Full-Scale Digesters: An Online Model Parameter Identification Strategy
Abstract
:1. Introduction
2. The Anaerobic Digestion Mass-Balance Model
3. Experimental Results and Characteristics of the Reactor
4. An Adaptive Modeling Identification Strategy for Anaerobic Reactors
4.1. Parameter Identification Based on Optimization
4.1.1. Static Parameter Identification Procedure: Genetic Algorithms
4.1.2. Static Parameter Identification Procedure: Step-Ahead
4.2. An Asymptotic Observer for State Estimation When Reaction Rates Are Unknown
Observer Design Using the AM2 Extended Model
- The original nonlinear state space system is decoupled into two parts: the subsystem equation in (31), and the other part that includes the remaining state variables, inorganic carbon C, and total alkalinity Z.
- The information usually contained on matrices Q and Q is located in the state dynamic variable C.
- The matrices Q and Q are the reaction rates r and r.
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lora Grando, R.; de Souza Antune, A.M.; da Fonseca, F.V.; Sánchez, A.; Barrena, R.; Font, X. Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renew. Sustain. Energy Rev. 2017, 80, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- European Biogas Association. EBA Statistical Report; European Biogas Association: Brussels, Belgium, 2017. [Google Scholar]
- Gaida, D.; Wolf, C.; Bongards, M. Feed control of anaerobic digestion processes for renewable energy production: A review. Renew. Sustain. Energy Rev. 2017, 68, 869–875. [Google Scholar] [CrossRef]
- Dewasme, L.; Sbarciog, M.; Rocha-Cózatl, E.; Haugen, F.; Vande Wouwer, A. State and unknown input estimation of an anaerobic digestion reactor with experimental validation. Control Eng. Pract. 2019, 85, 280–289. [Google Scholar] [CrossRef]
- García-Diéguez, C.; Bernard, O.; Roca, E. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater. Bioresour. Technol. 2013, 132, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Costello, D.; Greenfield, P.; Lee, P. Dynamic Modelling of a Single-stage High-rate Anaerobic Reactor—I. Model Derivation. Water Res. 1991, 25, 847–858. [Google Scholar] [CrossRef]
- Méndez-Acosta, H.; Palacios-Ruiz, B.; Alcaraz-González, V.; González-Álvarez, V.; García-Sandoval, J. A robust control scheme to improve the stability of anaerobic digestion processes. J. Process Control 2010, 20, 375–383. [Google Scholar] [CrossRef]
- Chaib Draa, K.; Zemouche, A.; Alma, M.; Voos, H.; Darouach, M. A discrete-time nonlinear state observer for the anaerobic digestion process. Int. J. Robust Nonlinear Control 2019, 29, 1279–1301. [Google Scholar] [CrossRef]
- Marquez-Ruiz, A.; Mendez-Blanco, C.; Porru, M.; Özkan, L. State and Parameter Estimation Based On Extent Transformations. Comput. Aided Chem. Eng. 2018, 44, 583–588. [Google Scholar]
- Hoil, K.; Li, D.; Yugeng, X.; Jiwei, L. Model Predictive Control with On-line Model Identification for Anaerobic Digestion Processes. Biochem. Eng. J. 2017, 128, 63–75. [Google Scholar]
- Mauky, E.; Weinrich, S.; Jacobi, H.; Naegele, H.J.; Liebetrau, J.; Nelles, M. Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chem. Eng. Technol. 2016, 39, 652–664. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Z.; Rincon, D.; Garcia, C.; Christofides, P.D. Operational safety of chemical processes via Safeness-Index based MPC: Two large-scale case studies. Comput. Chem. Eng. 2019, 125, 204–215. [Google Scholar] [CrossRef]
- Marquez-Ruiz, A.; Mendez-Blanco, C.; Ozcan, L. Constrained Control and Estimation of Homogeneous Reaction Systems Using Extent-Based Linear Parameter Varying Models. Ind. Eng. Chem. Res. 2020, 59, 2242–2251. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D.; Genovesi, A.; Steyer, J. Dynamical Model Development and Parameter Identification for an Anaerobic Wastewater Treatment Process. Biotechnol. Bioeng. 2001, 75, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Hassam, S.; Ficara, E.; Leva, A.; Harmand, J. A generic and Systematic Procedure to Derive a Simplified Model from the Anaerobic Digestion Model No. 1 (ADM1). Biochem. Eng. J. 2015, 99, 193–203. [Google Scholar] [CrossRef]
- Flores Estrella, R.; Alcaraz-González, V.; García-Sandoval, J.; González-Álvarez, V. Robust output disturbance rejection control for anaerobic digestion processes. J. Process Control 2019, 75, 15–23. [Google Scholar] [CrossRef]
- Lara-Cisneros, G.; Aguilar-López, R.; Femat, R. On the dynamic optimization of methane production in anaerobic digestion via extremum-seeking control approach. Comput. Chem. Eng. 2015, 75, 49–59. [Google Scholar] [CrossRef]
- Isaza-Hurtado, J.; Botero-Castro, H.; Alvarez, H. Robust Estimation for LPV Systems in the Presence of Non-uniform Measurements. Automatica 2020, 115, 108901. [Google Scholar] [CrossRef]
- Rossi, E.; Pecorini, I.; Ferrara, G.; Iannelli, R. Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition. Energies 2022, 15, 5515. [Google Scholar] [CrossRef]
- Andrews, J.F. A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates. Biotechnol. Bioeng. 1968, 10, 707–723. [Google Scholar] [CrossRef]
- Song, Y.J.; Kyung-Su, O.; Lee, B.; Pak, D.W.; Cha, J.H.; Park, J.G. Characteristics of Biogas Production from Organic Wastes Mixed at Optimal Ratios in an Anaerobic Co-digestion Reactor. Energies 2021, 14, 6812. [Google Scholar] [CrossRef]
- Ahmed, W.; Rodríguez, J. A model predictive optimal control system for the practical automatic start-up of anaerobic digesters. Water Res. 2020, 174, 115599. [Google Scholar] [CrossRef] [PubMed]
- de la Rubia, M.; Perez, M.; Romero, L.; Sales, D. Effect of Solids Retention Time (SRT) on Pilot Scale Anaerobic Thermophilic Sludge Digestion. Process Biochem. 2006, 41, 79–86. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Helath Association/American Water Works Association/Water Environment Federation Stable: Washington, DC, USA, 2017. [Google Scholar]
- Heng, G.C.; Isa, M.H.; Lock, S.S.M.; Ng, C.A. Process Optimization of Waste Activated Sludge in Anaerobic Digestion and Biogas Production by Electrochemical Pre-Treatment Using Ruthenium Oxide Coated Titanium Electrodes. Sustainability 2021, 13, 4874. [Google Scholar] [CrossRef]
- Emebu, S.; Pecha, J.; Janáčová, D. Review on anaerobic digestion models: Model classification & elaboration of process phenomena. Renew. Sustain. Energy Rev. 2022, 160, 112288. [Google Scholar]
- Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Rawlings, J.B.; Patel, N.R.; Risbeck, M.J.; Maravelias, C.T.; Wenzel, M.J.; Turney, R.D. Economic MPC and real-time decision making with application to large-scale HVAC energy systems. Comput. Chem. Eng. 2018, 114, 89–98. [Google Scholar] [CrossRef]
- Vukov, M.; Gros, S.; Horn, G.; Frison, G.; Geebelen, K.; Jørgensen, J.; Swevers, J.; Diehl, M. Real-time nonlinear MPC and MHE for a large-scale mechatronic application. Control Eng. Pract. 2015, 45, 64–78. [Google Scholar] [CrossRef]
- Said, Z.; Nguyen, T.H.; Sharma, P.; Li, C.; Ali, H.M.; Nguyen, V.N.; Pham, V.V.; Ahmed, S.F.; Van, D.N.; Truong, T.H. Multi-Attribute Optimization of Sustainable Aviation Fuel Production-process from Microalgae Source. Fuel 2022, 324, 124759. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Hydrotermal Pretreatment of Rice Straw Biomass: A Potential and Promising Method for Enhanced Methane Production. Appl. Energy 2012, 94, 129–140. [Google Scholar] [CrossRef]
- Hanema, J.; Lazar, M.; Tóth, R. Tube-based LPV Constant Output Reference Tracking MPC with Error Bound. IFAC-Pap. Line 2017, 50, 8612–8617. [Google Scholar] [CrossRef]
- Núñez-Mata, O.; Palma-Behnke, R.; Valencia, F.; Mendoza-Araya, P.; Jimenez-Estevez, G. Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy. Energies 2018, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Haldane, J. Enzynmes; MIT Press: Cambridge, MA, USA, 1965; p. 184. [Google Scholar]
- Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks. Upstream Oil Gas Technol. 2022, 9, 100071. [CrossRef]
- Srinivasan, B.; Amrhein, M.; Bonvin, D. American Institute of Chemical Engineers. AIChE J. 1998, 44, 1858–1867. [Google Scholar] [CrossRef]
- Bastin, G.; Dochain, D. On-Line Estimation and Adaptive Control of Bioreactors, Process Measurement and Control; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
D (d) | Time Period (d) | |
---|---|---|
Start | End | |
0.03 | 1 | 40 |
0.04 | 41 | 120 |
0.05 | 121 | 207 |
Variable | S | S | Z | pH | CH |
---|---|---|---|---|---|
Improvement (%) | 78.7 | 60.5 | 38.6 | 25.5 | 7.7 |
Parameter | Value | Unit | |
---|---|---|---|
Genetic Algorithm | Step-Ahead | ||
0.26 | 0.06 | d | |
1.52 | 0.05 | d | |
K | 213.89 | 298.03 | kg/m |
K | 168.76 | 1.08 | mol/m |
k | 29.34 | 1.34 × 10 | – |
k | 31.14 | 216.80 | mol/kg |
k | 40.81 | 14.23 | mol/kg |
k | 36.61 | 8.58 × 10 | mol/kg |
k | 43.21 | 1.14 × 10 | mol/kg |
k | 549.99 | 550.00 | mol/kg |
K | 0.68 | 3.21 | mol/m |
K | 1.28 | 4.45 | mol/m |
Z | V | 19.66 | mol/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés, L.G.; Barbancho, J.; Larios, D.F.; Marin-Batista, J.D.; Mohedano, A.F.; Portilla, C.; de la Rubia, M.A. Full-Scale Digesters: An Online Model Parameter Identification Strategy. Energies 2022, 15, 7685. https://doi.org/10.3390/en15207685
Cortés LG, Barbancho J, Larios DF, Marin-Batista JD, Mohedano AF, Portilla C, de la Rubia MA. Full-Scale Digesters: An Online Model Parameter Identification Strategy. Energies. 2022; 15(20):7685. https://doi.org/10.3390/en15207685
Chicago/Turabian StyleCortés, Luis G., J. Barbancho, D. F. Larios, J. D. Marin-Batista, A. F. Mohedano, C. Portilla, and M. A. de la Rubia. 2022. "Full-Scale Digesters: An Online Model Parameter Identification Strategy" Energies 15, no. 20: 7685. https://doi.org/10.3390/en15207685
APA StyleCortés, L. G., Barbancho, J., Larios, D. F., Marin-Batista, J. D., Mohedano, A. F., Portilla, C., & de la Rubia, M. A. (2022). Full-Scale Digesters: An Online Model Parameter Identification Strategy. Energies, 15(20), 7685. https://doi.org/10.3390/en15207685