Cells in Response to Ammonia Nitrogen. J. Environ. Eng. Sci. 2018, 14, 37–43. [Google Scholar] [CrossRef]
- Guang, L.; Koomson, D.A.; Jingyu, H.; Ewusi-mensah, D. Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology. Int. J. Environ. Res. Public Health 2020, 17, 1121. [Google Scholar] [CrossRef] [Green Version]
- Venkata Mohan, S.; Velvizhi, G.; Annie Modestra, J.; Srikanth, S. Microbial Fuel Cell: Critical Factors Regulating Bio-Catalyzed Electrochemical Process and Recent Advancements. Renew. Sustain. Energy Rev. 2014, 40, 779–797. [Google Scholar] [CrossRef]
- Elawwad, A.; Ragab, M.; Hamdy, A.; Husein, D.Z. Enhancing the performance of microbial desalination cells using δMnO2/graphene nanocomposite as a cathode catalyst. J. Water Reuse Desalination 2020, 10, 214–226. [Google Scholar] [CrossRef]
- Schröder, U.; Santoro, C.; Gunda, M.; Zamora, P.; Ortiz, J.M.; Ramírez-Moreno, M.; Rodenas, P.; Aliaguilla, M.; Bosch-Jimenez, P.; Borràs, E.; et al. Comparative Performance of Microbial Desalination Cells Using Air Diffusion and Liquid Cathode Reactions: Study of the Salt Removal and Desalination Efficiency. Front. Energy Res. 2019, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Bosch-Jimenez, P.; Martinez-Crespiera, S.; Amantia, D.; Della Pirriera, M.; Forns, I.; Shechter, R.; Borràs, E. Non-Precious Metal Doped Carbon Nanofiber Air-Cathode for Microbial Fuel Cells Application: Oxygen Reduction Reaction Characterization and Long-Term Validation. Electrochim. Acta 2017, 228, 380–388. [Google Scholar] [CrossRef]
- Huang, J.; Ewusi-Mensah, D.; Norgbey, E. Microbial desalination cells technology: A review of the factors affecting the process, performance and efficiency. Desalination Water Treat. 2017, 87, 140–159. [Google Scholar] [CrossRef]
- Ziaedini, A.; Rashedi, H.; Alaie, E.; Zeinali, M. Performance Assessment of the Stacked Microbial Desalination Cells with Internally Parallel and Series Flow Configurations. J. Environ. Chem. Eng. 2018, 6, 5079–5086. [Google Scholar] [CrossRef]
- Morel, A.; Zuo, K.; Xia, X.; Wei, J.; Luo, X.; Liang, P.; Huang, X. Microbial Desalination Cells Packed with Ion-Exchange Resin to Enhance Water Desalination Rate. Bioresour. Technol. 2012, 118, 243–248. [Google Scholar] [CrossRef]
- Das, D. Microbial Fuel Cell: A Bioelectrochemical System That Converts Waste to Watts; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–506. [Google Scholar] [CrossRef]
- McGovern, R.K.; Weiner, A.M.; Sun, L.; Chambers, C.G.; Zubair, S.M.; Lienhard V, J.H. On the Cost of Electrodialysis for the Desalination of High Salinity Feeds. Appl. Energy 2014, 136, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Salman, H.H.; Ismail, Z.Z. Desalination of Actual Wetland Saline Water Associated with Biotreatment of Real Sewage and Bioenergy Production in Microbial Desalination Cell. Sep. Purif. Technol. 2020, 250, 117110. [Google Scholar] [CrossRef]
- Kokabian, B.; Gude, V.G. Sustainable Photosynthetic Biocathode in Microbial Desalination Cells. Chem. Eng. J. 2015, 262, 958–965. [Google Scholar] [CrossRef]
- Logan, B.E. Microbial Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Cao, X.; Huang, X.; Liang, P.; Xiao, K.; Zhou, Y.; Zhang, X.; Logan, B.E. A New Method for Water Desalination Using Microbial Desalination Cells. Environ. Sci. Technol. 2009, 43, 7148–7152. [Google Scholar] [CrossRef]
- Meng, F.; Jiang, J.; Zhao, Q.; Wang, K.; Zhang, G.; Fan, Q.; Wei, L.; Ding, J.; Zheng, Z. Bioelectrochemical Desalination and Electricity Generation in Microbial Desalination Cell with Dewatered Sludge as Fuel. Bioresour. Technol. 2014, 157, 120–126. [Google Scholar] [CrossRef]
- Casademont, C.; Farias, M.A.; Pourcelly, G.; Bazinet, L. Impact of Electrodialytic Parameters on Cation Migration Kinetics and Fouling Nature of Ion-Exchange Membranes during Treatment of Solutions with Different Magnesium/Calcium Ratios. J. Memb. Sci. 2008, 325, 570–579. [Google Scholar] [CrossRef]
- Chen, X.; Liang, P.; Zhang, X.; Huang, X. Bioelectrochemical Systems-Driven Directional Ion Transport Enables Low-Energy Water Desalination, Pollutant Removal, and Resource Recovery. Bioresour. Technol. 2016, 215, 274–284. [Google Scholar] [CrossRef]
- Kokabian, B.; Gude, V.G. Photosynthetic Microbial Desalination Cells (PMDCs) for Clean Energy, Water and Biomass Production. Environ. Sci. Process. Impacts 2013, 15, 2178–2185. [Google Scholar] [CrossRef]
- Walter, X.A.; Greenman, J.; Ieropoulos, I.A. Oxygenic Phototrophic Biofilms for Improved Cathode Performance in Microbial Fuel Cells. Algal Res. 2013, 2, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Logan, B.E. Microbial Desalination Cells for Energy Production and Desalination. Desalination 2013, 308, 122–130. [Google Scholar] [CrossRef]
- Zuo, K.; Liu, F.; Ren, S.; Zhang, X.; Liang, P.; Huang, X. A Novel Multi-Stage Microbial Desalination Cell for Simultaneous Desalination and Enhanced Organics and Nitrogen Removal from Domestic Wastewater. Environ. Sci. Water Res. Technol. 2016, 2, 832–837. [Google Scholar] [CrossRef]
- Jafary, T.; Daud, W.R.W.; Ghasemi, M.; Kim, B.H.; Bakar, M.H.A.; Jahim, J.M.; Ismail, M.; Satar, I.; Kamaruzzaman, M.A. Assessment of Recirculation Batch Mode of Operation in Bioelectrochemical System; a Way Forward for Cleaner Production of Energy and Waste Treatment. J. Clean. Prod. 2017, 142, 2544–2555. [Google Scholar] [CrossRef]
- Jafary, T.; Al-mamun, A.; Alhimali, H.; Said, M. Enhanced Power Generation and Desalination Rate in a Novel Quadruple Microbial Desalination Cell with a Single Desalination Chamber. Renew. Sustain. Energy Rev. 2020, 127, 109855. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, A.; Cui, T.; Zhang, J.; Yu, H.; Han, W.; Shen, J.; Li, J.; Sun, X.; Wang, L. Construction and Application of a 1-Liter Upflow-Stacked Microbial Desalination Cell. Chemosphere 2020, 248, 126028. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.; Liang, P.; Cao, X.; Sun, H.; Huang, X. Stacked Microbial Desalination Cells to Enhance Water Desalination Efficiency. Environ. Sci. Technol. 2011, 45, 2465–2470. [Google Scholar] [CrossRef]
- Luo, H.; Xu, P.; Roane, T.M.; Jenkins, P.E.; Ren, Z. Microbial Desalination Cells for Improved Performance in Wastewater Treatment, Electricity Production, and Desalination. Bioresour. Technol. 2012, 105, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational Parameters Affecting the Performannce of a Mediator-Less Microbial Fuel Cell. Biosens. Bioelectron. 2003, 18, 327–334. [Google Scholar] [CrossRef]
- Ping, Q.; Cohen, B.; Dosoretz, C.; He, Z. Long-Term Investigation of Fouling of Cation and Anion Exchange Membranes in Microbial Desalination Cells. Desalination 2013, 325, 48–55. [Google Scholar] [CrossRef]
- Alhimali, H.; Jafary, T.; Al-mamun, A.; Baawain, M.S.; Vakili-nezhaad, G.R. New Insights into the Application of Microbial Desalination Cells for Desalination and Bioelectricity Generation. Biofuel Res. J. 2019, 24, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Santoro, C.; Guilizzoni, M.; Correa Baena, J.P.; Pasaogullari, U.; Casalegno, A.; Li, B.; Babanova, S.; Artyushkova, K.; Atanassov, P. The Effects of Carbon Electrode Surface Properties on Bacteria Attachment and Start up Time of Microbial Fuel Cells. Carbon N. Y. 2014, 67, 128–139. [Google Scholar] [CrossRef]
- Aidan, A.; Husseini, G.A.; Yemendzhiev, H.; Nenov, V.; Rasheed, A.; Chekkath, H.; Al-Assaf, Y. Microbial Desalination Cell (MDC) in the Presence of Activated Carbon. Adv. Sci. Eng. Med. 2014, 6, 1100–1104. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Zuo, K.; Luo, S.; Zhang, X.; Liang, P.; Huang, X. A Novel Operational Strategy to Enhance Wastewater Treatment with Dual-Anode Assembled Microbial Desalination Cell. Bioelectrochemistry 2019, 126, 99–104. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Yousefi Kebria, D.; Najafpour, G.D. Co-Treatment of Septage and Municipal Wastewater in a Quadripartite Microbial Desalination Cell. Chem. Eng. J. 2018, 354, 1092–1099. [Google Scholar] [CrossRef]
- Heard, D.M.; Lennox, A.J.J. Electrode Materials in Modern Organic Electrochemistry. Angew. Chemie Int. Ed. 2020, 59, 18866–18884. [Google Scholar] [CrossRef]
- Khilari, S.; Pradhan, D. Role of Cathode Catalyst in Microbial Fuel Cell. In Microbial Fuel Cell: A Bioelectrochemical System That Converts Waste to Watts; Springer: Cham, Switzerland, 2018; pp. 141–163. [Google Scholar] [CrossRef]
- Pradhan, H.; Ghangrekar, M.M. Effect of Cathodic Electron Acceptors on the Performance of Microbial Desalination Cell. In Waste Water Recycling and Management; Springer: Singapore, 2019; pp. 305–315. [Google Scholar] [CrossRef]
- Rismani-Yazdi, H.; Carver, S.M.; Christy, A.D.; Tuovinen, O.H. Cathodic Limitations in Microbial Fuel Cells: An Overview. J. Power Sources 2008, 180, 683–694. [Google Scholar] [CrossRef]
- Bajracharya, S.; ElMekawy, A.; Srikanth, S.; Pant, D. Cathodes for Microbial Fuel Cells. In Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 179–213. ISBN 9781782423966. [Google Scholar]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.-H.; Wilcox, J. Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles. J. Phys. Chem. C 2012, 116, 3653–3660. [Google Scholar] [CrossRef] [Green Version]
- Santoro, C.; Serov, A.; Artyushkova, K.; Atanassov, P. Platinum Group Metal-Free Oxygen Reduction Electrocatalysts Used in Neutral Electrolytes for Bioelectrochemical Reactor Applications. Curr. Opin. Electrochem. 2020, 2020, 106–113. [Google Scholar] [CrossRef]
- Benisti, I.; Shaik, F.; Xing, Z.; Ben-refael, A.; Amirav, L.; Paz, Y. The Effect of Pt Cocatalyst on the Performance and Transient IR Spectrum of Photocatalytic G-C3N4 Nanospheres. Appl. Surf. Sci. 2021, 542, 148432. [Google Scholar] [CrossRef]
- Logan, B.E.; Murano, C.; Scott, K.; Gray, N.D.; Head, I.M. Electricity Generation from Cysteine in a Microbial Fuel Cell. Water Res. 2005, 39, 942–952. [Google Scholar] [CrossRef]
- Mehanna, M.; Kiely, P.D.; Call, D.F.; Logan, B.E. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production. Environ. Sci. Technol. 2010, 44, 9578–9583. [Google Scholar] [CrossRef]
- Qu, Y.; Feng, Y.; Wang, X.; Liu, J.; Lv, J.; He, W.; Logan, B.E. Simultaneous Water Desalination and Electricity Generation in a Microbial Desalination Cell with Electrolyte Recirculation for PH Control. Bioresour. Technol. 2012, 106, 89–94. [Google Scholar] [CrossRef]
- Rahman, S.; Al-Mamun, A.; Jafary, T.; Alhimali, H.; Baawain, M.S. Effect of Internal and External Resistances on Desalination in Microbial Desalination Cell. Water Sci. Technol. 2021, 83, 2389–2403. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells. Environ. Sci. Technol. 2005, 40, 364–369. [Google Scholar] [CrossRef]
- Maskarenj, M.; Maskarenj, M.S.; Goenka, R.; Ghosh, P.C. An Assessment on the Impacts of the Integration of Photovoltaic Power Generations on the Reliability of Distribution Networks, 2015.
- Bhowmick, G.D.; Noori, T.; Das, I.; Neethu, B.; Ghangrekar, M.M.; Mitra, A. ScienceDirect Bismuth Doped TiO2 as an Excellent Photocathode Catalyst to Enhance the Performance of Microbial Fuel Cell. Int. J. Hydrog. Energy 2018, 43, 7501–7510. [Google Scholar] [CrossRef]
- Zhang, F.; He, Z. Scaling up Microbial Desalination Cell System with a Post-Aerobic Process for Simultaneous Wastewater Treatment and Seawater Desalination. Desalination 2015, 360, 28–34. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Physical and Chemical Characteristics of Activated Carbon Prepared by Pyrolysis of Chemically Treated Date Stones and Its Ability to Adsorb Organics. Powder Technol. 2012, 229, 237–245. [Google Scholar] [CrossRef]
- Santoro, C.; Abad, F.B.; Serov, A.; Kodali, M.; Howe, K.J.; Soavi, F.; Atanassov, P. Supercapacitive Microbial Desalination Cells: New Class of Power Generating Devices for Reduction of Salinity Content. Appl. Energy 2017, 208, 25–36. [Google Scholar] [CrossRef]
- Moruno, F.L.; Rubio, J.E.; Atanassov, P.; Cerrato, J.M.; Arges, C.G.; Santoro, C. Microbial Desalination Cell with Sulfonated Sodium Poly(Ether Ether Ketone) as Cation Exchange Membranes for Enhancing Power Generation and Salt Reduction. Bioelectrochemistry 2018, 121, 176–184. [Google Scholar] [CrossRef]
- Moruno, F.L.; Rubio, J.E.; Santoro, C.; Atanassov, P.; Cerrato, J.M.; Arges, C.G. Investigation of Patterned and Non-Patterned Poly(2,6-Dimethyl 1,4-Phenylene) Oxide Based Anion Exchange Membranes for Enhanced Desalination and Power Generation in a Microbial Desalination Cell. Solid State Ionics 2018, 314, 141–148. [Google Scholar] [CrossRef]
- Kim, Y.; Logan, B.E. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination. Environ. Sci. Technol. 2011, 45, 5840–5845. [Google Scholar] [CrossRef]
- Luo, H.; Xu, P.; Jenkins, P.E.; Ren, Z. Ionic Composition and Transport Mechanisms in Microbial Desalination Cells. J. Memb. Sci. 2012, 409–410, 16–23. [Google Scholar] [CrossRef]
- Chen, X.; Liang, P.; Wei, Z.; Zhang, X.; Huang, X. Sustainable Water Desalination and Electricity Generation in a Separator Coupled Stacked Microbial Desalination Cell with Buffer Free Electrolyte Circulation. Bioresour. Technol. 2012, 119, 88–93. [Google Scholar] [CrossRef]
- Davis, R.J.; Kim, Y.; Logan, B.E. Increasing Desalination by Mitigating Anolyte PH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell. ACS Sustain. Chem. Eng. 2013, 1, 1200–1206. [Google Scholar] [CrossRef]
- Qu, Y.; Feng, Y.; Liu, J.; He, W.; Shi, X.; Yang, Q.; Lv, J.; Logan, B.E. Salt Removal Using Multiple Microbial Desalination Cells under Continuous Flow Conditions. Desalination 2013, 317, 17–22. [Google Scholar] [CrossRef]
- Shehab, N.A.; Logan, B.E.; Amy, G.L.; Saikaly, P.E. Microbial Electrodeionization Cell Stack for Sustainable Desalination, Wastewater Treatment and Energy Recovery. In Proceedings of the 86th Annual Water Environment Federation Technical Exhibition and Conference (WEFTEC 2013), Chicago, IL, USA, 5–9 October 2013; Volume 1, pp. 222–227. [Google Scholar] [CrossRef]
- Shehab, N.A.; Amy, G.L.; Logan, B.E.; Saikaly, P.E. Enhanced Water Desalination Efficiency in an Air-Cathode Stacked Microbial Electrodeionization Cell (SMEDIC). J. Memb. Sci. 2014, 469, 364–370. [Google Scholar] [CrossRef]
- Jacobson, K.S.; Drew, D.M.; He, Z. Use of a Liter-Scale Microbial Desalination Cell As a Platform to Study Bioelectrochemical Desalination with Salt Solution or Artificial Seawater. Environ. Sci. Technol. 2011, 45, 4652–4657. [Google Scholar] [CrossRef] [PubMed]
- Forrestal, C.; Xu, P.; Ren, Z. Sustainable Desalination Using a Microbial Capacitive Desalination Cell. Energy Environ. Sci. 2012, 5, 7161–7167. [Google Scholar] [CrossRef]
- Ping, Q.; Zhang, C.; Chen, X.; Zhang, B.; Huang, Z.; He, Z. Mathematical Model of Dynamic Behavior of Microbial Desalination Cells for Simultaneous Wastewater Treatment and Water Desalination. Environ. Sci. Technol. 2014, 48, 13010–13019. [Google Scholar] [CrossRef]
- Ping, Q.; Abu-Reesh, I.M.; He, Z. Boron Removal from Saline Water by a Microbial Desalination Cell Integrated with Donnan Dialysis. Desalination 2015, 376, 55–61. [Google Scholar] [CrossRef]
- Yuan, H.; Abu-Reesh, I.M.; He, Z. Mathematical Modeling Assisted Investigation of Forward Osmosis as Pretreatment for Microbial Desalination Cells to Achieve Continuous Water Desalination and Wastewater Treatment. J. Memb. Sci. 2016, 502, 116–123. [Google Scholar] [CrossRef]
- Stoll, Z.A.; Forrestal, C.; Ren, Z.J.; Xu, P. Shale Gas Produced Water Treatment Using Innovative Microbial Capacitive Desalination Cell. J. Hazard. Mater. 2015, 283, 847–855. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, S.; Abu-Reesh, I.M.; Badgley, B.D.; He, Z. Unravelling and Reconstructing the Nexus of Salinity, Electricity, and Microbial Ecology for Bioelectrochemical Desalination. Environ. Sci. Technol. 2017, 51, 12672–12682. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, K.; Zhang, D.; Zhang, L.; Huang, Y. Treatment and Nutrient Recovery of Synthetic Flowback Water from Shale Gas Extraction by Air-Cathode (PMo/CB) Microbial Desalination Cells. J. Chem. Technol. Biotechnol. 2021, 96, 262–272. [Google Scholar] [CrossRef]
- Anusha, G.; Noori, M.T.; Ghangrekar, M.M. Application of Silver-Tin Dioxide Composite Cathode Catalyst for Enhancing Performance of Microbial Desalination Cell. Mater. Sci. Energy Technol. 2018, 1, 188–195. [Google Scholar] [CrossRef]
- Ye, B.; Luo, H.; Lu, Y.; Liu, G.; Zhang, R.; Li, X. Improved Performance of the Microbial Electrolysis Desalination and Chemical-Production Cell with Enlarged Anode and High Applied Voltages. Bioresour. Technol. 2017, 244, 913–919. [Google Scholar] [CrossRef]
- Santoro, C.; Talarposhti, M.R.; Kodali, M.; Gokhale, R.; Serov, A.; Merino-Jimenez, I.; Ieropoulos, I.; Atanassov, P. Microbial Desalination Cells with Efficient Platinum-Group-Metal-Free Cathode Catalysts. ChemElectroChem 2017, 4, 3322–3330. [Google Scholar] [CrossRef]
- Han, X.; Qu, Y.; Li, D.; Qiu, Y.; Yu, Y.; Feng, Y. Remediation of Saline-Sodic Soil by Plant Microbial Desalination Cell. Chemosphere 2021, 277, 130275. [Google Scholar] [CrossRef]
- Tajdid, R.; Aber, S.; Nofouzi, K. Efficient Improvement of Microbial Fuel Cell Performance by the Modification of Graphite Cathode via Electrophoretic Deposition of CuO/ZnO. Mater. Chem. Phys. 2020, 240, 122208. [Google Scholar] [CrossRef]
- Han, H.X.; Shi, C.; Yuan, L.; Sheng, G.P. Enhancement of Methyl Orange Degradation and Power Generation in a Photoelectrocatalytic Microbial Fuel Cell. Appl. Energy 2017, 204, 382–389. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, H.; Shen, D.; Li, N.; Long, Y.; Zhou, Y.; Gu, Y.; Ying, X.; Dai, Q. A High-Performance Photo-Microbial Desalination Cell. Electrochim. Acta 2016, 202, 197–202. [Google Scholar] [CrossRef]
Performance Indicator | Remarks | Mathematical Expression | References |
---|---|---|---|
Desalination Efficiency (DE) | Reduction percentage in saltwater’s conductivity. | [34] | |
Desalination Rate (TDR) | Amount of salt removed per unit of time. | [35] | |
COD Removal | The amount of organic matter removed via microbial metabolism. | [36] | |
Current Efficiency | The ratio of produced current to the chamber’s working volume or the number of ions separated per electron transferred at both electrodes. | [37] | |
Power Density | Power generation in a cell-based on the projected surface area of electrodes or electrolytes volume. | [38] | |
Coulombic Efficiency | The ratio of actual charge produced to the available charge is theoretically calculated based on the reduction in COD. | [39,40] | |
Ion-exchange Efficiency | The exchange efficiency of IEMs to allow the number of produced ions by anodic and cathodic reaction in MDC | - | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juma Al Balushi, N.; Nayak, J.K.; Rahman, S.; Sana, A.; Al-Mamun, A. A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review. Energies 2022, 15, 7459. https://doi.org/10.3390/en15207459
Juma Al Balushi N, Nayak JK, Rahman S, Sana A, Al-Mamun A. A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review. Energies. 2022; 15(20):7459. https://doi.org/10.3390/en15207459
Chicago/Turabian StyleJuma Al Balushi, Noor, Jagdeep Kumar Nayak, Sadik Rahman, Ahmad Sana, and Abdullah Al-Mamun. 2022. "A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review" Energies 15, no. 20: 7459. https://doi.org/10.3390/en15207459
APA StyleJuma Al Balushi, N., Nayak, J. K., Rahman, S., Sana, A., & Al-Mamun, A. (2022). A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review. Energies, 15(20), 7459. https://doi.org/10.3390/en15207459