The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Inputs and Outputs
2.2. Sun Position Calculations
2.3. PV Power and Thermal Analysis
2.4. Model Validation
2.5. Optimization
3. Results
3.1. Seasonal Weather Variation
3.2. PV Power and Optimal Tilt Angle
3.3. Regional Comparison
4. Discussion
4.1. Seasonal Variation in Daylight Hours
4.2. Winter Cloud Cover
4.3. Summer Ambient Temperature
5. Conclusions
- The optimal tilt angle for any given location is almost never equal to the latitude, and in most cases it tilts to favor collection during the summer months.
- In the continental United States of America, latitude alone does not determine the optimal tilt angle of PV panels, but cloud cover, sunlight hours and ambient temperature play a role as well in the optimal tilt selection.
- The increase in cloud cover during the winter results in a shift for tilt angles to favor collection during the summer.
- Hot summer weather, especially in southern states, decreases panel efficiency and shifts tilt angles to favor collection in the winter.
- The increase in daylight hours during summer months has a significant influence, causing nearly all counties to tilt at an angle favoring collection in the summer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Sims, R.E.H. Renewable energy: A response to climate change. Sol. Energy 2004, 76, 9–17. [Google Scholar] [CrossRef]
- Breyer, C.; Schmid, J. Global Distribution of Optimal Tilt Angles. In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition and 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 6–10 September 2010; Volume 49, pp. 4715–4721. [Google Scholar]
- Abdeen, E.; Orabi, M.; Hasaneen, E.S. Optimum tilt angle for photovoltaic system in desert environment. Sol. Energy 2017, 155, 267–280. [Google Scholar] [CrossRef]
- Bonkaney, A.L.; Madougou, S.; Adamou, R. Impact of Climatic Parameters on the Performance of Solar Photovoltaic (PV) Module in Niamey. Smart Grid Renew. Energy 2015, 8, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, C.; Petitta, M.; Wagner, J.E.; Belluardo, G.; Moser, D.; Castelli, M.; Zebisch, M.; Tetzlaff, A. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 2013, 40, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.P.; Lim, H.; Song, J.H.; Chang, Y.J.; Jeon, C.H. Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation. Sol. Energy Mater. Sol. Cells 2010, 95, 404–407. [Google Scholar] [CrossRef]
- Brinsfield, R.; Yaramanoglu, M.; Wheaton, F. Ground level solar radiation prediction model including cloud cover effects. Sol. Energy 1984, 33, 493–499. [Google Scholar] [CrossRef]
- Kankiewicz, A. Observed impcats of transient clouds on utility-scale PV fields. In Proceedings of the ASES National Solar Conference, Phoenix, AZ, USA, 17–22 May 2010. [Google Scholar]
- Smith, C.J.; Forster, P.M.; Crook, R. An all-sky radiative transfer method to predict optimal tilt and azimuth angle of a solar collector. Sol. Energy 2016, 123, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Appelbaum, J.; Aronescu, A. The effect of sky diffuse radiation on photovoltaic fields. J. Renew. Sustain. Energy 2018, 10, 033505. [Google Scholar] [CrossRef]
- Rosenthal, A.L.; Czanderna, A.W.; Pern, F.J.; Czandemat, A.W.; Pem, F.J. Performance losses in rooftop-mounted PV modules from long-term environmental exposure at Las Cruces, New Mexico. AIP Conf. Proc. 1999, 462, 655. [Google Scholar]
- Dey, S.; Lakshmanan, M.K.; Pesala, B. Optimal solar tree design for increased flexibility in seasonal energy extraction. Renew. Energy 2018, 125, 1038–1048. [Google Scholar] [CrossRef]
- Chang, Y.P.; Yang, L.D. Optimal tilt angle for PV modules considering the uncertainty of temperature and solar radiation. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012. [Google Scholar]
- Ekpenyong, A.I.; Umoren, A.M.; Markson, I. Development of Winter Season Optimal Tilt Angle Model for Fixed Tilted Plane PV Installation in Akwa Ibom State, Nigeria. Math. Softw. Eng. 2017, 3, 67–77. [Google Scholar]
- Shu, N.; Kameda, N.; Kishida, Y.; Sonoda, H. Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels. J. Asian Archit. Build. Eng. 2006, 5, 399–405. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Wright, D. Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia. Renew. Energy 2018, 133, 538–550. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. On the monthly optimum tilt angle of solar panel for five sites in Malaysia. In Proceedings of the 2012 IEEE International Power Engineering and Optimization Conference, Melaka, Malaysia, 6–7 June 2012; pp. 7–10. [Google Scholar]
- Kacira, M.; Simsek, M.; Babur, Y.; Demirkol, S. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew. Energy 2004, 29, 1265–1275. [Google Scholar] [CrossRef]
- Rowlands, I.H.; Kemery, B.P.; Beausoleil-Morrison, I. Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study. Energy Policy 2011, 39, 1397–1409. [Google Scholar] [CrossRef]
- Ullah, A.; Imran, H.; Maqsood, Z.; Butt, N.Z. Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan. Renew. Energy 2019, 139, 830–843. [Google Scholar] [CrossRef]
- Dobos, A.P. PVWatts Version 5 Manual; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2014. [Google Scholar]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef] [Green Version]
- De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and validation of a model for photovoltaic array performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Fuentes, M.K. A Simplified Thermal Model for Flat-Plate Photovoltaic Arrays; SAND-85-03; Sandia National Laboratories: Albuquerque, NM, USA, 1987. [Google Scholar]
- Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A.P. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report; Nrel/Tp-6a20-60204; National Renewable Energy Laboratory: Golden, CO, USA, 2013; p. 129. [Google Scholar]
- Lave, M.; Kleissl, J. Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States. Renew. Energy 2011, 36, 1145–1152. [Google Scholar] [CrossRef]
Input Parameter | Definition or Options | Value Used |
---|---|---|
System Capacity | System nameplate capacity in kW | 5 kW |
Module Type | 0—Standard, 1—Premium, 2—Thin Film | 0—Standard |
System Losses | Generate derate factor in percent | 10% |
Array Type | Fixed: 1—open rack, 2—roof mounted | 1 and 2 |
Tilt | Array tilt angle in degrees | 0–90° |
Azimuth | Array compass direction in degrees | 180° |
Latitude/Longitude | Location coordinates | Based on location |
Timeframe | Hourly/Monthly | Monthly |
Dataset | Weather data options include: NSRDB, TMY2, TMY3, INTL | TMY3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhamer, E.; Grigsby, A.; Mulford, R. The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States. Energies 2022, 15, 7516. https://doi.org/10.3390/en15207516
Alhamer E, Grigsby A, Mulford R. The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States. Energies. 2022; 15(20):7516. https://doi.org/10.3390/en15207516
Chicago/Turabian StyleAlhamer, Essa, Addison Grigsby, and Rydge Mulford. 2022. "The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States" Energies 15, no. 20: 7516. https://doi.org/10.3390/en15207516
APA StyleAlhamer, E., Grigsby, A., & Mulford, R. (2022). The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States. Energies, 15(20), 7516. https://doi.org/10.3390/en15207516