Influence-Based Consequence Assessment of Subsea Pipeline Failure under Stochastic Degradation
Abstract
:1. Introduction
2. Overview of Subsea Component under Stochastic Degradation
3. Consequence Assessment Approach and Application
4. Results and Discussions
5. Conclusions
- The proposed model structure is adaptive, able to explore the unstable characteristics of the corrosion propagation on the failure state of the pipeline
- The model captures the interaction among the microbial and under-deposit corrosion mechanisms that have explored the likelihood of leak failure and its influence on the consequences.
- The expected utility decision theory reliably predicted the economic costs of failure given different degrees of interactions among the influential factors.
- The result shows that at the 87% likelihood of leak failure, the expected utility gives and . This accounted for moderate oil spills with environmental consequences
- At 100% leak failure, the economic loss due to natural resources damage and restoration, cleaning up, and loss of reputation increases by 9.1%. This represents a catastrophic oil spill with devastating impacts on the marine ecosystem and species conservation.
- The current approach offers a hands-on consequence-based prediction tool for integrity management considering stochastic degradation in harsh offshore environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albu, M.; Panzirsch, B.; Schröttner, H.; Mitsche, S.; Reichmann, K.; Poletti, M.C.; Kothleitner, G. High-resolution microstructure characterization of additively manufactured x5crnicunb17-4 maraging steel during ex and in situ thermal treatment. Materials 2021, 14, 7784. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.; Opila, R.; Boyd, I.; Kaufmann, E. Materials characterization and the evolution of materials. MRS Bull. 2015, 40, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Shifler, D.A. Understanding material interactions in marine environments to promote extended structural life. Corros. Sci. 2005, 47, 2335–2352. [Google Scholar] [CrossRef]
- Adumene, S.; Ikue-John, H. Offshore systems’ safety and operational challenges in harsh Arctic operations. J. Saf. Sci. Resil. 2022, 3, 153–168. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.A.; Mazumder, M.A.J.; Ali, S.A.; Aljeaban, N.A.; Alharbi, B.G. Design and synthesis of a novel corrosion inhibitor embedded with quaternary ammonium, amide and amine motifs for protection of carbon steel in 1 M HCl. J. Mol. Liq. 2020, 317, 113917. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Enhancing corrosion resistance and hardness properties of carbon steel through modification of microstructure. Materials 2018, 11, 2404. [Google Scholar] [CrossRef] [Green Version]
- Adumene, S.; Khan, F.; Adedigba, S.; Zendehboudi, S. Offshore system safety and reliability considering microbial influenced multiple failure modes and their interdependencies. Reliab. Eng. Syst. Saf. 2021, 215, 107862. [Google Scholar] [CrossRef]
- Kadwa, U. A Study on Biofilm Formation in Pipelines (Issue March). Master’s Thesis, University of KwaZulu-Natal, Durban, South Africa, 2015. [Google Scholar]
- Machuca, L.L. Microbiologically influenced corrosion: A review focused on hydrotest fluids in subsea pipelines. Corros. Prev. 2014, 117. [Google Scholar]
- Chang, Y.-C.; Woollam, R.C.; Orazem, M. Mathematical Models for Under-Deposit Corrosion. J. Electrochem. Soc. 2014, 161, C321–C329. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, C.C.C.R. Marine Biofilms: A Successful Microbial Strategy With Economic Implications. Front. Mar. Sci. 2018, 5, 126. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Melchers, R.E. Long-term under-deposit pitting corrosion of carbon steel pipes. Ocean Eng. 2017, 133, 231–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, H.; Lin, W.; Song, Y.; Ge, F.; Huang, X.; Meng, X. Effect of different disinfection treatments on the adhesion and separation of biofilm on stainless steel surface. Water Sci. Technol. 2021, 83, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk, M.; Pogorzelski, S.J.; Pospiech, A.; Boniewicz-Szmyt, K. Monitoring of marine biofilm formation dynamics at submerged solid surfaces with multitechnique sensors. Front. Mar. Sci. 2018, 5, 363. [Google Scholar] [CrossRef]
- Absolom, D.R.; Lamberti, F.V.; Policova, Z.; Zingg, W.; van Oss, C.J.; Neumann, A.W. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 1983, 46, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.T.T.; Kannoorpatti, K.; Padovan, A.; Thennadil, S. A study of bacteria adhesion and microbial corrosion on different stainless steels in environment containing Desulfovibrio vulgaris. R. Soc. Open Sci. 2021, 8, 201577. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Mechanistic Study of Under Deposit Corrosion of Mild Steel in Aqueous Carbon Dioxide Solution; Ohio University: Athens, OH, USA, 2013; Issue December. [Google Scholar] [CrossRef] [Green Version]
- Adumene, S.; Khan, F.; Adedigba, S.; Zendehboudi, S.; Shiri, H. Offshore pipeline integrity assessment considering material and parametric uncertainty. J. Pipeline Sci. Eng. 2021, 1, 265–276. [Google Scholar] [CrossRef]
- Huang, R.T.; McFarland, B.L.; Hodgman, R.Z. Microbial Influenced Corrosion in Cargo Oil Tanks of Crude Oil Tankers. NACE Int. Corros. Conf. 1997, 535. [Google Scholar]
- Liu, H.; Cheng, Y.F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions. Corros. Sci. 2018, 133, 178–189. [Google Scholar] [CrossRef]
- Marciales, A.; Peralta, Y.; Haile, T.; Crosby, T.; Wolodko, J. Mechanistic microbiologically influenced corrosion modeling—A review. Corros. Sci. 2019, 146, 99–111. [Google Scholar] [CrossRef]
- Adumene, S.; Adedigba, S.; Khan, F.; Zendehboudi, S. An integrated dynamic failure assessment model for offshore components under microbiologically influenced corrosion. Ocean Eng. 2020, 218, 108082. [Google Scholar] [CrossRef]
- Behari, N.; Sheriff, M.Z.; Rahman, M.A.; Nounou, M.; Hassan, I.; Nounou, H. Chronic leak detection for single and multiphase flow: A critical review on onshore and offshore subsea and arctic conditions. J. Nat. Gas Sci. Eng. 2020, 81, 103460. [Google Scholar] [CrossRef]
- Taleb-Berrouane, M.; Khan, F.; Hawboldt, K.; Eckert, R.; Skovhus, T.L. Model for microbiologically influenced corrosion potential assessment for the oil and gas industry. Corros. Eng. Sci. Technol. 2018, 53, 378–392. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Aldemir, T.; Denning, R. Multi-state Markov modeling of pitting corrosion in stainless steel exposed to chloride-containing environment. Reliab. Eng. Syst. Saf. 2018, 172, 239–248. [Google Scholar] [CrossRef]
- Yazdi, M.; Khan, F.; Abbassi, R. Microbiologically influenced corrosion (MIC) management using Bayesian inference. Ocean Eng. 2021, 226, 108852. [Google Scholar] [CrossRef]
- Adumene, S.; Nwaoha, T.C. Dynamic cost-based integrity assessment of oil and gas pipeline suffering microbial induced stochastic degradation. J. Nat. Gas Sci. Eng. 2021, 96, 104319. [Google Scholar] [CrossRef]
- Fenton, N.; Neil, M. Risk Assessment and Decision Analysis with Bayesian Networks, 1st ed.; Taylor & Francis Group: London, UK, 2012. [Google Scholar]
- Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- de Andreis, F. A Theoretical Approach to the Effective Decision-Making Process. Open J. Appl. Sci. 2020, 10, 287–304. [Google Scholar] [CrossRef]
- Robison, L.J.; Shupp, R.S.; Myers, R.J. Expected utility paradoxes. J. Socio-Econ. 2010, 39, 187–193. [Google Scholar] [CrossRef]
- Okoro, C.; Ekun, O.A.; Nwume, M.I.; Lin, J. Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis. Corros. Sci. 2016, 103, 242–254. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Katarki, M.V.; Cherian, V. Failure analysis of a 30-in subsea oil pipeline. Mater. Perform. 2008, 47, 52–56. [Google Scholar]
- Heredia-Zavoni, E.; Montes-Iturrizaga, R.; Faber, M.H.; Straub, D. Risk assessment for structural design criteria of FPSO systems. Part II: Consequence models and applications to determination of target reliabilities. Mar. Struct. 2012, 28, 50–66. [Google Scholar] [CrossRef]
- Kaiser, M.J. Offshore pipeline construction cost in the U.S. Gulf of Mexico. Mar. Policy 2017, 82, 147–166. [Google Scholar] [CrossRef]
- Richardson, R.; Brugnone, N. Oil Spill Economics: Estimates of the Economic Damages of an Oil Spill in the Straits of Mackinac in Michigan; Michigan State University: East Lansing, MI, USA, 2018; Issue May; Available online: https://flowforwater.org/wp-content/uploads/2018/05/FLOW_Report_Line-5_Final-release-1.pdf (accessed on 18 June 2022).
Corrosion State | State of Degradation | Failure State Probability | Consequence States | ||||||
---|---|---|---|---|---|---|---|---|---|
Type | Probability | High | Moderate | Low | Leak | NoLeak | Production Loss/Repair Cost (USD) | Compensation and Loss of Reputation Cost (USD) | Environmental Impacts (USD) |
Microbial | 0.899 | ||||||||
0.796 | 0.111 | 0.093 | 0.866 | 0.134 | 1.64 × 107 | 1.19 × 105 | 9.38 × 107 | ||
Under-deposit | 0.701 | ||||||||
Microbial | 1 | ||||||||
0.837 | 0.109 | 0.037 | 0.937 | 0.063 | 1.74 × 107 | 1.22 × 105 | 1.01 × 108 | ||
Under-deposit | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adumene, S.; Islam, R.; Dick, I.F.; Zarei, E.; Inegiyemiema, M.; Yang, M. Influence-Based Consequence Assessment of Subsea Pipeline Failure under Stochastic Degradation. Energies 2022, 15, 7460. https://doi.org/10.3390/en15207460
Adumene S, Islam R, Dick IF, Zarei E, Inegiyemiema M, Yang M. Influence-Based Consequence Assessment of Subsea Pipeline Failure under Stochastic Degradation. Energies. 2022; 15(20):7460. https://doi.org/10.3390/en15207460
Chicago/Turabian StyleAdumene, Sidum, Rabiul Islam, Ibitoru Festus Dick, Esmaeil Zarei, Morrison Inegiyemiema, and Ming Yang. 2022. "Influence-Based Consequence Assessment of Subsea Pipeline Failure under Stochastic Degradation" Energies 15, no. 20: 7460. https://doi.org/10.3390/en15207460
APA StyleAdumene, S., Islam, R., Dick, I. F., Zarei, E., Inegiyemiema, M., & Yang, M. (2022). Influence-Based Consequence Assessment of Subsea Pipeline Failure under Stochastic Degradation. Energies, 15(20), 7460. https://doi.org/10.3390/en15207460