High-Resolution Seismic Characterization of Gas Hydrate Reservoir Using Wave-Equation-Based Inversion
Abstract
:1. Introduction
2. Methods
2.1. The AVO Inversion Method
2.2. The Wave-Equation-Based Inversion Method
3. Synthetic Model and Data
3.1. Geological Setting
3.2. Synthetic Model and Data
4. Results
4.1. Inversion of the Synthetic Gas Hydrate Reservoir Model
4.2. Reliability Analysis for the Noisy Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef]
- Demirbas, A. Methane from gas hydrates in the black sea. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 32, 165–171. [Google Scholar] [CrossRef]
- Aregbe, A.G. Gas hydrate—Properties, formation and benefits. Open J. Yangtze Oil Gas 2017, 2, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Chazallon, B.; Rodriguez, C.T.; Ruffine, L.; Carpentier, Y.; Donval, J.P.; Ker, S.; Riboulot, V. Characterizing the variability of natural gas hydrate composition from a selected site of the Western Black Sea, off Romania. Mar. Pet. Geol. 2021, 124, 104785. [Google Scholar] [CrossRef]
- Park, Y.; Kim, D.Y.; Lee, J.W.; Huh, D.G.; Park, K.P.; Lee, J.; Lee, H. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. USA 2006, 103, 12690–12694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahani, M.V.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: Implications for prediction of environmental impacts and security of energy in cold regions. RSC Adv. 2021, 11, 14334–14346. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.V.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Development of a coupled geophysical–geothermal scheme for quantification of hydrates in gas hydrate-bearing permafrost sediments. Phys. Chem. Chem. Phys. 2021, 23, 24249–24264. [Google Scholar] [CrossRef]
- Hovland, M.; Gallagher, J.W.; Clennell, M.B.; Lekvam, K. Gas hydrate and free gas volumes in marine sediments: Example from the Niger Delta front. Mar. Pet. Geol. 1997, 14, 245–255. [Google Scholar] [CrossRef]
- Schicks, J.M. Gas hydrates in nature and in the laboratory: Necessary requirements for formation and properties of the resulting hydrate phase. ChemTexts 2022, 8, 13. [Google Scholar] [CrossRef]
- You, K.; Flemings, P.B.; Malinverno, A.; Collett, T.S.; Darnell, K. Mechanisms of methane hydrate formation in geological systems. Rev. Geophys. 2019, 57, 1146–1196. [Google Scholar] [CrossRef]
- Yoo, D.G.; Kang, N.K.; Yi, B.Y.; Kim, G.Y.; Ryu, B.J.; Lee, K.; Lee, G.H.; Riedel, M. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Mar. Pet. Geol. 2013, 47, 236–247. [Google Scholar] [CrossRef]
- Mosher, D.C. A margin-wide BSR gas hydrate assessment: Canada’s Atlantic margin. Mar. Pet. Geol. 2011, 28, 1540–1553. [Google Scholar] [CrossRef]
- Madrussani, G.; Rossi, G.; Camerlenghi, A. Gas hydrates, free gas distribution and fault pattern on the west Svalbard continental margin. Geophys. J. Int. 2010, 180, 666–684. [Google Scholar] [CrossRef]
- Ker, S.; Thomas, Y.; Riboulot, V.; Sultan, N.; Bernard, C.; Scalabrin, C.; Ion, G.; Marsset, B. Anomalously deep BSR related to a transient state of the gas hydrate system in the western Black Sea. Geochem. Geophys. Geosyst. 2019, 20, 442–459. [Google Scholar] [CrossRef] [Green Version]
- Hovland, M.; Svensen, H. Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Mar. Geol. 2006, 228, 15–23. [Google Scholar] [CrossRef]
- Riedel, M.; Bahk, J.J.; Kim, H.S.; Yoo, D.G.; Kim, W.S.; Ryu, B.J. Seismic facies analyses as aid in regional gas hydrate assessments. Part-I: Classification analyses. Mar. Pet. Geol. 2013, 47, 248–268. [Google Scholar] [CrossRef]
- Wu, S.Y.; Liu, J.; Xu, H.N.; Liu, C.L.; Ning, F.L.; Chu, H.X.; Wu, H.R.; Wang, K. Application of frequency division inversion in the prediction of heterogeneous natural gas hydrates reservoirs in the Shenhu Area, South China Sea. China Geol. 2022, 5, 251–266. [Google Scholar] [CrossRef]
- Hampson, D. AVO inversion, theory and practice. Lead. Edge 1991, 10, 39–42. [Google Scholar] [CrossRef]
- Buland, A.; Omre, H. Bayesian linearized AVO inversion. Geophysics 2003, 68, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Chen MA, P.; Riedel, M.; Hyndman, R.D.; Dosso, S.E. AVO inversion of BSRs in marine gas hydrate studies. Geophysics 2007, 72, C31–C43. [Google Scholar] [CrossRef]
- Ojha, M.; Sain, K. Seismic velocities and quantification of gas-hydrates from AVA modeling in the western continental margin of India. Mar. Geophys. Res. 2007, 28, 101–107. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, C.; Zhang, G. Confirmation of AVO Attribute Inversion Methods for Gas Hydrate Characteristics Using Drilling Results from the Shenhu Area, South China Sea. Pure Appl. Geophys. 2021, 178, 477–490. [Google Scholar] [CrossRef]
- Wang, Y. Approximations to the Zoeppritz equations and their use in AVO analysis. Geophysics 1999, 64, 1920–1927. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Geng, J.; Wu, X.; Zhao, L.X.; Zhang, H. Data-driven method for an improved linearised AVO inversion. J. Geophys. Eng. 2021, 18, 1–22. [Google Scholar] [CrossRef]
- Alemie, W.; Sacchi, M.D. High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution. Geophysics 2011, 76, R43–R55. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhou, H.; Zhang, M.Z.; Yu, B.; Wang, L.Q. High-resolution AVO inversion based on low-frequency information constraint. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2019; pp. 714–718. [Google Scholar]
- Yi, B.Y.; Yoon, Y.H.; Kim, Y.J.; Kim, G.Y.; Joo, Y.H.; Kang, N.K.; Kim, J.K.; Chun, J.H.; Yoo, D.G. Characterization of thin gas hydrate reservoir in ulleung basin with stepwise seismic inversion. Energies 2021, 14, 4077. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology: Theory and Methods; WH Freeman and Co.: New York, NY, USA, 1980. [Google Scholar]
- Gisolf, D.; Haffinger, P.R.; Doulgeris, P. Reservoir-oriented wave-equation-based seismic amplitude variation with offset inversion. Interpretation 2017, 5, SL43–SL56. [Google Scholar] [CrossRef]
- Yang, J.Q.; Abubakar, A.; van den Berg, P.M.; Habashy, T.M.; Reitich, F. A CG-FFT approach to the solution of a stress-velocity formulation of three-dimensional elastic scattering problems. J. Comput. Phys. 2008, 227, 10018–10039. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Al-Said, E. New iterative methods for solving integral equations. Int. J. Mod. Phys. B 2011, 25, 4655–4660. [Google Scholar] [CrossRef]
- Golub, G.H.; Hansen, P.C.; O’Leary, D.P. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 1999, 21, 185–194. [Google Scholar] [CrossRef]
- Borsdorff, T.; Hasekamp, O.P.; Wassmann, A.; Landgraf, J. Insights into Tikhonov regularization: Application to trace gas column retrieval and the efficient calculation of total column averaging kernels. Atmos. Meas. Tech. 2014, 7, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Strong, D.; Chan, T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 2003, 19, S165. [Google Scholar] [CrossRef]
- Hu, W.; Abubakar, A.; Habashy, T.M. Simultaneous multifrequency inversion of full-waveform seismic data. Geophysics 2009, 74, R1–R14. [Google Scholar] [CrossRef]
- Brezis, H.; Van Schaftingen, J.; Yung, P.L. A surprising formula for Sobolev norms. Proc. Natl. Acad. Sci. USA 2021, 118, e2025254118. [Google Scholar] [CrossRef]
- Wu, N.Y.; Zhang, H.Q.; Yang, S.X.; Zhang, G.X.; Liang, J.Q.; Lu, J.A.; Su, X.; Schultheiss, P.; Holland, M.; Zhu, Y.H. Gas Hydrate System of Shenhu Area, Northern South China Sea: Geochemical Results. J. Geol. Res. 2011, 2011, 370298. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Ye, Y.G.; Meng, Q.G.; He, X.G.; Lu, H.L.; Zhang, J.; Liu, J.; Yang, S.X. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea. Mar. Geol. 2012, 307, 22–27. [Google Scholar] [CrossRef]
- Liang, J.; Meng, M.M.; Liang, J.Q.; Ren, J.F.; He, Y.L.; Li, T.W.; Xu, M.J.; Wang, X.X. Drilling Cores and Geophysical Characteristics of Gas Hydrate-Bearing Sediments in the Production Test Region in the Shenhu sea, South China sea. Front. Earth Sci. 2022, 10, 911123. [Google Scholar] [CrossRef]
- Pang, X.; Ren, J.Y.; Zheng, J.Y.; Liu, J.; Peng, Y.; Liu, B.J. Petroleum geology controlled by extensive detachment thinning of continental margin crust: A case study of Baiyun sag in the deep-water area of northern South China Sea. Pet. Explor. Dev. 2018, 45, 29–42. [Google Scholar] [CrossRef]
- Chen, D.X.; Wu, S.G.; Dong, D.D.; Mi, L.J.; Fu, S.Y.; Shi, H.S. Focused fluid flow in the Baiyun Sag, northern South China Sea: Implications for the source of gas in hydrate reservoirs. Chin. J. Oceanol. Limnol. 2013, 31, 178–189. [Google Scholar] [CrossRef]
- Lin, H.; Shi, H. Hydrocarbon accumulation conditions and exploration direction of Baiyun–Liwan deep water areas in the Pearl River Mouth Basin. Nat. Gas Ind. B 2014, 1, 150–158. [Google Scholar] [CrossRef]
- Gao, G.; Gang, W.; Zhang, G.; He, W.; Cui, X.; Shen, H.; Miao, S. Physical simulation of gas reservoir formation in the Liwan 3-1 deep-water gas field in the Baiyun sag, Pearl River Mouth Basin. Nat. Gas Ind. B 2015, 2, 77–87. [Google Scholar] [CrossRef]
- Su, P.B.; Liang, J.Q.; Sha, Z.B.; Fu, S.Y.; Lei, H.Y.; Gong, Y.H. Dynamic simulation of gas hydrate reservoirs in the Shenhu area, the northern South China Sea. Acta Pet. Sin. 2011, 32, 226. [Google Scholar]
- Liang, J.; Wang, M.J.; Lu, J.A.; Liang, J.Q.; Wang, H.B.; Kuang, Z.G. Characteristics of sonic and seismic velocities of gas hydrate bearing sediments in the Shenhu area, northern South China Sea. Nat. Gas Ind. 2013, 33, 29–35. [Google Scholar]
- Xue, H.; Du, M.; Wen, P.F.; Zhang, R.W.; Xu, Y.X.; Chen, X. Research and application of fine velocity modeling to gas hydrate testing development in the Shenhu area of South China Sea. Mar. Geol. Front. 2019, 35, 8–17. [Google Scholar]
- Kennett, B.L.N. Seismic Wave Propagation in Stratified Media; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Wang, Y.; Wang, Y.; Yan, H. High-Resolution Seismic Characterization of Gas Hydrate Reservoir Using Wave-Equation-Based Inversion. Energies 2022, 15, 7652. https://doi.org/10.3390/en15207652
Shao J, Wang Y, Wang Y, Yan H. High-Resolution Seismic Characterization of Gas Hydrate Reservoir Using Wave-Equation-Based Inversion. Energies. 2022; 15(20):7652. https://doi.org/10.3390/en15207652
Chicago/Turabian StyleShao, Jie, Yibo Wang, Yanfei Wang, and Hongyong Yan. 2022. "High-Resolution Seismic Characterization of Gas Hydrate Reservoir Using Wave-Equation-Based Inversion" Energies 15, no. 20: 7652. https://doi.org/10.3390/en15207652
APA StyleShao, J., Wang, Y., Wang, Y., & Yan, H. (2022). High-Resolution Seismic Characterization of Gas Hydrate Reservoir Using Wave-Equation-Based Inversion. Energies, 15(20), 7652. https://doi.org/10.3390/en15207652