Analysis of Particle Emissions from a Jet Engine Including Conditions of Afterburner Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Engine, Fuels, Operating Schedule
2.2. Apparatus and Procedures
2.3. Data Analyses
- Particle Number Emission Indices: PM Number Emissions Index (EIN) and Particle Number Emissions Intensity (EN);
- PM Mass Emission Indices: PM Mass Emission Index (EIM) and PM Mass Emission Intensity (EIM);
- Particle size distribution: Differential Particle Number Emission Index, Differential Particle Volume Emission Index, Differential Particle Mass Emission Index.
3. Results
3.1. Particle Number Emission Indices
3.2. PM Mass Emission Indices
3.3. Particle Size Distribution
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epstein, A.H.; O’Flarity, S.M. Considerations for Reducing Aviation’s CO2 with Aircraft Electric Propulsion. J. Propuls. Power 2019, 35, 572–582. [Google Scholar] [CrossRef]
- Carlsson, F.; Hammar, H. Incentive-based regulation of CO2 emissions from international aviation. J. Air Transp. Manag. 2002, 8, 365–372. [Google Scholar] [CrossRef]
- Hassan, M.; Pfaender, H.; Mavris, D. Probabilistic assessment of aviation CO2 emission targets. Transp. Res. Part D Transp. Environ. 2018, 63, 362–376. [Google Scholar] [CrossRef]
- Jasiński, R.; Galant-Gołębiewska, M.; Nowak, M.; Ginter, M.; Kurzawska, P.; Kurtyka, K.; Maciejewska, M. Case Study of Pollution with Particulate Matter in Selected Locations of Polish Cities. Energies 2021, 14, 2529. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Pickett, S.T.; Li, W.; Qian, Y. Multicontaminant air pollution in Chinese cities. Bull. World Health Organ. 2018, 96, 233–242E. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Andrzejewski, M.; Galant-Gołębiewska, M.; Rymaniak, L. Simulation assessment of the selected combination of road and rail infrastructure in the aspect of choosing the route of road transport means. AIP Conf. Proc. 2019, 2078, 020055. [Google Scholar] [CrossRef]
- Karpiuk, W.; Borowczyk, T.; Idzior, M.; Smolec, R. The Evaluation of the Impact of Design and Operating Parameters of Common Rail System Fueled by Bio-Fuels on the Emission of Harmful Compounds. DEStech Trans. Environ. Energy Earth Sci. 2016, 16–22. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Mills, I.C.; Walton, H.; Anderson, H.R. Fine particle components and health—A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2014, 25, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef]
- Przespolewska-Gdowik, K.; Jasiński, R. Analysis of the Nicolaus Copernicus Airport Activity in Terms of the Flight Operations Impact on Air Pollution. Energies 2021, 14, 8236. [Google Scholar] [CrossRef]
- Jasinski, R. Mass and number analysis of particles emitted during aircraft landing. E3S Web Conf. 2018, 44, 00057. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. COVID-19 pandemic and prospects for recovery of the global aviation industry. J. Air Transp. Manag. 2021, 92, 102022. [Google Scholar] [CrossRef]
- Fantke, P.; Jolliet, O.; Evans, J.S.; Apte, J.; Cohen, A.J.; Hänninen, O.; Hurley, F.; Jantunen, M.J.; Jerrett, M.; Levy, J.I.; et al. Health effects of fine particulate matter in life cycle impact assessment: Findings from the Basel Guidance Workshop. Int. J. Life Cycle Assess. 2014, 20, 276–288. [Google Scholar] [CrossRef]
- Chiarini, B.; D’Agostino, A.; Marzano, E.; Regoli, A. Air quality in urban areas: Comparing objective and subjective indicators in European countries. Ecol. Indic. 2020, 121, 107144. [Google Scholar] [CrossRef]
- Koolen, C.D.; Rothenberg, G. Air Pollution in Europe. ChemSusChem 2019, 12, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R. Number and mass analysis of particles emitted by aircraft engine. MATEC Web Conf. 2017, 118, 00023. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- Bae, H.J. Effects of short-term exposure to PM10 and PM2.5 on mortality in Seoul. Korean J. Environ. Health Sci. 2021, 40, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Karpiuk, W.; Smolec, R.; Idzior, M. DME Use in Self-Ignition Engines Equipped with Common Rail Injection Systems. DEStech Trans. Environ. Energy Earth Sci. 2016, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Przysowa, R.; Gawron, B.; Białecki, T.; Łęgowik, A.; Merkisz, J.; Jasiński, R. Performance and Emissions of a Microturbine and Turbofan Powered by Alternative Fuels. Aerospace 2021, 8, 25. [Google Scholar] [CrossRef]
- Kurzawska, P.; Jasiński, R. Overview of Sustainable Aviation Fuels with Emission Characteristic and Particles Emission of the Turbine Engine Fueled ATJ Blends with Different Percentages of ATJ Fuel. Energies 2021, 14, 1858. [Google Scholar] [CrossRef]
- Merkisz, J.; Idzior, M.; Lijewski, P.; Fuc, P.; Karpiuk, W. The Analysis of the Quality of Fuel Spraying in Relation to Selected Rapeseed Oil Fuels for the Common Rail System. In Proceedings of the Ninth Asia-Pacific International Symposium on Combustion and Energy Utilization, Beijing, China, 2–6 November 2008; pp. 352–356. [Google Scholar]
- Contreras, A.; Yigit, S.; Özay, K.; Veziroglu, T. Hydrogen as aviation fuel: A comparison with hydrocarbon fuels. Int. J. Hydrog. Energy 1997, 22, 1053–1060. [Google Scholar] [CrossRef]
- Baroutaji, A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 2019, 106, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Christodoulakis, J.; Karinou, F.; Kelemen, M.; Kouremadas, G.; Fotaki, E.; Varotsos, C. Assessment of air pollution from Athens International Airport and suggestions for adaptation to new aviation emissions restrictions. Atmos. Pollut. Res. 2022, 13, 101441. [Google Scholar] [CrossRef]
- Harrison, R.M.; Masiol, M.; Vardoulakis, S. Civil aviation, air pollution and human health. Environ. Res. Lett. 2015, 10, 041001. [Google Scholar] [CrossRef] [Green Version]
- Owen, B.; Anet, J.G.; Bertier, N.; Christie, S.; Cremaschi, M.; Dellaert, S.; Edebeli, J.; Janicke, U.; Kuenen, J.; Lim, L.; et al. Review: Particulate Matter Emissions from Aircraft. Atmosphere 2022, 13, 1230. [Google Scholar] [CrossRef]
- Spicer, C.W.; Holdren, M.W.; Cowen, K.A.; Joseph, D.W.; Satola, J.; Goodwin, B.; Mayfield, H.; Laskin, A.; Lizabeth Alexander, M.; Ortega, J.V.; et al. Rapid measurement of emissions from military aircraft turbine engines by downstream extractive sam-pling of aircraft on the ground: Results for C-130 and F-15 aircraft. Atmos. Environ. 2009, 43, 2612–2622. [Google Scholar] [CrossRef]
- Chan, T.W.; Pham, V.; Chalmers, J.; Davison, C.; Chishty, W.; Poitras, P. Immediate impacts on particulate and gaseous emissions from a T56 turbo-prop engine using a biofuel blend. In SAE Technical Paper Series, Proceedings of the SAE 2013 AeroTech Congress & Exhibition, Montreal, QC, USA, 24–26 September 2013; SAE International 400 Commonwealth Drive: Warrendale, PA, USA, 2013. [Google Scholar]
- Corporan, E.; Quick, A.; DeWitt, M.J. Characterization of Particulate Matter and Gaseous Emissions of a C-130H Aircraft. J. Air Waste Manag. Assoc. 2008, 58, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-D.; Corporan, E.; DeWitt, M.J.; Spicer, C.W.; Holdren, M.W.; Cowen, K.A.; Laskin, A.; Harris, D.B.; Shores, R.C.; Kagann, R.; et al. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Strategic Environmental Research and Development Program. J. Air Waste Manag. Assoc. 2008, 58, 787–796. [Google Scholar] [CrossRef]
- Jasiński, R.; Markowski, J.; Pielecha, J. Probe Positioning for the Exhaust Emissions Measurements. Procedia Eng. 2017, 192, 381–386. [Google Scholar] [CrossRef]
- Ehyaei, M.A.; Anjiridezfuli, A.; Rosen, M.A. Fxergetic analysis of an aircraft turbojet engine with an afterburner. Therm. Sci. 2013, 17, 1181–1194. [Google Scholar] [CrossRef] [Green Version]
- Misztal, A.; Szymanski, G.M.; Misztal, W.; Komorski, P. Innovative application of quality methods in the homogeneity assessment of the F-16 aircraft group in terms of generated noise. Maint. Reliab. 2022, 24, 187–199. [Google Scholar] [CrossRef]
- Ardebili, S.M.S.; Kocakulak, T.; Aytav, E.; Calam, A. Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods. Energy 2022, 254, 124155. [Google Scholar] [CrossRef]
- Kinsey, J. Personal Communication; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2006.
- Wey, C.C. Aircraft particle emissions eXperiment (APEX). In Particulate Data Provided by National Aeronautics and Space Administration; University of Missouri Rolla, Aerodyne Research Inc., and Wright Patterson Air Force Base: Cleveland, OH, USA, 2006. [Google Scholar]
- Durdina, L.; Brem, B.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K.; Smallwood, G.; Hagen, D.; Sierau, B.; Wang, J. Determination of PM mass emissions from an aircraft turbine engine using particle effective density. Atmos. Environ. 2014, 99, 500–507. [Google Scholar] [CrossRef]
- Timko, M.T.; Onasch, T.B.; Northway, M.J.; Jayne, J.T.; Canagaratna, M.R.; Herndon, S.C.; Wood, E.C.; Miake-Lye, R.C.; Knighton, W.B. Gas turbine engine emissions e Part II: Chemical properties of particulate matter. ASME J. Eng. Gas Turbines Power 2010, 132, 061505. [Google Scholar] [CrossRef]
- Lobo, P.; Durdina, L.; Smallwood, G.J.; Rindlisbacher, T.; Siegerist, F.; Black, E.A.; Yu, Z.; Mensah, A.A.; Hagen, D.E.; Mi-ake-Lye, R.C.; et al. Measurement of aircraft engine non-volatile PM emissions: Results of the aviationparticle regulatory instrumentation demonstration exper-iment (A-PRIDE) 4 campaign. Aerosol Sci. Technol. 2015, 49, 472e484. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Liscinsky, D.S.; Fortner, E.C.; Yacovitch, T.I.; Croteau, P.; Herndon, S.C.; Miake-Lye, R.C. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines. Atmos. Environ. 2017, 160, 9–18. [Google Scholar] [CrossRef]
- Lobo, P.; Hagen, D.E.; Whitefield, P.D. Measurement and analysis of aircraft engine PM emissions downwind of an active runway at the Oakland International Airport. Atmos. Environ. 2012, 61, 114–123. [Google Scholar] [CrossRef]
- Kinsey, J.S.; Dong, Y.; Williams, D.C.; Logan, R. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1–3. Atmos. Environ. 2010, 44, 2147–2156. [Google Scholar] [CrossRef]
- Lopes, M.; Russo, A.; Monjardino, J.; Gouveia, C.; Ferreira, F. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmos. Pollut. Res. 2019, 10, 1454–1463. [Google Scholar] [CrossRef]
Maximum thrust Maximum thrust with afterburner | 73.13 kN 128.91 kN |
Specific Fuel Consumption (for maximum thrust) | 0.693 kg/kN·h |
Specific Fuel Consumption with afterburner | 2.6 kg/kN·h |
Bypass ratio | 0.36 |
Weight | 1370 kg |
Test Number | Fuel Type | Average Sample Gas Temperature (°C) | Fuel Flow Rate (kg/h) |
---|---|---|---|
1-pretest, warm | JP-8 | 15.4 ± 0.1 | 512; 1200; 2570; 25,878 ±3% |
2 | JP-8 | 15.9 ± 0.1 | 512; 801; 1190; 1305; 1743; 2388; 2568; 4419; 5835; 25,878 ± 3% |
3 | JP-8 | 16.1 ± 0.1 | 510; 799; 1210; 1306; 1744; 2382; 2570; 4420; 5830; 25,878 ± 3% |
4 | JP-8 | 15.8 ± 0.1 | 512; 802; 1191; 1307; 1749; 2381; 2561; 4413; 5843; 25,878 ± 3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiński, R. Analysis of Particle Emissions from a Jet Engine Including Conditions of Afterburner Use. Energies 2022, 15, 7696. https://doi.org/10.3390/en15207696
Jasiński R. Analysis of Particle Emissions from a Jet Engine Including Conditions of Afterburner Use. Energies. 2022; 15(20):7696. https://doi.org/10.3390/en15207696
Chicago/Turabian StyleJasiński, Remigiusz. 2022. "Analysis of Particle Emissions from a Jet Engine Including Conditions of Afterburner Use" Energies 15, no. 20: 7696. https://doi.org/10.3390/en15207696
APA StyleJasiński, R. (2022). Analysis of Particle Emissions from a Jet Engine Including Conditions of Afterburner Use. Energies, 15(20), 7696. https://doi.org/10.3390/en15207696