The Integration of Traditional Transportation Infrastructure and Informatization Development: How Does It Affect Carbon Emissions?
Abstract
:1. Introduction
2. Literature Review
2.1. Traditional Transportation Infrastructure and Carbon Emissions
2.2. Informatization Development and Carbon Emissions
3. Materials and Methods
3.1. Theoretical Mechanism
- (1)
- Energy intensity
- (2)
- Industrial structure
- (3)
- Technological innovation
3.2. Specific Methodologies
- (1)
- The coupling coordination degree model
- (2)
- The regression models
3.3. Variable Selection and Data
4. Evolutionary Characteristics of Integrated Infrastructure
4.1. The Evolutionary Trend of Integrated Infrastructure and the Two Subsystems
4.2. The Spatial Distribution of Integrated Infrastructure and the Two Subsystems
5. The Impact of Integrated Infrastructure on Carbon Emissions
5.1. The Results of the Baseline Model
5.2. Robustness Checks
5.3. Further Analysis
6. Discussion
7. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Development and Reform Commission. The Definition of the “New Infrastructure”. Available online: http://www.mofcom.gov.cn/article/i/jyjl/e/202004/20200402957398.shtml (accessed on 9 September 2022).
- Qiao, L.; Li, L.; Fei, J. Can “new infrastructure” reverse the “growth with pollution” profit growth pattern? An empirical analysis based on listed companies in China. Environ. Sci. Pollut. Res. 2022, 29, 30441–30457. [Google Scholar] [CrossRef]
- Bank of China Research Institute. Development Direction and Policy Recommendations for China’s “New Infrastructure” under the COVID-19 Pan-Demic. Available online: https://www.boc.cn/fimarkets/summarize/202003/t20200323_17747824.html (accessed on 9 September 2022).
- Lin, B.; Chen, Y. Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry? Appl. Energy 2020, 260, 114266. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 9 September 2022).
- Saidi, S.; Hammami, S. Modeling the causal linkages between transport, economic growth and environmental degradation for 75 countries. Transp. Res. Part D Transp. Environ. 2017, 53, 415–427. [Google Scholar] [CrossRef]
- Nasreen, S.; Mbarek, M.; Ben; Atiq-ur-Rehman, M. Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods. Energy 2020, 192, 116628. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, Y.; Yang, T. The impact of transportation infrastructure and industrial agglomeration on energy efficiency: Evidence from China’s industrial sectors. J. Clean. Prod. 2020, 244, 118708. [Google Scholar] [CrossRef]
- Añón Higón, D.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Zou, W.; Pan, M. Does the construction of network infrastructure reduce environmental pollution?—Evidence from a quasi-natural experiment in “Broadband China”. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Qin, C.; Zhang, X.; Chen, Y.; Zhao, X.; Wang, C. Information infrastructure and greenhouse gas emission performance in urban China: A difference-in-differences analysis. J. Environ. Manag. 2022, 316, 115252. [Google Scholar] [CrossRef] [PubMed]
- Bildirici, M.E.; Castanho, R.A.; Kayıkçı, F.; Genç, S.Y. ICT, Energy Intensity, and CO2 Emission Nexus. Energies 2022, 15, 4567. [Google Scholar] [CrossRef]
- Li, L. Digital transformation and sustainable performance: The moderating role of market turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Xiong, L.; Ning, J.; Dong, Y. Pollution reduction effect of the digital transformation of heavy metal enterprises under the agglomeration effect. J. Clean. Prod. 2022, 330, 129864. [Google Scholar] [CrossRef]
- Han, D.; Ding, Y.; Shi, Z.; He, Y. The impact of digital economy on total factor carbon productivity: The threshold effect of technology accumulation. Environ. Sci. Pollut. Res. 2022, 29, 55691–55706. [Google Scholar] [CrossRef] [PubMed]
- Avom, D.; Nkengfack, H.; Fotio, H.K.; Totouom, A. ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels. Technol. Forecast. Soc. Chang. 2020, 155, 120028. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. The effect of information technology on environmental pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 33109–33124. [Google Scholar] [CrossRef]
- Uddin, M.; Rahman, A.A. Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics. Renew. Sustain. Energy Rev. 2012, 16, 4078–4094. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Dzator, J.; Dzator, M.; Salim, R. Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions. Technol. Forecast. Soc. Chang. 2022, 182, 121843. [Google Scholar] [CrossRef]
- Yin, K.; Liu, L.; Gu, H. Green Paradox or Forced Emission Reduction—The Dual Effects of Environmental Regulation on Carbon Emissions. Int. J. Environ. Res. Public Health 2022, 19, 11058. [Google Scholar] [CrossRef]
- Yu, Y.; Radulescu, M.; Ifelunini, A.I.; Ogwu, S.O.; Onwe, J.C.; Jahanger, A. Achieving Carbon Neutrality Pledge through Clean Energy Transition: Linking the Role of Green Innovation and Environmental Policy in E7 Countries. Energies 2022, 15, 6456. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. The effects of transportation infrastructure on urban carbon emissions. Appl. Energy 2017, 196, 199–207. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Li, F.; Zhao, W. Congestion assessment for the Belt and Road countries considering carbon emission reduction. J. Clean. Prod. 2020, 242, 118405. [Google Scholar] [CrossRef]
- Churchill, S.; Inekwe, J.; Ivanovski, K.; Smyth, R. Transport infrastructure and CO2 emissions in the OECD over the long run. Transp. Res. Part D Transp. Environ. 2021, 95, 102857. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C.; Fuinhas, J.A. Is energy consumption in the transport sector hampering both economic growth and the reduction of CO 2 emissions? A disaggregated energy consumption analysis. Transp. Policy 2017, 59, 64–70. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Zhang, Y.; Liu, J. The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces. Sustainability 2017, 9, 2312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M. Megaregional approaches to address the mega-challenges of transportation and environment. Transp. Res. Part D Transp. Environ. 2020, 89, 102610. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Huang, C. Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements. Sustainability 2022, 14, 10608. [Google Scholar] [CrossRef]
- Garrone, P.; Grilli, L. Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation. Energy Policy 2010, 38, 5600–5613. [Google Scholar] [CrossRef]
- Tan, R.; Liu, K.; Lin, B. Transportation infrastructure development and China’s energy intensive industries—A road development perspective. Energy 2018, 149, 587–596. [Google Scholar] [CrossRef]
- Xu, H.; Cao, S.; Xu, X. The development of highway infrastructure and CO2 emissions: The mediating role of agglomeration. J. Clean. Prod. 2022, 337, 130501. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Zhang, Y.; Luo, Q. The nonlinear effect of land freight structure on carbon emission intensity: New evidence from road and rail freight in China. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Qiao, L.; Li, L.; Fei, J. Information infrastructure and air pollution: Empirical analysis based on data from Chinese cities. Econ. Anal. Policy 2020, 73, 563–573. [Google Scholar] [CrossRef]
- Tang, C.; Xue, Y.; Wu, H.; Irfan, M.; Hao, Y. How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China. Technol. Soc. 2022, 69, 101963. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y. Global value chain, trade and carbon: Case of information and communication technology manufacturing sector. Energy Sustain. Dev. 2015, 25, 1–7. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.; Suman, R.; Gonzalez, E. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Laskurain-Iturbe, I.; Arana-Landín, G.; Landeta-Manzano, B.; Uriarte Gallastegi, N. Exploring the influence of industry 4.0 technologies on the circular economy. J. Clean. Prod. 2021, 321, 128944. [Google Scholar] [CrossRef]
- Lopes de Sousa Jabbour, A.B.; Jabbour, C.; Godinho Filho, M.; Roubaud, D. Industry 4.0 and the circular economy: A proposed research agenda and original roadmap for sustainable operations. Ann. Oper. Res. 2018, 270, 273–286. [Google Scholar] [CrossRef]
- Beier, G.; Matthess, M.; Guan, T.; Grudzien, D.; Xue, B.; Lima, E.; Chen, L. Impact of Industry 4.0 on corporate environmental sustainability: Comparing practitioners’ perceptions from China, Brazil and Germany. Sustain. Prod. Consum. 2022, 31, 287–300. [Google Scholar] [CrossRef]
- Krugman, R. Development, Geography and Economic Theory; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Chatman, D.G.; Noland, R.B. Do Public Transport Improvements Increase Agglomeration Economies? A Review of Literature and an Agenda for Research. Transp. Rev. 2011, 31, 725–742. [Google Scholar] [CrossRef]
- Donaldson, D. Railroads of the Raj: Estimating the Impact of Transportation Infrastructure. Am. Econ. Rev. 2018, 108, 899–934. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ajaz, T.; Razzaq, A. How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices. Resour. Policy 2022, 79, 102942. [Google Scholar] [CrossRef]
- Weber, H.; Weber, M. When means of implementation meet Ecological Modernization Theory: A critical frame for thinking about the Sustainable Development Goals initiative. World Dev. 2020, 136, 105129. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Li, Y. Digital economy and urban low-carbon sustainable development: The role of innovation factor mobility in China. Environ. Sci. Pollut. Res. 2022, 29, 48539–48557. [Google Scholar] [CrossRef]
- Wu, X.; Zhong, P.; Huang, X. Will “new infrastructure” improve the technical efficiency of strategic emerging industries? Financ. Econ. Sci. 2020, 11, 65–80. (In Chinese) [Google Scholar]
- Markaki, M.; Belegri-Roboli, A.; Sarafidis, Y.; Mirasgedis, S. The carbon footprint of Greek households (1995–2012). Energy Policy 2017, 100, 206–215. [Google Scholar] [CrossRef]
- Bye, B.; Faehn, T.; Rosnes, O. Residential energy efficiency policies: Costs, emissions and rebound effects. Energy 2018, 143, 191–201. [Google Scholar] [CrossRef]
- Shah, K.J.; Pan, S.Y.; Lee, I.; Kim, H.; You, Z.; Zheng, J.M.; Chiang, P.C. Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. J. Clean. Prod. 2021, 326, 129392. [Google Scholar] [CrossRef]
- Guo, K.; Pan, S.; Yan, S. New infrastructure investment and structural transformation. China Ind. Econ. 2020, 3, 63–80. (In Chinese) [Google Scholar] [CrossRef]
- Lee, K.; Malerba, F.; Primi, A. The fourth industrial revolution, changing global value chains and industrial upgrading in emerging economies. J. Econ. Policy Reform. 2020, 23, 359–370. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Han, X.; Cao, T. Urbanization level, industrial structure adjustment and spatial effect of urban haze pollution: Evidence from China’s Yangtze River Delta urban agglomeration. Atmos. Pollut. Res. 2022, 13, 101427. [Google Scholar] [CrossRef]
- Berraies, S. The effect of enterprise social networks use on exploitative and exploratory innovations. J. Intellect. Cap. 2019, 20, 426–452. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Fernández-Portillo, A.; Almodóvar-González, M.; Hernández-Mogollón, R. Impact of ICT development on economic growth. A study of OECD European union countries. Technol. Soc. 2020, 63, 101420. [Google Scholar] [CrossRef]
- Gebauer, H.; Fleisch, E.; Lamprecht, C.; Wortmann, F. Growth paths for overcoming the digitalization paradox. Bus. Horiz. 2020, 63, 313–323. [Google Scholar] [CrossRef]
- Nambisan, S.; Wright, M.; Feldman, M. The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Res. Policy 2019, 48, 103773. [Google Scholar] [CrossRef]
- Tarafdar, M.; Pullins, E.B.; Ragu-Nathan, T.S. Technostress: Negative effect on performance and possible mitigations. Inf. Syst. J. 2015, 25, 103–132. [Google Scholar] [CrossRef] [Green Version]
- Orlando, B.; Mazzucchelli, A.; Usai, A.; Nicotra, M.; Paoletti, F. Are digital technologies killing future innovation? The curvilinear relationship between digital technologies and firm’s intellectual property. J. Intellect. Cap. 2021, 22, 587–609. [Google Scholar] [CrossRef]
- Dou, Q.; Gao, X. The double-edged role of the digital economy in firm green innovation: Micro-evidence from Chinese manufacturing industry. Environ. Sci. Pollut. Res. 2022, 29, 67856–67874. [Google Scholar] [CrossRef]
- Zhao, G.; Liang, R.; Li, K.; Wang, Y.; Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Indic. 2021, 131, 108130. [Google Scholar] [CrossRef]
- Ma, M.; Tang, J. Interactive coercive relationship and spatio-temporal coupling coordination degree between tourism urbanization and eco-environment: A case study in Western China. Ecol. Indic. 2022, 142, 109149. [Google Scholar] [CrossRef]
- Li, J.; Yuan, W.; Qin, X.; Qi, X.; Meng, L. Coupling coordination degree for urban green growth between public demand and government supply in urban agglomeration: A case study from China. J. Environ. Manag. 2022, 304, 114209. [Google Scholar] [CrossRef]
- Nie, L.; Chen, P.; Liu, X.; Shi, Q.; Zhang, J. Coupling and Coordinative Development of Green Finance and Industrial-Structure Optimization in China: Spatial-Temporal Difference and Driving Factors. Int. J. Environ. Res. Public Health 2022, 19, 10984. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.; Cao, L. Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China. Sustainability 2022, 14, 10864. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Aliyu, G.; Luo, J.; Di, H.J.; Lindsey, S.; Liu, D.; Yuan, J.; Ding, W. Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates. Sci. Total Environ. 2019, 669, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Gong, H.; Zhang, Y.; Dai, X.; Chen, L. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM). Sci. Total Environ. 2021, 797, 148967. [Google Scholar] [CrossRef]
- Li, F.; Liang, W.; Zang, D.; Chandio, A.A.; Duan, Y. Does Cleaner Household Energy Promote Agricultural Green Production? Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10197. [Google Scholar] [CrossRef]
- Che, S.; Wang, J. Digital economy development and haze pollution: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 73210–73226. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, L. Does national broadband plan narrow regional digital divide? Evidence from China. Chin. J. Commun. 2019, 12, 449–466. [Google Scholar] [CrossRef]
- Song, Z.; Wang, C.; Bergmann, L. China’s prefectural digital divide: Spatial analysis and multivariate determinants of ICT diffusion. Int. J. Inf. Manag. 2020, 52, 102072. [Google Scholar] [CrossRef]
- Engo, J. Decoupling analysis of CO2 emissions from transport sector in Cameroon. Sustain. Cities Soc. 2019, 51, 101732. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Yu, J.; Shi, X. Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis. Energy Econ. 2020, 92, 104973. [Google Scholar] [CrossRef]
System | Subsystems | Indicator | Unit | Weight |
---|---|---|---|---|
Integrated infrastructure | Traditional transportation infrastructure (U1) | Length of railways in operation (x1) | 10,000 km | 0.1224 |
Length of highways (x2) | 10,000 km | 0.1138 | ||
Length of bus and trolley bus under operation (x3) | km | 0.2194 | ||
Railway freight traffic (x4) | 10,000 tons | 0.3936 | ||
Highway freight traffic (x5) | 10,000 tons | 0.1507 | ||
Informatization development (U2) | Capacity of mobile telephone exchanges (x6) | 10,000 subscribers | 0.0687 | |
Base stations of mobile telephones (x7) | 10,000 unit | 0.0754 | ||
Length of optical cable lines (x8) | km | 0.0815 | ||
Number of domain names (x9) | 10,000 unit | 0.1812 | ||
Number of webpages (x10) | 10,000 pages | 0.3172 | ||
IPv4 addresses (x11) | 10,000 unit | 0.1949 | ||
Broadband subscribers Port of Internet (x12) | 10,000 unit | 0.0811 |
Composite State | Coupling Coordination Degree | Classification |
---|---|---|
Synergy state | Advanced coordination | |
High coordination | ||
Transition state | Intermediate coordination | |
Imbalance state | Primary coordination | |
Low coordination |
Variable | Mean | Std | Min | Max |
---|---|---|---|---|
CO | 10.25 | 0.76 | 8.15 | 11.64 |
INF | 0.38 | 0.13 | 0.10 | 0.72 |
ENE | 2.19 | 0.52 | 1.28 | 3.68 |
AGDP | 10.87 | 0.42 | 10.04 | 12.01 |
STR | 0.25 | 0.36 | −0.41 | 1.66 |
TEC | 8.34 | 1.39 | 4.51 | 11.17 |
AGG | 1.29 | 0.49 | 0.01 | 2.29 |
FDI | 1.08 | 1.11 | −3.06 | 5.83 |
GOV | −1.40 | 0.38 | −2.12 | −0.28 |
HUM | 5.55 | 0.75 | 3.19 | 6.74 |
Province/Municipality | 2013 | 2016 | 2020 | Province/Municipality | 2013 | 2016 | 2020 |
---|---|---|---|---|---|---|---|
Beijing | 0.2899 | 0.3495 | 0.4345 | Henan | 0.3910 | 0.4772 | 0.5550 |
Tianjin | 0.2192 | 0.2238 | 0.2785 | Hubei | 0.3249 | 0.3935 | 0.4514 |
Hebei | 0.4322 | 0.4794 | 0.5802 | Hunan | 0.3446 | 0.4170 | 0.4789 |
Shanxi | 0.4038 | 0.4307 | 0.5226 | Guangdong | 0.5875 | 0.6550 | 0.7196 |
Inner Mongolia | 0.3624 | 0.3959 | 0.4735 | Guangxi | 0.2920 | 0.3535 | 0.4564 |
Liaoning | 0.3802 | 0.4090 | 0.4671 | Hainan | 0.1023 | 0.1248 | 0.1709 |
Jilin | 0.2423 | 0.2679 | 0.3317 | Chongqing | 0.2443 | 0.2904 | 0.3489 |
Heilongjiang | 0.3226 | 0.3392 | 0.3935 | Sichuan | 0.3955 | 0.4666 | 0.5493 |
Shanghai | 0.2544 | 0.2874 | 0.3078 | Guizhou | 0.2401 | 0.3034 | 0.3776 |
Jiangsu | 0.4340 | 0.4966 | 0.5879 | Yunnan | 0.2985 | 0.3486 | 0.4338 |
Zhejiang | 0.4286 | 0.5275 | 0.6154 | Shaanxi | 0.3384 | 0.3984 | 0.4781 |
Anhui | 0.3625 | 0.4205 | 0.4882 | Gansu | 0.2112 | 0.2694 | 0.3288 |
Fujian | 0.3359 | 0.4259 | 0.4518 | Qinghai | 0.1295 | 0.1472 | 0.1878 |
Jiangxi | 0.3161 | 0.3504 | 0.4391 | Ningxia | 0.1214 | 0.1479 | 0.1909 |
Shandong | 0.5195 | 0.5452 | 0.6531 | Xinjiang | 0.2539 | 0.3134 | 0.3765 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 |
---|---|---|---|---|---|---|---|---|---|
INF | 1.716 *** | 2.710 *** | 1.477 ** | 1.681 ** | 1.676 ** | 2.133 ** | 2.142 ** | 2.173 *** | 1.659 *** |
(3.84) | (6.23) | (2.25) | (2.48) | (2.47) | (2.55) | (2.56) | (2.59) | (2.72) | |
INF2 | −1.050 ** | −1.794 *** | −1.196 ** | −1.242 ** | −1.264 ** | −1.282 ** | −1.303 ** | −1.322 ** | −1.517 *** |
(−2.03) | (−3.70) | (−2.23) | (−2.31) | (−2.35) | (−2.30) | (−2.34) | (−2.37) | (−3.13) | |
ENE | 0.485 *** | 0.523 *** | 0.503 *** | 0.530 *** | 0.487 *** | 0.479 *** | 0.480 *** | 0.567 *** | |
(6.56) | (7.01) | (6.60) | (6.37) | (6.37) | (6.24) | (6.23) | (7.63) | ||
AGDP | 0.202 ** | 0.202 ** | 0.188 ** | 0.228 *** | 0.214 *** | 0.232 *** | 0.026 | ||
(2.48) | (2.49) | (2.25) | (4.83) | (4.25) | (4.09) | (0.32) | |||
STR | −0.065 | −0.080 | −0.095 * | −0.106 ** | −0.120 ** | −0.103 * | |||
(−1.22) | (−1.41) | (−1.91) | (−2.06) | (−2.17) | (−1.88) | ||||
TEC | 0.020 | 0.022 | 0.023 | 0.019 | 0.025 | ||||
(0.79) | (0.97) | (1.00) | (0.82) | (1.14) | |||||
AGG | 0.181 *** | 0.184 *** | 0.186 *** | 0.217 *** | |||||
(5.44) | (5.50) | (5.53) | (6.99) | ||||||
FDI | 0.011 | 0.009 | −0.008 | ||||||
(0.87) | (0.71) | (−0.61) | |||||||
GOV | 0.052 | 0.060 | |||||||
(0.71) | (0.82) | ||||||||
HUM | 0.278 *** | ||||||||
(3.33) | |||||||||
_cons | 9.765 *** | 8.446 *** | 6.542 *** | 6.529 *** | 6.473 *** | 5.447 *** | 5.613 *** | 5.503 *** | 6.417 *** |
(106.45) | (38.80) | (8.21) | (8.20) | (8.09) | (8.83) | (8.69) | (8.27) | (7.63) | |
Obs | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 |
R–sq | 0.233 | 0.365 | 0.384 | 0.388 | 0.390 | 0.505 | 0.507 | 0.509 | 0.544 |
F statistics | 31.65 *** | 39.72 *** | 32.07 *** | 26.02 *** | 21.75 *** | 29.63 *** | 25.99 *** | 23.10 *** | 23.86 *** |
Variable | 2SLS–IV | INF = Coupling Degree | Sample Adjustment | |||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
INF | 4.655 *** | 4.452 ** | 2.527 ** | 1.698 ** | 2.085 *** | 1.860 *** |
(6.79) | (2.28) | (2.52) | (2.05) | (3.37) | (2.76) | |
INF2 | −4.670 *** | −4.089 *** | −1.237 * | −0.998 * | −2.105 *** | −1.710 *** |
(−5.73) | (−3.79) | (−1.87) | (−1.80) | (−4.11) | (−3.40) | |
Control variable | N | Y | N | Y | Y | Y |
Obs | 240 | 240 | 240 | 240 | 216 | 208 |
F statistics | 35.95 *** | 22.78 *** | 9.44 *** | 23.00 *** | 24.97 *** | 24.18 *** |
Variable | DEPVAR = STR | DEPVAR = ENE | DEPVAR = TEC | |||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
INF | 2.800 *** | 1.136 *** | −0.759 *** | 0.893 *** | 7.075 *** | 1.020 |
(21.31) | (3.19) | (−7.97) | (3.33) | (20.92) | (1.13) | |
Control variable | N | Y | N | Y | N | Y |
Obs | 240 | 240 | 240 | 240 | 216 | 208 |
R–sq | 0.685 | 0.796 | 0.132 | 0.460 | 0.677 | 0.805 |
F statistics | 454.07 | 86.86 | 63.55 | 18.99 | 437.47 | 92.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhu, Y. The Integration of Traditional Transportation Infrastructure and Informatization Development: How Does It Affect Carbon Emissions? Energies 2022, 15, 7535. https://doi.org/10.3390/en15207535
Wang N, Zhu Y. The Integration of Traditional Transportation Infrastructure and Informatization Development: How Does It Affect Carbon Emissions? Energies. 2022; 15(20):7535. https://doi.org/10.3390/en15207535
Chicago/Turabian StyleWang, Nian, and Yingming Zhu. 2022. "The Integration of Traditional Transportation Infrastructure and Informatization Development: How Does It Affect Carbon Emissions?" Energies 15, no. 20: 7535. https://doi.org/10.3390/en15207535
APA StyleWang, N., & Zhu, Y. (2022). The Integration of Traditional Transportation Infrastructure and Informatization Development: How Does It Affect Carbon Emissions? Energies, 15(20), 7535. https://doi.org/10.3390/en15207535