Enhancing Glucose Recovery from Hibiscus cannabinus L. through Phosphoric Acid Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. PA Pretreatment
[Solid recovery of each content (%) × Treated component of each content (% DW)]
Untreated component of each content (% DW)
- % DW is the percent dry weight.
2.3. Chemical Composition
2.4. Analytical Procedures
2.5. Enzymatic Hydrolysis
2.6. X-ray Diffraction Analysis
2.7. Determination of Microstructures of Biomass
2.8. Analytical Statistics
3. Results
3.1. Characterization of KB
3.2. Influence of the PA Concentration on the Chemical Composition of Bark and Core
3.3. Effect of PA Pretreatment on Enzymatic Hydrolysis
3.4. Changes in Surface Morphology
3.5. Effect of PA on Cellulose Crystal
4. Discussion
4.1. Characterization of KB
4.2. Effect of PA Concentration on the Chemical Composition of Bark and Core
4.3. Effect of PA Pretreatment on Enzymatic Hydrolysis
4.4. Changes in Surface Morphology
4.5. Effect of PA on Cellulose Crystal Structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Y.M.; Zhuang, J.; Li, Y.; Dai, J.Y.; Xiu, Z.L. Pretreatment of Jerusalem Artichoke Stalk Using Hydroxylammonium Ionic Liquids and Their Influences on 2,3-Butanediol Fermentation by Bacillus subtilis. Bioresour. Technol. 2022, 354, 127219. [Google Scholar] [CrossRef] [PubMed]
- Okolie, J.A.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Next-Generation Biofuels and Platform Biochemicals From Lignocellulosic Biomass. Int. J. Energy Res. 2021, 45, 14145–14169. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nizetic, S.; Ong, H.C.; Chong, C.T.; Atabani, A.E.; Pham, V.V. Acid-Based Lignocellulosic Biomass Biorefinery for Bioenergy Production: Advantages, Application Constraints, and Perspectives. J. Environ. Manage. 2021, 296, 113194. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Binod, P.; Pandey, A. Biological Pretreatment of Lignocellulosic Biomass—An Overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, Z.; Shen, F.; Hu, J.; Sun, F.; Lin, L.; Yang, G.; Zhang, Y.; Deng, S. Pretreating Lignocellulosic Biomass by the Concentrated Phosphoric Acid Plus Hydrogen Peroxide (PHP) for Enzymatic Hydrolysis: Evaluating the Pretreatment Flexibility on Feedstocks and Particle Sizes. Bioresour. Technol. 2014, 166, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.K.; Garlapati, V.K.; Singh, A.K.; Antunes, F.A.F.; da Silva, S.S. The Path Forward for Lignocellulose Biorefineries: Bottlenecks, Solutions, and Perspective on Commercialization. Bioresour. Technol. 2018, 264, 370–381. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Hakeem, K.R.; Paridah, M.T.; Khalina, A.; Alothman, O.Y. Potential of Bioenergy Production From Industrial Kenaf (Hibiscus cannabinus L.) Based on Malaysian Perspective. Renew. Sustain. Energ. Rev. 2015, 42, 446–459. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Cho, S.K.; Kim, D.S.; Ghodake, G.S.; Kadam, A.; Kumar, G.; Bharagava, R.N.; Banu, R.; Shin, H.S. Pretreatment of Kenaf (Hibiscus cannabinus L.) Biomass Feedstock for Polyhydroxybutyrate (PHB) Production and Characterization. Bioresour. Technol. 2019, 282, 75–80. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Wan Abdullah, W.N.; Leh, C.P. Optimization of Various Pretreatments Condition of Kenaf Core ( Hibiscus cannabinus ) Fibre for Sugar Production: Effect of Chemical Compositions of Pretreated Fibre on Enzymatic Hydrolysability. Renew. Energy 2016, 99, 205–215. [Google Scholar] [CrossRef]
- Kim, J.; Han, G.D.; Muthukathan, G.; Rodrogues, R.; Hyun, D.Y.; Kim, S.H.; Yu, J.K.; Park, J.; Yoo, S.C.; Chung, Y.S. What Traits Should Be Measured for Biomass in Kenaf? Plants 2021, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.M.; Luthfi, A.A.I.; Low, K.O.; Harun, S.; Manaf, S.F.A.; Illias, R.M.; Jahim, J.M. Preparation of Kenaf Stem Hemicellulosic Hydrolysate and Its Fermentability in Microbial Production of Xylitol by Escherichia coli BL21. Sci. Rep. 2019, 9, 4080. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Park, S.U.; Jang, B.-K.; Lee, J.J.; Chung, Y.S. Germplasm Evaluation of Kenaf (Hibiscus cannabinus) for Alternative Biomass for Cellulosic Ethanol Production. G.C.B. Bioenergy 2021, 13, 201–210. [Google Scholar] [CrossRef]
- Öztürk, İ.; Irmak, S.; Hesenov, A.; Erbatur, O. Hydrolysis of Kenaf (Hibiscus cannabinus L.) Stems by Catalytical Thermal Treatment in Subcritical Water. Biomass Bioenergy 2010, 34, 1578–1585. [Google Scholar] [CrossRef]
- Ng, S.H.; Tahir, P.M.; Mohamad, R.; Abdullah, L.C.; Choo, A.C.Y.; Liong, Y.Y. Effect of Pretreatment Process on Bioconversion of Kenaf (Hibiscus cannabinus L.) Core to Glucose. BioResources 2013, 8, 2010–2017. [Google Scholar] [CrossRef]
- Jeun, J.-P.; Lee, B.-M.; Lee, J.-Y.; Kang, P.-H.; Park, J.-K. An Irradiation-Alkaline Pretreatment of Kenaf Core for Improving the Sugar Yield. Renew. Energy 2015, 79, 51–55. [Google Scholar] [CrossRef]
- Meryemoğlu, B.; Hasanoğlu, A.; Irmak, S.; Erbatur, O. Biofuel Production by Liquefaction of Kenaf (Hibiscus cannabinus L.) Biomass. Bioresour. Technol. 2014, 151, 278–283. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Jawaid, M.; Abdan, K.; Ibrahim, N.A. Potential Utilization of Kenaf Biomass in Different Applications. In Agricultural Biomass Based Potential Materials; Hakeem, K.R., Jawaid, M., Alothman, Y.O., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–34. [Google Scholar] [CrossRef]
- Saratale, R.G.; Shin, H.S.; Ghodake, G.S.; Kumar, G.; Oh, M.K.; Saratale, G.D. Combined Effect of Inorganic Salts With Calcium Peroxide Pretreatment for Kenaf Core Biomass and Their Utilization for 2,3-Butanediol Production. Bioresour. Technol. 2018, 258, 26–32. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Pandey, A.; Binod, P. Chapter 4. Alkaline Treatment. In Pretreatment of Biomass; Pandey, A., Negi, S., Binod, P., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 51–60. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.F.; Zhang, C.C.; Nan, J.; Ren, N.Q.; Lee, D.J.; Chen, C. Advances in Pretreatment of Lignocellulosic Biomass for Bioenergy Production: Challenges and Perspectives. Bioresour. Technol. 2022, 343, 126123. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, S.; Doherty, W.; Dubal, D.; Atanda, L.; Moghaddam, L.; Sonar, P.; Hessel, V.; Ostrikov, K. Pretreatment and Fermentation of Lignocellulosic Biomass: Reaction Mechanisms and Process Engineering. React. Chem. Eng. 2020, 5, 2017–2047. [Google Scholar] [CrossRef]
- Khir, R.; Pan, Z. Chapter 2. Rice. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 21–58. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K.; Kumar, R. Cellulose Solvent-Based Pretreatment for Enhanced Second-Generation Biofuel Production: A Review. Sustain. Energy Fuels 2019, 3, 11–62. [Google Scholar] [CrossRef]
- Sathitsuksanoh, N.; George, A.; Zhang, Y.-H.P. New Lignocellulose Pretreatments Using Cellulose Solvents: A Review. J. Chem. Technol. Biotechnol. 2013, 88, 169–180. [Google Scholar] [CrossRef]
- Premjet, S.; Dana, S.; Obeng, A.K.; Premjet, D. Enzymatic Response to Structural and Chemical Transformations in Hibiscus sabdariffa var. altissima Bark and Core During Phosphoric Acid Pretreatment. BioResources 2018, 13, 6778–6789. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass. In Technical Report NREL/TP-510-42622; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008; pp. 1–8. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. In Technical Report TP-510-42618; National Renewable Energy Laboratory (National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy): Golden, CO, USA, 2012; pp. 1–15. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass In Technical Report NREL/TP-510-42619; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008; pp. 1–12.
- Obeng, A.K.; Premjet, D.; Premjet, S. Fermentable Sugar Production From the Peels of Two Durian (Durio zibethinus Murr.) Cultivars by Phosphoric Acid Pretreatment. Resources 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Obeng, A.K.; Premjet, D.; Premjet, S. Improved Glucose Recovery From Durian Peel by Alkaline-Catalyzed Steam Pretreatment. PeerJ 2021, 9, e12026. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Premjet, S.; Pumira, B.; Premjet, D. Determining the Potential of Inedible Weed Biomass for Bio-energy and Ethanol Production. BioResources 2013, 8, 701–716. [Google Scholar] [CrossRef]
- Muranaka, Y.; Nakagawa, H.; Hasegawa, I.; Maki, T.; Hosokawa, J.; Ikuta, J.; Mae, K. Lignin-Based Resin Production From Lignocellulosic Biomass Combining Acidic Saccharification and Acetone-Water Treatment. Chem. Eng. J. 2017, 308, 754–759. [Google Scholar] [CrossRef]
- Raud, M.; Tutt, M.; OLT, J.; Kikas, T. Dependence of the Hydrolysis Efficiency on the Lignin Content in Lignocellulosic Material. Int. J. Hydrogr. Energy 2016, 41, 16338–16343. [Google Scholar] [CrossRef]
- Frederick, N.; Zhang, N.; Ge, X.; Xu, J.; Pelkki, M.; Martin, E.; Carrier, D.J. Poplar (Populus deltoides L.): The Effect of Washing Pretreated Biomass on Enzymatic Hydrolysis and Fermentation to Ethanol. A.C.S. Sustain. Chem. Eng. 2014, 2, 1835–1842. [Google Scholar] [CrossRef]
- Goshadrou, A.; Karimi, K.; Lefsrud, M. Characterization of Ionic Liquid Pretreated Aspen Wood Using Semi-quantitative Methods for Ethanol Production. Carbohydr. Polym. 2013, 96, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Lucia, L.A.; Ghiladi, R.A. Development of a Highly Efficient Pretreatment Sequence for the Enzymatic Saccharification of Loblolly Pine Wood. ACS Sustain. Chem. Eng. 2016, 4, 3669–3678. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, K.-H.; Ok, Y.S.; Jeon, Y.J.; Kwon, E.E. Pyrolysis of Wastes Generated Through Saccharification of Oak Tree by Using CO2 as Reaction Medium. Appl. Therm. Eng. 2017, 110, 335–345. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Chandra, M.S.; Gu, F.; Gleisner, R.; Reiner, R.; Sessions, J.; Marrs, G.; Gao, J.; Anderson, D. Using Sulfite Chemistry for Robust Bioconversion of Douglas-Fir Forest Residue to Bioethanol at High Titer and Lignosulfonate: A Pilot-Scale Evaluation. Bioresour. Technol. 2015, 179, 390–397. [Google Scholar] [CrossRef]
- Yuan, Z.; Wen, Y.; Li, G. Production of Bioethanol and Value Added Compounds From Wheat Straw Through Combined Alkaline/Alkaline-Peroxide Pretreatment. Bioresour. Technol. 2018, 259, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, W.; Hou, Q.; Wang, S.; Liu, F. Effects of Combined Pretreatment of Dilute Acid Pre-extraction and Chemical-Assisted Mechanical Refining on Enzymatic Hydrolysis of Lignocellulosic Biomass. R.S.C. Adv. 2018, 8, 10207–10214. [Google Scholar] [CrossRef]
- Takata, E.; Tsuruoka, T.; Tsutsumi, K.; Tsutsumi, Y.; Tabata, K. Production of Xylitol and Tetrahydrofurfuryl Alcohol From Xylan in Napier Grass by a Hydrothermal Process With Phosphorus Oxoacids Followed by Aqueous Phase Hydrogenation. Bioresour. Technol. 2014, 167, 74–80. [Google Scholar] [CrossRef]
- Siripong, P.; Duangporn, P.; Takata, E.; Tsutsumi, Y. Phosphoric Acid Pretreatment of Achyranthes aspera and Sida acuta Weed Biomass to Improve Enzymatic Hydrolysis. Bioresour. Technol. 2016, 203, 303–308. [Google Scholar] [CrossRef]
- Kundu, C.; Samudrala, S.P.; Kibria, M.A.; Bhattacharya, S. One-Step Peracetic Acid Pretreatment of Hardwood and Softwood Biomass for Platform Chemicals Production. Sci. Rep. 2021, 11, 11183. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ding, S.Y.; Mielenz, J.R.; Cui, J.B.; Elander, R.T.; Laser, M.; Himmel, M.E.; McMillan, J.R.; Lynd, L.R. Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions. Biotechnol. Bioeng. 2007, 97, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Gnansounou, E.; Binod, P.; Pandey, A. Bioconversion of Sugarcane Crop Residue for Value Added Products—An Overview. Renew. Energy 2016, 98, 203–215. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of Chemical Pretreatment for Bioconversion of Lignocellulosic Biomass. Renew. Sustain. Energ. Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Liu, D. Biomass Recalcitrance. Part I: The Chemical Compositions and Physical Structures Affecting the Enzymatic Hydrolysis of Lignocellulose. Biofuels Bioprod. Bioref. 2012, 6, 465–482. [Google Scholar] [CrossRef]
- Kruyeniski, J.; Ferreira, P.J.T.; Videira Sousa Carvalho, M.d.G.; Vallejos, M.E.; Felissia, F.E.; Area, M.C. Physical and Chemical Characteristics of Pretreated Slash Pine Sawdust Influence Its Enzymatic Hydrolysis. Ind. Crops Prod. 2019, 130, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Pihlajaniemi, V.; Sipponen, M.H.; Liimatainen, H.; Sirviö, J.A.; Nyyssölä, A.; Laakso, S. Weighing the Factors Behind Enzymatic Hydrolyzability of Pretreated Lignocellulose. Green Chem. 2016, 18, 1295–1305. [Google Scholar] [CrossRef]
- Meng, X.; Ragauskas, A.J. Recent Advances in Understanding the Role of Cellulose Accessibility in Enzymatic Hydrolysis of Lignocellulosic Substrates. Curr. Opin. Biotechnol. 2014, 27, 150–158. [Google Scholar] [CrossRef]
- Ishola, M.M.; Isroi; Taherzadeh, M.J. Effect of Fungal and Phosphoric Acid Pretreatment on Ethanol Production From Oil Palm Empty Fruit Bunches (OPEFB). Bioresour. Technol. 2014, 165, 9–12. [Google Scholar] [CrossRef]
- Yoon, S.-Y.; Kim, B.-R.; Han, S.-H.; Shin, S.-J. Different Response Between Woody Core and Bark of Goat Willow (Salix caprea L.) to Concentrated Phosphoric Acid Pretreatment Followed by Enzymatic Saccharification. Energy 2015, 81, 21–26. [Google Scholar] [CrossRef]
- Sathitsuksanoh, N.; Zhu, Z.; Wi, S.; Zhang, Y.H. Cellulose Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass. Biotechnol. Bioeng. 2011, 108, 521–529. [Google Scholar] [CrossRef]
- Takata, E.; Tsutsumi, K.; Tsutsumi, Y.; Tabata, K. Production of Monosaccharides From Napier Grass by Hydrothermal Process With Phosphoric Acid. Bioresour. Technol. 2013, 143, 53–58. [Google Scholar] [CrossRef] [PubMed]
Component | Bark Fiber % (DW) | Core Fiber % (DW) |
---|---|---|
Glucan | 56.3 ± 0.2 a | 46.3 ± 0.1 b |
Xylan | 13.1 ± 0.1 b | 18.4 ± 0.2 a |
Acid-insoluble lignin (AIL) | 9.5 ± 0.2 b | 14.2 ± 0.0 a |
Acid-soluble lignin (ASL) | 4.3 ± 0.0 a | 3.1 ± 0.0 b |
Total lignin | 13.8 ± 0.2 b | 17.3 ± 0.1 a |
Ash | 3.7 ± 0.0 a | 2.7 ± 0.0 b |
Extractive | 8.3 ± 0.4 a | 8.2 ± 0.4 a |
Composition (%DW) * | Untreated * | 70% * | 75% * | 80% * | 85% * |
---|---|---|---|---|---|
Glucan | 56.3 ± 0.2 d | 78.5 ± 0.2 c | 86.6 ± 0.5 b | 89.9 ± 0.4 a | 79.4 ± 0.5 c |
Xylan | 13.1 ± 0.1 a | 6.9 ± 0.3 b | 4.3 ± 0.2 c | n.d. | n.d. |
AIL | 9.5 ± 0.2 a | 9.4 ± 0.0 a | 6.9 ± 0.0 b | 6.3 ± 0.2 b | 3.3 ± 0.1 c |
ASL | 4.3 ± 0.0 a | 2.1 ± 0.0 b | 1.7 ± 0.0 c | 1.3 ± 0.0 d | 1.1 ± 0.0 e |
Total lignin | 13.8 ± 0.2 a | 11.5 ± 0.1 b | 8.6 ± 0.0 c | 7.6 ± 0.2 d | 4.4 ± 0.1 e |
Solid recovery | 100 a | 68.4 ± 0.5 b | 61.2 ± 0.7 c | 53.4 ± 0.1 d | 41.8± 0.7 e |
Glucan recovery | 100 a | 95.3 ± 0.3 b | 94.1 ± 0.6 b | 85.4 ± 0.4 c | 59.0 ± 0.3 d |
Xylan recovery | 100 a | 36.0 ± 1.5 b | 20.0 ± 0.8 c | n.d. | n.d. |
AIL recovery | 100 a | 67.3 ± 0.3 b | 44.0 ± 0.1 c | 35.6 ± 1.1 d | 14.5 ± 0.6 e |
ASL recovery | 100 a | 34.1 ± 0.1 b | 24.1 ± 0.0 c | 15.8 ± 0.0 d | 10.4 ± 0.0 e |
Total lignin recovery | 100 a | 57.0 ± 0.3 b | 37.9 ± 0.1 c | 29.5 ± 0.8 d | 13.2 ± 0.4 e |
Composition (%DW) * | Untreated * | 70% * | 75% * | 80% * | 85% * |
---|---|---|---|---|---|
Glucan | 46.3 ± 0.1 d | 64.0 ± 0.7 c | 75.9 ± 0.5 a | 77.4 ± 0.4 a | 68.9 ± 0.1 b |
Xylan | 18.4 ± 0.2 a | 9.7 ± 0.4 b | 6.6 ± 0.2 c | 3.9 ± 0.1 d | n.d. |
AIL | 14.2 ± 0.0 a | 11.4 ± 0.1 b | 10.8 ± 0.2 b | 8.4 ± 0.3 c | 3.1 ± 0.2 d |
ASL | 3.1 ± 0.0 a | 1.8 ± 0.0 b | 1.4 ± 0.0 c | 1.2 ± 0.0 d | 1.0 ± 0.0 e |
Total lignin | 17.3 ± 0.1 a | 13.2± 0.1 b | 12.2 ± 0.2 c | 9.6 ± 0.3 d | 4.1 ± 0.2 e |
Solid recovery | 100 a | 68.4 ± 0.5 b | 58.8 ± 0.4 c | 49.1 ± 0.7 d | 43.1 ± 0.3 e |
Glucan recovery | 100 a | 94.6 ± 1.1 b | 96.5 ± 0.7 b | 82.1 ± 0.4 c | 64.3 ± 0.1 d |
Xylan recovery | 100 a | 35.9 ± 1.5 b | 21.1 ± 0.6 c | 10.5 ± 0.2 d | n.d. |
AIL recovery | 100 a | 55.0 ± 0.4 b | 44.8 ± 0.7 c | 28.9 ± 1.0 d | 9.4 ± 0.5 e |
ASL recovery | 100 a | 38.8 ± 0.2 b | 26.2 ± 0.1 c | 19.1 ± 0.0 d | 13.8 ± 0.1 e |
Total lignin recovery | 100 a | 52.0 ± 0.3 b | 41.5 ± 0.6 c | 27.1 ± 0.8 d | 10.2 ± 0.4 e |
H3PO4 Concentration | Bark Fiber (%) | Core Fiber (%) |
---|---|---|
Untreated | 70.1 | 52.0 |
70% PA | 74.3 | 58.7 |
75% PA | 74.7 | 58.7 |
80% PA | 57.6 | 61.2 |
85% PA | 50.7 | 44.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Premjet, D.; Wongleang, S.; Premjet, S. Enhancing Glucose Recovery from Hibiscus cannabinus L. through Phosphoric Acid Pretreatment. Energies 2022, 15, 7573. https://doi.org/10.3390/en15207573
Premjet D, Wongleang S, Premjet S. Enhancing Glucose Recovery from Hibiscus cannabinus L. through Phosphoric Acid Pretreatment. Energies. 2022; 15(20):7573. https://doi.org/10.3390/en15207573
Chicago/Turabian StylePremjet, Duangporn, Suwanan Wongleang, and Siripong Premjet. 2022. "Enhancing Glucose Recovery from Hibiscus cannabinus L. through Phosphoric Acid Pretreatment" Energies 15, no. 20: 7573. https://doi.org/10.3390/en15207573
APA StylePremjet, D., Wongleang, S., & Premjet, S. (2022). Enhancing Glucose Recovery from Hibiscus cannabinus L. through Phosphoric Acid Pretreatment. Energies, 15(20), 7573. https://doi.org/10.3390/en15207573