Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses
Abstract
:1. Introduction
2. Methodology
2.1. Data Retrieval and Research Design
- The present study is based on bibliometric data analysis to understand the trend in research from publications, while the former reviews were based on developments in marine research, looking more at practical works, mostly from the industry and hose manufacturers.
- Additionally, the present study looks at metrics from citations, publication subjects, publication types, authorships, etc., while the former reviews looked at metrics from patents and state-of-the-art works from individual research outputs made on marine hoses as well as industrial marine hose products.
- Lastly, the present study involves a systematic literature review called scientometrics which uses bibliometric data, while the former employed a traditional literature review which uses individual authored research, industry presentations, conference papers, and company reports to identify progress made in the industry and academia.
- Both reviews present different findings on marine hose development and publication trends, despite the limited expertise required from this technical subject.
2.2. Scientometric Review: Tools and Framework
3. Results and Discussion
4. Thematic Areas for the Research Trends on Marine Hose
No. | Thematic Areas | Sources |
---|---|---|
1 | Classification and Impact of marine hose research | [7,8,17,18,19,20,21] |
2 | Technology Adaptation on marine hoses | [4,5,6,8,9,10,11,12,13] |
3 | Frameworks and Research Designs | [14,15,16] |
4 | Assessments and Research Methods | [20,21,22,23,24,25] |
5 | Drivers of marine hose technology | [26,27,28,29] |
6 | Benefits or Importance of marine hose | [36,37,38,39,40,41,42,43,44,45] |
7 | Issues or Barriers of marine hose | [46,47,48,49] |
8 | Certifications, Guidelines, and Standardization | [8,17,18,19,189,190,191,192,193,194,195,196,197,198,199] |
9 | Application of marine hoses on SPMs | [7,70,111,200,201,202,203,204,205,206,207,208,209,210,211] |
5. Future Research Areas on Marine Hose
6. Concluding Remarks
- The research on marine hoses for the offshore marine industry is the first subject of this scientometric review.
- Secondly, a thorough meta-science study of marine hoses was performed using academic databases.
- Thirdly, using the available literature, the assessment of the marine hose research was examined.
- Fourthly, to visualize the outcomes, a thorough analysis of the data was conducted utilizing cutting-edge techniques using tools such as Voyant tools for the word cloud.
- Lastly, the examination of the research pattern was based on the outcome of this scientometric analysis on marine hoses, which also showed progress on the developments made.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BP. BP Statistical Review of World Energy-2022, 71st ed.; BP PLC: London, UK, 2022; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 29 August 2022).
- IEA. World Energy Outlook 2021 (WEO-2021). International Energy Agency (IEA), Directorate of Sustainability, Technology and Outlooks; IEA: Paris, France, 2021; Available online: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (accessed on 29 August 2022).
- Hamza, M.F.; Sinnathambi, C.M.; Merican, Z.M.A. Recent advancement of hybrid materials used in chemical enhanced oil recovery (CEOR): A review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 012007. [Google Scholar] [CrossRef]
- Hassan, A.M.; Al-Shalabi, E.W.; Ayoub, M.A. Updated Perceptions on Polymer-Based Enhanced Oil Recovery toward High-Temperature High-Salinity Tolerance for Successful Field Applications in Carbonate Reservoirs. Polymers 2022, 14, 2001. [Google Scholar] [CrossRef] [PubMed]
- Aravind, D.; Senthilkumar, K.; Rajini, N.; Kumar, T.S.M.; Chandrasekar, M.; Ismail, S.O.; Yeetsorn, R.; Parameswaranpillai, J.; Siengchin, S.; Devi, M.I. Feasibility of elastomeric composites as alternative materials for marine applications: A compendious review on their properties and opportunities. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2022, 236, 14750902221095321. [Google Scholar] [CrossRef]
- Campion, R.P.; Thomson, B.; Harris, J.A. Elastomers for Fluid Containment in Offshore Oil and Gas Production: Guidelines and Review; Research Report 320; Prepared by MERL Ltd. for the Health and Safety Executive (HSE): Norwich, UK, 2005. Available online: https://www.hse.gov.uk/research/rrpdf/rr320.pdf (accessed on 29 August 2022).
- Amaechi, C.V.; Wang, F.; Ye, J. Mathematical Modelling of Bonded Marine Hoses for Single Point Mooring (SPM) Systems, with Catenary Anchor Leg Mooring (CALM) Buoy application—A Review. J. Mar. Sci. Eng. 2021, 9, 1179. [Google Scholar] [CrossRef]
- Craig, I. Review of Bonded Rubber Flexible Hose Design Codes and Guidelines in Relation to Sea Water Intake Risers on FPSO Vessels. In Proceedings of the Paper Presented at the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016. [Google Scholar] [CrossRef]
- McGeorge, D.; Sodahl, N.; Moslemian, R.; Horte, T. Hybrid and composite risers for deep waters and aggressive reservoirs. In Proceedings of the 14th Offshore Mediterranean Conference (OMC) and Exhibition, Ravenna, Italy, 27–29 March 2019. [Google Scholar]
- Cheldi, T.; Cavassi, P.; Serricchio, M.; Spenelli, C.M.; Vietina, G.; Ballabio, S. Use of spoolable reinforced thermoplastic pipes for oil and water transportation. In Proceedings of the 14th Offshore Mediterranean Conference (OMC) and Exhibition, Revenna, Italy, 27–29 March 2019. [Google Scholar]
- de Leon, A.C.C.; da Silva, G.; Pangilinan, K.D.; Chen, Q.; Caldona, E.B.; Advincula, R.C. High performance polymers for oil and gas applications. React. Funct. Polym. 2021, 162, 104878. [Google Scholar] [CrossRef]
- Raj, K.; Vasudevan, A.; Pugazhendhi, L. A review on different hybrid composites for aircraft structures. Mater. Today Proc. 2021. ahead of print. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Antaki, G.A. Piping and Pipeline Engineering; Marcel Dekker Inc.: New York, NY, USA, 2013; pp. 104–174. [Google Scholar] [CrossRef]
- Yu, K.; Morozov, E.V.; Ashraf, M.A.; Shankar, K. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. J. Reinf. Plast. Compos. 2017, 36, 1514–1530. [Google Scholar] [CrossRef]
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-Based Composites: An Indispensable Material for Present and Future Applications. Int. J. Polym. Sci. 2020, 2020, 8834518. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Chesterton, C.; Butler, H.O.; Wang, F.; Ye, J. Review on the design and mechanics of bonded marine hoses for Catenary Anchor Leg Mooring (CALM) buoys. Ocean Eng. 2021, 242, 110062. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Chesterton, C.; Butler, H.O.; Wang, F.; Ye, J. An Overview on Bonded Marine Hoses for sustainable fluid transfer and (un)loading operations via Floating Offshore Structures (FOS). J. Mar. Sci. Eng. 2021, 9, 1236. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Wang, F.; Ja’E, I.A.; Aboshio, A.; Odijie, A.C.; Ye, J. A literature review on the technologies of bonded hoses for marine applications. Ships Offshore Struct. 2022, 1–32, ahead of print. [Google Scholar] [CrossRef]
- Løtveit, S.A.; Muren, J.; Nilsen-Aas, C. Bonded Flexibles–State of the Art Bonded Flexible Pipes; 26583U-1161480945-354, Revision 2.0, Approved on 17.12.2018; PSA: Asker, Norway, 2018; pp. 1–75. Available online: https://www.4subsea.com/wp-content/uploads/2019/01/PSA-Norway-State-of-the-art-Bonded-Flexible-Pipes-2018_4Subsea.pdf (accessed on 17 June 2022).
- Muren, J.; Caveny, K.; Eriksen, M.; Viko, N.G.; MÜLler-Allers, J.; JØRgen, K.U. Un-Bonded Flexible Risers–Recent Field Experience and Actions for Increased Robustness; 0389-26583-U-0032, Revision 5.0; PSA: Asker, Norway, 2013; Volume 2, pp. 1–78. Available online: https://www.ptil.no/contentassets/c2a5bd00e8214411ad5c4966009d6ade/un-bonded-flexible-risers--recent-field-experience-and-actions--for-increased-robustness.pdf (accessed on 12 June 2022).
- Drumond, G.P.; Pasqualino, I.P.; Pinheiro, B.C.; Estefen, S.F. Pipelines, risers and umbilicals failures: A literature review. Ocean Eng. 2018, 148, 412–425. [Google Scholar] [CrossRef]
- Li, X.; Jiang, X.; Hopman, H. A review on predicting critical collapse pressure of flexible risers for ultra-deep oil and gas production. Appl. Ocean Res. 2018, 80, 1–10. [Google Scholar] [CrossRef]
- Xiao, L.; Jiang, X.; Hopman, H. Prediction of the critical collapse pressure of ultra-deep water flexible risers-a: Literature review. FME Trans. 2018, 46, 306–312. [Google Scholar] [CrossRef]
- Muren, J. Failure Modes, Inspection, Testing and Monitoring; PSA Norway Report. Report Number D5996-RPT01-REV02; PSA: Asker, Norway, 2017; Available online: https://www.ptil.no/contentassets/a4c8365164094826a24499ef9f22742b/p5996rpt01rev02cseaflex_janmuren.pdf (accessed on 2 November 2021).
- Piccoli, D. Hose Design for Unusual Hose Applications. J. Elastomers Plast. 1976, 8, 403–413. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Chesterton, C.; Butler, H.O.; Gillet, N.; Wang, C.; Ja’E, I.A.; Reda, A.; Odijie, A.C. Review of Composite Marine Risers for Deep-Water Applications: Design, Development and Mechanics. J. Compos. Sci. 2022, 6, 96. [Google Scholar] [CrossRef]
- Hanonge, D.; Luppi, A. Challenges of flexible riser systems in shallow waters. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2010; pp. 1–10. [Google Scholar] [CrossRef]
- Mikulić, A.; Katalinić, M.; Ćorak, M.; Parunov, J. The effect of spatial correlation of sea states on extreme wave loads of ships. Ships Offshore Struct. 2021, 16, 22–32. [Google Scholar] [CrossRef]
- Sasmal, K.; Miratsu, R.; Kodaira, T.; Fukui, T.; Zhu, T.; Waseda, T. Statistical model representing storm avoidance by merchant ships in the North Atlantic Ocean. Ocean Eng. 2021, 235, 109163. [Google Scholar] [CrossRef]
- Miratsu, R.; Fukui, T.; Matsumoto, T.; Zhu, T. Quantitative Evaluation of Ship Operational Effect in Actually Encountered Sea States. In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Volume 3: Structures, Safety, and Reliability, Glasgow, UK, 9–14 June 2019; ASME: New York, NY, USA, 2019; p. V003T02A043. [Google Scholar] [CrossRef]
- Miratsu, R.; Fukui, T.; Matsumoto, T.; Zhu, T. Study on Ship Operational Effect for Defining Design Values on Ship Motion and Loads in North Atlantic. In Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. Volume 2A: Structures, Safety, and Reliability, Virtual, Online, 3–7 August 2020; ASME: New York, NY, USA, 2020; p. V02AT02A043. [Google Scholar] [CrossRef]
- Taboada, J.V.; Lemu, H.G. Analysis of Wave Energy Sources in the North Atlantic Waters in View of Design Challenges. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Volume 6: Ocean Space Utilization; Ocean Re-newable Energy, Busan, South Korea, 19–24 June 2016; ASME: New York, NY, USA, 2016; p. V006T09A011. [Google Scholar] [CrossRef]
- Yadav, A.; Varghese, S.M.; Thiagarajan, K.P. Parametric Study of Yaw Instability of a Weathervaning Platform. In Proceedings of the 16th Australasian Fluid Mechanics Conference, Crown Plaza, GC, Australia, 2–7 December 2007; Available online: https://people.eng.unimelb.edu.au/imarusic/proceedings/16/Yadav.pdf (accessed on 29 August 2022).
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, A.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft Zur Dtsch. Hydrogr. Z. Ergänzungsheft Reihe A 1973, 12. Available online: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3262854 (accessed on 29 August 2022).
- Amaechi, C.V.; Wang, F.; Ye, J. Numerical studies on CALM buoy motion responses and the effect of buoy geometry cum skirt dimensions with its hydrodynamic waves-current interactions. Ocean Eng. 2021, 244, 110378. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Wang, F.; Ye, J. Numerical Assessment on the Dynamic Behaviour of Submarine Hoses Attached to CALM Buoy Configured as Lazy-S under Water Waves. J. Mar. Sci. Eng. 2021, 9, 1130. [Google Scholar] [CrossRef]
- Rampi, L.; Lavagna, P.; Mayau, D. TRELLINE? A Cost-Effective Alternative for Oil Offloading Lines (OOLs). In Proceedings of the Paper presented at the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2006. [Google Scholar] [CrossRef]
- Mayau, D.; Rampi, L. Trelline—A New Flexible Deepwater Offloading Line (OLL). In Proceedings of the Paper presented at the The Sixteenth International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 28 May–2 June 2006; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE06/All-ISOPE06/ISOPE-I-06-127/9875 (accessed on 22 August 2022).
- Nehme, R.; Dethoor, X. Oil Offloading Lines and Fiber Optic Cable Package. In Proceedings of the Paper Presented at the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2015. [Google Scholar] [CrossRef]
- Prischi, N.; Mazuet, F.; Frichou, A.; Lagarrigue, V. SS-Offshore Offloading Systems and Operations Bonded Flexible Oil Offloading Lines, A Cost Effective Alternative to Traditional Oil Offloading Lines. In Proceedings of the Paper presented at the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2012. [Google Scholar] [CrossRef]
- Minguez, M.; Clergue, S.; Van Kessel, J.; Bessière, L.; Pattedoie, S.; Renaud, M.; Skledar, M.; Lange, F.; Miller, E.; Masterton, S. Water Intake Riser WIR–from Design to Installation, an Example of Complex Structure Requiring Multi-Disciplinary Approach. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2020. [Google Scholar] [CrossRef]
- Katona, T.; Nagy, T.; Zandiyeh, A.R.K.; Prinz, M.; Boros, A. High performance flexible lines for the Oil industry. In Proceedings of the IRC 2009, Nuremberg, Germany, 29 June–2 July 2009; Kautschuk und Gummi Kun-ststoffe KGK: Heidelberg, Germany, 2009; pp. 589–592. Available online: https://www.kgk-rubberpoint.de/wp-content/uploads/migrated/paid_content/artikel/910.pdf (accessed on 24 July 2022).
- Nagy, T.; Antal, S.; Boros, A.; Sergely, Z.I. High pressure hoses for the offshore oil industry. Hochdruckschläuche in der Offshore Ölindustrie. In Proceedings of the DKG-Fachlagung 98, Fulda, Germany, 30 June–1 July 1999; Kautschuk und Gummi Kunststoffe: Heidelberg, Germany, 1999; Volume 52, pp. 482–485. Available online: https://www.researchgate.net/publication/291532602_High_pressure_hoses_for_the_offshore_oil_industry (accessed on 2 November 2021).
- Lagarrigue, V.; Hermary, J.; Mauries, B. Qualification Of A Cryogenic Floating Flexible Hose Enabling Safe And Reliable Offshore LNG Transfer For Tandem FLNG Offloading Systems. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2014. [Google Scholar] [CrossRef]
- Lassen, T.; Eide, A.L.; Meling, T.S. Ultimate Strength and Fatigue Durability of Steel Reinforced Rubber Loading Hoses. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B, Shanghai, China, 6–11 June 2010. [Google Scholar] [CrossRef]
- Lassen, T.; Lem, A.I.; Imingen, G. Load Response and Finite Element Modelling of Bonded Loading Hoses. In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014; Volume 6A, pp. 1–17. [Google Scholar] [CrossRef]
- Lebon, L.; Remery, J. Bonga: Oil Off-loading System using Flexible Pipe. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2002; pp. 1–12. [Google Scholar] [CrossRef]
- Szekely, G.; Peixoto, E. Flexible Hose Technology Benefits for Ship-to-Shore High Pressure Natural Gas Transfer. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018. [Google Scholar] [CrossRef]
- Verschuur, J.; Koks, E.E.; Hall, J.W. Global economic impacts of COVID-19 lockdown measures stand out in high-frequency shipping data. PLoS ONE 2021, 16, e0248818. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.; Recoco, G.A.; Pandi, A.W.; Padrones, J.M.; Ignacio, J.J. Evaluating workplace safety in the oil and gas industry during the COVID-19 pandemic using occupational health and safety Vulnerability Measure and partial least square Structural Equation Modelling. Clean. Eng. Technol. 2022, 6, 100378. [Google Scholar] [CrossRef] [PubMed]
- Gui, D.; Wang, H.; Yu, M. Risk Assessment of Port Congestion Risk during the COVID-19 Pandemic. J. Mar. Sci. Eng. 2022, 10, 150. [Google Scholar] [CrossRef]
- Jaroń, A. Analysis of the Impact of the COVID-19 Pandemic on the Value of CO2 Emissions from Electricity Generation. Energies 2022, 15, 4514. [Google Scholar] [CrossRef]
- Malkawi, S.; Kiwan, S.; Alzghoul, S. Impact of COVID-19 Response Measures on Electricity Sector in Jordan. Energies 2022, 15, 3810. [Google Scholar] [CrossRef]
- Pilloni, M.; Kádár, J.; Abu Hamed, T. The Impact of COVID-19 on Energy Start-Up Companies: The Use of Global Financial Crisis (GFC) as a Lesson for Future Recovery. Energies 2022, 15, 3530. [Google Scholar] [CrossRef]
- Rutitis, D.; Smoca, A.; Uvarova, I.; Brizga, J.; Atstaja, D.; Mavlutova, I. Sustainable Value Chain of Industrial Biocomposite Consumption: Influence of COVID-19 and Consumer Behavior. Energies 2022, 15, 466. [Google Scholar] [CrossRef]
- Li, L.; Mao, Z.; Du, J.; Chen, T.; Cheng, L.; Wen, X. The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province. Sustainability 2022, 14, 7853. [Google Scholar] [CrossRef]
- Hartwig, L.; Hössinger, R.; Susilo, Y.O.; Gühnemann, A. The Impacts of a COVID-19 Related Lockdown (and Reopening Phases) on Time Use and Mobility for Activities in Austria—Results from a Multi-Wave Combined Survey. Sustainability 2022, 14, 7422. [Google Scholar] [CrossRef]
- Szczepanek, W.K.; Kruszyna, M. The Impact of COVID-19 on the Choice of Transport Means in Journeys to Work Based on the Selected Example from Poland. Sustainability 2022, 14, 7619. [Google Scholar] [CrossRef]
- Stankowska, A. Sustainability Development: Assessment of Selected Indicators of Sustainable Energy Development in Poland and in Selected EU Member States Prior to COVID-19 and Following the Third Wave of COVID-19. Energies 2022, 15, 2135. [Google Scholar] [CrossRef]
- Liu, F.; Ding, Y.; Gao, J.; Gong, P. Effects of Cost Factors on National Manufacturing Based on Global Perspectives. Economies 2017, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Mills, F.C. Changes in Prices, Manufacturing Costs, and Industrial Productivity, 1929–1934. In National Bureau of Economic Research, Bulletin 53; NBER: New York, NY, USA, 1934; pp. 1–16. Available online: https://www.nber.org/system/files/chapters/c1732/c1732.pdf (accessed on 24 July 2022).
- BIS. Manufacturing in the UK: An Economic Analysis of the Sector. BIS Economics Paper No. 10A, December 2010. BIS, Department for Business Innovation & Skills (BIS), UK. 2010. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/31785/10-1333-manufacturing-in-the-UK-an-economic-analysis-of-the-sector.pdf (accessed on 24 July 2022).
- Meixell, M.J.; Kenyon, G.N.; Westfall, P. The effects of production outsourcing on factory cost performance: An empirical study. J. Manuf. Technol. Manag. 2014, 25, 750–774. [Google Scholar] [CrossRef]
- Thomas, D.S.; Gilbert, S.W. Costs and Cost Effectiveness of Additive Manufacturing: A Literature Review and Discussion; NIST: Gaithersburg, MA, USA, 2014. [CrossRef]
- Siyanbola, T.T.; Raji, G.M. The Impact of Cost Control on Manufacturing Industries’ Profitability. Int. J. Manag. Soc. Sci. Res. (IJMSSR) 2013, 2, 1–7. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.5829&rep=rep1&type=pdf (accessed on 24 July 2022).
- Tonatto, M.L.; Tita, V.; Amico, S.C. Composite spirals and rings under flexural loading: Experimental and numerical analysis. J. Compos. Mater. 2020, 54, 2697–2705. [Google Scholar] [CrossRef]
- Tonatto, M.L.; Tita, V.; Forte, M.M.; Amico, S.C. Multi-scale analyses of a floating marine hose with hybrid polyaramid/polyamide reinforcement cords. Mar. Struct. 2018, 60, 279–292. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Wang, F.; Ye, J. Understanding the fluid–structure interaction from wave diffraction forces on CALM buoys: Numerical and analytical solutions. Ships Offshore Struct. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- O’Donoghue, T. The Dynamic Behaviour of a Surface Hose Attached to a CALM Buoy. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK; pp. 1–197. Available online: https://www.ros.hw.ac.uk/handle/10399/1045?show=full (accessed on 22 January 2022).
- Berhault, C.; Guerin, P.; le Buhan, P.; Heurtier, J.M. Investigations on Hydrodynamic and Mechanical Coupling Effects for Deepwater Offloading Buoy. In Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004; International Society of Offshore and Polar Engineers (ISOPE): Cupertino, CA, USA; Volume 1, pp. 374–379. Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE04/All-ISOPE04/ISOPE-I-04-363/10313 (accessed on 11 September 2021).
- Ricbourg, C.; Berhault, C.; Camhi, A.; Lecuyer, B.; Marcer, R. Numerical and Experimental Investigations on Deepwater CALM Buoys Hydrodynamics Loads. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2006. [Google Scholar] [CrossRef]
- Ryu, S.; Duggal, A.S.; Heyl, C.N.; Liu, Y. Coupled Analysis of Deepwater Oil Offloading Buoy And Experimental Verification. In Proceedings of the Fifteenth International Offshore and Polar Engineering Confer-ence, Seoul, Korea, 19–24 June 2005; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE05/All-ISOPE05/ISOPE-I-05-022/9182 (accessed on 24 July 2022).
- Tonatto, M.L.; Roese, P.B.; Tita, V.; Forte, M.M.; Amico, S.C. Offloading marine hoses: Computational and experimental analyses. In Marine Composites; 2019; pp. 389–416. Available online: https://www.researchgate.net/publication/330045225_Offloading_marine_hoses_Computational_and_experimental_analyses (accessed on 24 July 2022). [CrossRef]
- Tonatto, M.L.; Forte, M.M.; Amico, S.C. Compressive-tensile fatigue behavior of cords/rubber composites. Polym. Test. 2017, 61, 185–190. [Google Scholar] [CrossRef]
- Ho, R.-T. Engineering Considerations for Offshore FSRU LNG Receiving Terminals. In Proceedings of the Offshore Technology Conference (OTC), Houston, TX, USA, 5–8 May 2008. [Google Scholar] [CrossRef]
- Araújo, J.B.; Fernandes, A.C.; Sales, J.S., Jr.; Thurler, A.C.; Vilela, A.M. Innovative Oil Offloading System for Deep Water. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019. [Google Scholar] [CrossRef]
- Gonzalez, G.M.; de Sousa, J.R.M.; Sagrilo, L.V.S. A study on the axial behavior of bonded flexible marine hoses. Mar. Syst. Ocean Technol. 2016, 11, 31–43. [Google Scholar] [CrossRef]
- Gonzalez, G.M.; de Sousa, J.R.M.; Sagrilo, L.V.S. Behavior of offloading marine hose submitted to bending. In Proceedings of the Ibero-Latin American Congress on Computational Methods in Engineering Conference (CILAMCE2014), Fortaleza-Ceara, Brazil, 23–26 November 2014; pp. 1–15. Available online: https://www.researchgate.net/publication/301493289_BEHAVIOR_OF_OFFLOADING_MARINE_HOSE_SUBMITTED_TO_BENDING (accessed on 24 July 2022).
- Amaechi, C.V.; Wang, F.; Hou, X.; Ye, J. Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy. Ocean Eng. 2018, 171, 429–442. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Wang, F.; Ye, J. Investigation on Hydrodynamic Characteristics, Wave–Current Interaction and Sensitivity Analysis of Submarine Hoses Attached to a CALM Buoy. J. Mar. Sci. Eng. 2022, 10, 120. [Google Scholar] [CrossRef]
- Odonoghe, T.; Halliwell, A.R. Floating Hose-Strings Attached To A Calm Buoy. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 1988; pp. 313–320. [Google Scholar] [CrossRef]
- O’Donoghue, T.; Halliwell, A. Vertical bending moments and axial forces in a floating marine hose-string. Eng. Struct. 1990, 12, 124–133. [Google Scholar] [CrossRef]
- Brown, M.; Elliott, L. A design tool for static underbuoy hose-systems. Appl. Ocean Res. 1987, 9, 171–180. [Google Scholar] [CrossRef]
- Brown, M.; Elliott, L. Two-dimensional dynamic analysis of a floating hose string. Appl. Ocean Res. 1988, 10, 20–34. [Google Scholar] [CrossRef]
- Hasanvand, E.; Edalat, P. Petroleum University of Technology Sensitivity Analysis of the Dynamic Response of CALM Oil Terminal, in The Persian Gulf Region Under Different Operation Parameters. J. Mar. Eng. 2020, 16, 73–84. [Google Scholar] [CrossRef]
- Hasanvand, E.; Edalat, P. A Comparison of the Dynamic Response of a Product Transfer System in CALM and SALM Oil Terminals in Operational and Non-Operational Modes in the Persian Gulf region. Int. J. Coast. Offshore Eng. 2021, 6, 1–14. Available online: https://www.ijcoe.org/article_149354.html (accessed on 24 July 2022).
- Tonatto, M.L.; Forte, M.M.; Tita, V.; Amico, S.C. Progressive damage modeling of spiral and ring composite structures for offloading hoses. Mater. Des. 2016, 108, 374–382. [Google Scholar] [CrossRef]
- Tonatto, M.L.; Tita, V.; Araujo, R.T.; Forte, M.M.; Amico, S.C. Parametric analysis of an offloading hose under internal pressure via computational modeling. Mar. Struct. 2017, 51, 174–187. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, M.; Ma, J.; Sun, G. Theoretical analysis of reinforcement layers in bonded flexible marine hose under internal pressure. Eng. Struct. 2018, 168, 384–398. [Google Scholar] [CrossRef]
- Hua, G.; Changgeng, S.; Jianguo, M.; Guomin, X. Study on theoretical model of burst pressure of fiber reinforced arc-shaped rubber hose with good balance performance. Polym. Polym. Compos. 2020, 29, 919–930. [Google Scholar] [CrossRef]
- Hua, G.; Changgeng, S.; Guomin, X. Establishment and verification of theoretical model for forming design of balanced curved rubber hose. Polym. Polym. Compos. 2020, 29, 470–483. [Google Scholar] [CrossRef]
- Gao, P.; Gao, Q.; An, C.; Zeng, J. Analytical modeling for offshore composite rubber hose with spiral stiffeners under internal pressure. J. Reinf. Plast. Compos. 2020, 40, 352–364. [Google Scholar] [CrossRef]
- Hua, G.; Changgeng, S.; Jianguo, M.; Guomin, X. Free vibration of rubber matrix cord-reinforced combined shells of revolution under hydrostatic pressure. J. Vib. Acoust. 2021, 144, 011002. [Google Scholar] [CrossRef]
- Cozijn, J.L.; Bunnik, T.H.J. Coupled Mooring Analysis for a Deep Water CALM Buoy. In Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Vancouver, BC, Canada, 20–25 June 2004; OMAE2004-51370; Volume 1, Parts A and B.. The American Society of Mechanical Engineers (ASME): New York, NY, USA, 2004; pp. 663–673. [Google Scholar] [CrossRef] [Green Version]
- Cozijn, H.; Uittenbogaard, R.; Brake, E.T. Heave, roll and pitch damping of a deepwater CALM buoy with a skirt. In Proceedings of the International Society of Offshore and Polar Engineering Conference Proceedings, Seoul, Korea (ISOPE). Seoul, Korea, 19–24 June 2005; pp. 388–395. Available online: https://www.researchgate.net/publication/267364857_Heave_Roll_and_Pitch_Damping_of_a_Deepwater_CALM_Buoy_with_a_Skirt (accessed on 21 August 2022).
- Le Cunff, C.; Ryu, S.; Duggal, A.S.; Ricbourg, C.; Heurtier, J.; Heyl, C.; Liu, Y.; Beauclair, O. Derivation of CALM Buoy coupled motion RAOs in Frequency Domain and Experimental Validation. In Proceedings of the International Society of Offshore and Polar Engineering Conference Proceedings, Lisbon, Portugal, 1–6 July 2007; ISOPE: Lisbon, Portugal, 2007; pp. 1–8. Available online: https://www.sofec.com/wp-content/uploads/white_papers/2007-ISOPE-Derivation-of-CALM-Buoy-Coupled-Motion-RAOs-in-Frequency-Domain.pdf (accessed on 11 September 2021).
- Bandringa, H.; Jaouën, F.; Helder, J.; Bunnik, T. On the Validity of CFD for Simulating a Shallow Water CALM Buoy in Extreme Waves. In Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. Volume 1: Offshore Technology; Virtual, Online, 21–30 June 2021; ASME: New York, NY, USA, 2021; p. V001T01A037. [Google Scholar] [CrossRef]
- Brady, I.; Williams, S.; Golby, P. A study of the Forces Acting on Hoses at a Monobuoy Due to Environmental Conditions. In Proceedings of the Offshore Technology Conference Proceeding—OTC 2136, Dallas, TX, USA, 5–7 May 1974; pp. 1–10. [Google Scholar] [CrossRef]
- Qi, X.; Chen, Y.; Yuan, Q.; Xu, G.; Huang, K. CALM buoy and fluid transfer system study. In Proceedings of the International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017; pp. 932–939. Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE17/All-ISOPE17/ISOPE-I-17-128/17225?redirectedFrom=PDF (accessed on 22 August 2022).
- Roveri, F.E.; Volnei Luís Sagrilo, S.; Cicilia, F.B. A Case Study on the Evaluation of Floating Hose Forces in a C.A.L.M. System. In Proceedings of the International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May 2002; pp. 190–197. Available online: https://www.academia.edu/26568632/A_Case_Study_on_the_Evaluation_of_Floating_Hose_Forces_in_a_C_A_L_M_System (accessed on 22 August 2022).
- Montbarbon, S.; Quintin, S.H.; Deroux, G. Experience with new cost-effective solutions to export oil from Deepwater floating production units using suspended pipelines. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2005. [Google Scholar] [CrossRef]
- Bonjour, E.; Simon, J. Offshore Refrigerated LPG Loading/Unloading Terminal Using a CALM Buoy. In Proceedings of the Middle East Oil Technical Conference and Exhibition, Manama, Bahrain, 11–14 March 1985. [Google Scholar] [CrossRef]
- Ziccardi, J.J.; Robins, H.J. Selection of Hose Systems for SPM Tanker Terminals. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 21–23 April 1970. [Google Scholar] [CrossRef]
- Gordon, R.B.; Ruiz-Rico, J.C.; Brongers, M.P.H.; Gomez, J. Integrity Management and Life Extension for a CALM Buoy Oil Export Terminal. In Proceedings of the 2016 11th International Pipeline Conference. Volume 3: Operations, Monitoring and Maintenance; Materials and Joining, Calgary, AB, Canada, 26–30 September 2016; ASME: New York, NY, USA, 2016; p. V003T04A041. [Google Scholar] [CrossRef]
- Saunders, C.; O’Sullivan, T. Integrity management and life extension of flexible pipe. In Proceedings of the SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, Scotland, UK, 4–7 September 2007. [Google Scholar] [CrossRef]
- Girón, A.R.C.; Corrêa, F.N.; Hernández, A.O.V.; Jacob, B.P. An integrated methodology for the design of mooring systems and risers. Mar. Struct. 2014, 39, 395–423. [Google Scholar] [CrossRef]
- Hasanvand, E.; Edalat, P. Evaluation of the Safe and Failure Zones of Mooring and Riser Systems in a CALM Oil Terminal. J. Mar. Sci. Appl. 2021, 20, 751–766. [Google Scholar] [CrossRef]
- Eghbali, B.; Daghigh, M.; Daghigh, Y.; Azarsina, F. Reliability Analysis of Single Point Mooring (SPM) System under Different Environmental Conditions. Int. J. Marit. Technol. 2018, 9, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Khodr, R.A.; Shiban, R.S.; Nawaz, B.A.; Mistry, S.P. Reliability of Very Large Crude Carrier and Single Anchor Leg Mooring Buoy Mooring System During Squall Event. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2020. [Google Scholar] [CrossRef]
- Amaechi, C.V. Novel Design, Hydrodynamics and Mechanics of Marine Hoses in Oil/Gas applications. Ph.D. Thesis, Lancaster University, Lancaster, UK, 2022. [Google Scholar] [CrossRef]
- Eiken, C. Pre-Commissioning Hose Operations on the Valemon Field in the North Sea. University of Stavanger, Norway. 2013. Available online: https://uis.brage.unit.no/uis-xmlui/bitstream/handle/11250/183174/Eiken%2C%20Christer.pdf?sequence=1&isAllowed=y (accessed on 22 August 2022).
- Pecher, A.; Foglia, A.; Kofoed, J.P. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters. J. Mar. Sci. Eng. 2014, 2, 93–122. [Google Scholar] [CrossRef]
- Ali, M.O.A.; Ja’E, I.A.; Hwa, M.G.Z. Effects of water depth, mooring line diameter and hydrodynamic coefficients on the behaviour of deepwater FPSOs. Ain Shams Eng. J. 2019, 11, 727–739. [Google Scholar] [CrossRef]
- Ja’E, I.A.; Ali, M.O.A.; Yenduri, A.; Nizamani, Z.; Nakayama, A. Effect of Various Mooring Materials on Hydrodynamic Responses of Turret-Moored FPSO with Emphasis on Intact and Damaged Conditions. J. Mar. Sci. Eng. 2022, 10, 453. [Google Scholar] [CrossRef]
- Dahl, C.S.; Andersen, B.A.M.; Gronne, M. Developments in Managing Flexible Risers and Pipelines, A Suppliers Perspective. Paper OTC 21844. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2011. [Google Scholar] [CrossRef]
- Duggal, A.; Ryu, S. The dynamics of deepwater offloading buoys. In WIT Transactions on the Built Environment; Paper FSI05026FU.; WIT Press: Singapore, 2005; Available online: https://www.witpress.com/Secure/elibrary/papers/FSI05/FSI05026FU.pdf (accessed on 6 July 2021).
- Rabelo, A.S. Estudo do Comportamento de Mangueiras Termoplásticas de Umbilicais Submarinos Submetidas a Carregamentos Mecânicos (in Portuguese, Meaning: ‘Study on the Behavior of Submarine Umbilical Thermoplastic Hoses when Submitted to Mechanical Loading’). Master’s Thesis, Universidade Federal do Rio de Janeiro (UFRJ) & COPPE, Rio de Janeiro, Brasil, 2013. Available online: https://w1files.solucaoatrio.net.br/atrio/ufrj-peno_upl//THESIS/6000252/2013_mestrando_alexandre_soares_rabelo_20200405214916875.pdf (accessed on 27 August 2022).
- Simonsen, A. Inspection and Monitoring Techniques for Un-Bonded Flexible Risers and Pipelines. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2014. Available online: http://hdl.handle.net/11250/219671 (accessed on 27 August 2022).
- Asmara, I.P.S.; Wibowo, V.A.P. Safety analysis of mooring hawser of FSO and SPM buoy in irregular waves. In Proceedings of the 2nd Maritime Safety International Conference (MASTIC), Surabaya, Indonesia, 18 July 2020; Volume 557, p. 012003. [Google Scholar]
- Lee, G.-C.; Kim, H.-E.; Park, J.-W.; Jin, H.-L.; Lee, Y.-S.; Kim, J.-H. An experimental study and finite element analysis for finding leakage path in high pressure hose assembly. Int. J. Precis. Eng. Manuf. 2011, 12, 537–542. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [Green Version]
- Cash-Gibson, L.; Rojas-Gualdrón, D.F.; Pericas, J.M.; Benach, J. Inequalities in global health inequalities research: A 50-year bibliometric analysis (1966–2015). PLoS ONE 2018, 13, e0191901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, Y. Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis. PLoS ONE 2018, 13, e0190228. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Cite Space II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. System and Method for Automatically Generating Systematic Reviews of a Scientific Field. US Patent US2011029 5903A1, 2010.
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. A Glimpse of the First Eight Months of the COVID-19 Literature on Microsoft Academic Graph. Front. Res. Metr. Anal. 2020, 5, 607286. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. JASIST 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Nelson, J.R.; Grubesic, T.H. Oil spill modeling: Mapping the knowledge domain. Prog. Phys. Geogr. Earth Environ. 2020, 44, 120–136. [Google Scholar] [CrossRef]
- Umeokafor, N.; Umar, T.; Evangelinos, K. Bibliometric and scientometric analysis-based review of construction safety and health research in developing countries from 1990 to 2021. Saf. Sci. 2022, 156, 105897. [Google Scholar] [CrossRef]
- Jin, H.; Chan, M.; Morda, R.; Lou, C.X.; Vrcelj, Z. A scientometric review of sustainable infrastructure research: Visualization and analysis. Int. J. Constr. Manag. 2021, 1–9, ahead-of print. [Google Scholar] [CrossRef]
- Jun, S.-P.; Yoo, H.S.; Choi, S. Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technol. Forecast. Soc. Chang. 2018, 130, 69–87. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Mardani, A. A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. J. Clean. Prod. 2021, 278, 123357. [Google Scholar] [CrossRef]
- Khan, G.F.; Wood, J. Information technology management domain: Emerging themes and keyword analysis. Scientometrics 2015, 105, 959–972. [Google Scholar] [CrossRef]
- Krauskopf, E. A bibiliometric analysis of the Journal of Infection and Public Health: 2008–2016. J. Infect. Public Health 2018, 11, 224–229. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Martínez-López, F.J.; Merigó, J.M.; Valenzuela-Fernández, L.; Nicolás, C. Fifty years of the European Journal of Marketing: A bibliometric analysis. Eur. J. Mark. 2018, 52, 439–468. [Google Scholar] [CrossRef]
- Mascarenhas, C.; Ferreira, J.; Marques, C.; Mascarenhas, C.; Ferreira, J.; Marques, C. University–industry cooperation: A systematic literature review and research agenda. Sci. Public Policy 2018, 45, 708–718. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Sherren, K.; Kent, C. Who’s afraid of Allan Savory? Scientometric polarization on Holistic Management as competing understandings. Renew. Agric. Food Systems 2019, 34, 77–92. [Google Scholar] [CrossRef]
- Soosaraei, M.; Khasseh, A.A.; Fakhar, M.; Hezarjaribi, H.Z. A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Ann. Med. Surg. 2018, 26, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Sweileh, W.M.; Al-Jabi, S.W.; Zyoud, S.H.; Sawalha, A.F.; Abu-Taha, A.S. Global research output in antimi-crobial resistance among uropathogens: A bibliometric analysis (2002–2016). J. Glob. Antimicrob. Resist. 2018, 13, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Palmblad, M.; van Eck, N.J. Bibliometric Analyses Reveal Patterns of Collaboration between ASMS Members. J. Am. Soc. Mass Spectrom. 2018, 29, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Nagy, Z. Data on the interaction between thermal comfort and building control research. Data Brief 2018, 17, 529–532. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Inf. 2016, 10, 1178–1195. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. VOS: A new method for visualizing similarities between objects. In Advances in Data Analysis: Proceedings of the 30th Annual Conference of the German Classification Society; Lenz, H.-J., Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 299–306. [Google Scholar]
- van Eck, N.J.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. ISSI Newsl. 2011, 7, 50–54. Available online: https://www.vosviewer.com/text-mining-and-visualization-using-vosviewer (accessed on 5 August 2022).
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–320. [Google Scholar]
- van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- van Nunen, K.; Li, J.; Reniers, G.; Ponnet, K. Bibliometric analysis of safety culture research. Saf. Sci. 2018, 108, 248–258. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 2013, 86, 471. [Google Scholar] [CrossRef]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Amaechi, C.V.; Adefuye, E.F.; Kgosiemang, I.M.; Huang, B.; Amaechi, E.C. Scientometric Review for Research Patterns on Additive Manufacturing of Lattice Structures. Materials 2022, 15, 5323. [Google Scholar] [CrossRef]
- Ju, X.; Fang, W.; Yin, H.; Jiang, Y. Stress analysis of the subsea dynamic riser baseprocess piping. J. Mar. Sci. Appl. 2014, 13, 327–332. [Google Scholar] [CrossRef]
- Wang, F.-C.; Wang, J.; Tang, K. A finite element based study on lowering operation of subsea massive structure. China Ocean Eng. 2017, 31, 646–652. [Google Scholar] [CrossRef]
- Sun, G.; Wang, F.; Zhang, Y.; Tang, K.; Wang, J. A Generic Study on Lowering Analysis of Massive Jumper Structures. In Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. Volume 1: Offshore Technology; Offshore Geotechnics, St. John’s, NB, Canada, 31 May–5 June 2015; V001T01A043. ASME: New York, NY, USA. [Google Scholar] [CrossRef]
- Roveri, F.; de Oliveira, M.; Moretti, M. Installation of a Production Manifold in 2000 ft Water Depth Offshore Brazil. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 1996. [Google Scholar] [CrossRef]
- Hall, R.; Etheridge, C.; Poranski, P.; Boatman, L.; Kawase, M. Installation, Testing, And Commissioning of a Disconnectable Turret Mooring For FSOU Vessel In A Typhoon-Prone Area. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 1994. [Google Scholar] [CrossRef]
- Everett, J.W.; Jones, I.L.; Hill, D.J. Design and Development of Electric And Hydraulic Cables For Subsea Wellhead Control In The North Sea. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 1980. [Google Scholar] [CrossRef]
- Rees, T.E.; Reber, M.A.; Seery, J.R. Design, Installation and Field Operations of Offshore Tandem Loading System-Nido Field, Offshore Philippines. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 1981. [Google Scholar] [CrossRef]
- Moghazy, S.; Smelker, K.; Hernandez, J.; Van Noort, R.; Arnone, M. The Challenges of Deploying an MPD System on a MODU to Drill Narrow Margin Shallow Horizontal Wells in DW GoM. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [Google Scholar] [CrossRef]
- Diezel, A.R.; Correa, F.N.; Vaz, M.A.; Jacob, B.P. Investigation of roll damping effects on deep water FPSOs with riser balcony through global coupled analysis. Ships Offshore Struct. 2021, 1–8, ahead-of-print. [Google Scholar] [CrossRef]
- Misund, A. Offshore Loading of Oil and Gas How Increased Availability Can be Achieved. In Proceedings of the Offshore South East Asia Show, Singapore, 9–12 February 1982. [Google Scholar] [CrossRef]
- Yan, B.; Yan, L.; Jiang, J.; Gong, X. Investigation On Scheme of Penglai 19-3 Phase ? Jumper Hoses and Cables Installation. In Proceedings of the Twentieth International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE10/All-ISOPE10/ISOPE-I-10-156/11172 (accessed on 5 August 2022).
- Badeghaish, W.; Noui-Mehidi, M.; Parvez, A. Nonmetallic Technologies Supporting Water Transport and Store Management in Drilling and Fracturing Operations. In Proceedings of the International Petroleum Technology Conference, Dhahran, Kingdom of Saudi Arabia, 13–15 January 2020. [Google Scholar] [CrossRef]
- Nguyen-Duc, X.; Rogez, J.; Falcimaigne, J. Flare Buoy on Tensioned Hose. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 1976. [Google Scholar] [CrossRef]
- Gruy, R.; Kiely, W. The World’s Largest Single Point Mooring Terminals: Design and Construction Of The SALM System For 750,000 DWT Tankers. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 1977. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Mi, X.; Cheng, H.; Zhang, X.; Li, Y. Investigation of Flow Characteristics for Internal Fluid in Cryogenic LNG Hoses Based on Structure Feature. In Proceedings of the 32nd International Ocean and Polar Engineering Conference, Shanghai, China, 5–10 June 2022; Available online: https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE22/All-ISOPE22/ISOPE-I-22-171/493810 (accessed on 5 August 2022).
- Do, A.T.; Legeay, S.; Pere, J.M.; Charliac, D.; Roques, J.P.; Karnikian, A. New Design of Lightweight Flexible Pipe For Offshore Oil Offloading Transfer. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2014. [Google Scholar] [CrossRef]
- Luppi, A.; Mayau, D. FLNG Cold Sea Water Intake Risers. In Proceedings of the Offshore Technology Conference-Asia, Kuala Lumpur, Malaysia, 25–28 March 2014. [Google Scholar] [CrossRef]
- John, K.M.; Morkved, M.L.; Grannes, I.; Haugvaldstad, J.; Steinsholm, S. Successful Deployment of a New Intervention Technology Using a Reinforced, Flexible, High Pressure Hose; a World’s First. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 11–14 November 2019. [Google Scholar] [CrossRef]
- Arceneaux, C.; DeKerlegand, K. Safety in Offshore Frac Hose Rig Hookups. In Proceedings of the SPE Americas E&P Environmental and Safety Conference, San Antonio, TX, USA, 23–25 March 2009. [Google Scholar] [CrossRef]
- Lirola, F.; Perreau, E.; Dubois, A.; Roubertie, C. Lessons Learnt From Pre-Commissioning of Large Diameter Pipeline Using Coiled Tubing in Ultra-Deep Water Offshore Brazil. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2016. [Google Scholar] [CrossRef]
- Mauriès, B.; Lirola, F. Development of an LNG Tandem Offloading System Using Floating Cryogenic Hoses-Breaking the Boundaries of LNG Transfer in Open Seas. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2014. [Google Scholar] [CrossRef]
- Cox, A. Large Bore Flexible Hose Lifetime Prediction. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 1986. [Google Scholar] [CrossRef]
- Quash, J.E.; Burgess, S.E. Improving Underbuoy Hose System Design Using Relaxed Storm Design Criteria. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 1979. [Google Scholar] [CrossRef]
- Hong, J.; Pannebakker, M.; Bhaskaran, H. Offshore Fresh Water Deluge Test. In Proceedings of the SPE Symposium: Asia Pacific Health, Safety, Security, Envi-ronment and Social Responsibility, Kuala Lumpur, Malaysia, 23–24 April 2019. [Google Scholar] [CrossRef]
- Dallas, M. Offshore Loading Systems Shuttle Tanker Installation. In Proceedings of the European Offshore Technology Conference and Exhibition, London, UK, 21–24 October 1980. [Google Scholar] [CrossRef]
- Versluis, J. Exposed Location Single Buoy Mooring. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 1980. [Google Scholar] [CrossRef]
- Pinkster, J.; Remery, G. The Role of Model Tests in the Design of Single Point Mooring Terminals. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 1975. [Google Scholar] [CrossRef]
- Uasetwattana, J.; Kanchiak, S.; Kornkitsuwan, C.; Wattanasuwankorn, R.; Jiemsawat, N.; Toh, Y. The First Application of a Coiled Tubing Catenary System in the Gulf of Thailand. A Technology Break Through for Offshore Facilities with Space and Weight Limitations. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Bangkok, Thailand, 9–10 August 2022. [Google Scholar] [CrossRef]
- ABS. Guide for Position Mooring Systems; American Bureau of Shipping: New York, NY, USA, 2022; Available online: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/offshore/292_position_mooring_systems_2022/position-mooring-guide-apr22.pdf (accessed on 5 August 2022).
- OCIMF. Guide to Manufacturing and Purchasing Hoses for Offshore Moorings (GMPHOM); Witherby Seamanship International Ltd.: Livingstone, UK, 2009. [Google Scholar]
- OCIMF. Guideline for the Handing, Storage, Inspection and Testing of the Hose, 2nd ed.; Witherby & Co., Ltd.: London, UK, 1995. [Google Scholar]
- OCIMF. Single Point Mooring Maintenance and Operations Guide (SMOG); Witherby & Co., Ltd.: London, UK, 1995. [Google Scholar]
- ABS. Rules for Building and Classing—Single Point Moorings; American Bureau of Shipping: New York, NY, USA, 2022; Available online: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/offshore/8_single_point_mooring_2022/spm-rules-july22.pdf (accessed on 5 August 2022).
- DNVGL. DNVGL-OS-E403 Offshore Loading Buoys, No. July; Det Norske Veritas & Germanischer Lloyd: Oslo, Norway, 2015; Available online: https://rules.dnv.com/docs/pdf/DNV/os/2015-07/DNVGL-OS-E403.pdf (accessed on 5 August 2022).
- API. API 17K: Specification for Bonded Flexible Pipe, 3rd ed.; American Petroleum Institute, API Publishing Services: Washington, DC, USA, 2016. [Google Scholar]
- API. API 17J: Specification for Unbonded Flexible Pipe, 4th ed.; American Petroleum Institute, API Publishing Services: Washington, DC, USA, 2014. [Google Scholar]
- API. API Spec. 7K. Specification for Drilling and Well Service Equipment, 6th ed.; American Petroleum Institute, API Publishing Services: Washington, DC, USA, 2015. [Google Scholar]
- API. API RP 17B. Recommended Practice for Flexible Pipe, 5th ed.; American Petroleum Institute, API Publishing Services: Washington, DC, USA, 2014. [Google Scholar]
- DNVGL. DNVGL-OS-E301, Position Mooring: Offshore Standard; Det Norske Veritas & Germanischer Lloyd: Oslo, Norway, 2015; Available online: https://rules.dnv.com/docs/pdf/DNV/os/2015-07/DNVGL-OS-E301.pdf (accessed on 5 August 2022).
- BV. BV NR 493 DT R03 E- Rule Note, Classification of Mooring Systems for Permanent and Mobile Offshore Units; Bureau Veritas: Neuilly-sur-Seine, France, 2015. [Google Scholar]
- Bai, Y.; Bai, Q. Subsea Pipelines and Risers, 1st ed.; Elsevier Science Ltd.: Kidlington, UK, 2005; pp. 3–19. [Google Scholar]
- Bai, Y.; Bai, Q. Subsea Engineering Handbook; Elsevier: Oxford, UK, 2010. [Google Scholar]
- Berteaux, H.O. Buoy Engineering. John Wiley & Sons Inc.: Hoboken, NJ, USA, 1976. [Google Scholar]
- Wichers, J. A Simulation Model for a Single Point Moored Tanker. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1988. Available online: http://resolver.tudelft.nl/uuid:efd9dd4e-da6a-48b7-9349-4a7541e89456 (accessed on 5 August 2022).
- Wichers, J. Guide to Single Point Moorings, 1st ed.; WMooring Inc.: Houston, TX, USA, 2013; Available online: http://www.wmooring.com/files/Guide_to_Single_Point_Moorings.pdf (accessed on 5 August 2022).
- Ja’E, I.A.; Ali, M.O.A.; Yenduri, A.; Nizamani, Z.; Nakayama, A. Optimisation of mooring line parameters for offshore floating structures: A review paper. Ocean Eng. 2022, 247, 110644. [Google Scholar] [CrossRef]
- Ju, X.; Li, Z.; Dong, B.; Wang, J.; Meng, X. Engineering Investigation of a Deepwater Turret Mooring Suction Pile Inverse Catenary Based on BV and DNVGL Rules. For. Chem. Rev. 2022, 788–802, ahead-of-print. Available online: http://www.forestchemicalsreview.com/index.php/JFCR/article/view/966 (accessed on 5 August 2022).
- Ju, X.; Li, Z.; Dong, B.; Meng, X.; Huang, S. Mathematical Physics Modelling and Prediction of Oil Spill Trajectory for a Catenary Anchor Leg Mooring (CALM) System. Adv. Math. Phys. 2022, 2022, 3909552. [Google Scholar] [CrossRef]
- Boo, S.Y.; Shelley, S.A. Design and Analysis of a Mooring Buoy for a Floating Arrayed WEC Platform. Processes 2021, 9, 1390. [Google Scholar] [CrossRef]
- Davidson, J.; Ringwood, J.V. Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review. Energies 2017, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- ITTC. The Specialist Committee on Deep Water Mooring: Final Report and Recommendations to the 22nd ITTC. Available online: https://ittc.info/media/1502/specialist-committee-on-deep-water-mooring.pdf (accessed on 17 May 2022).
- Irvine, H.M. Cable Structures; M.I.T. Press: Cambridge, MA, USA, 1981. [Google Scholar]
- ACS. Rules for Building and Classing Single Point Moorings (SPM Rules); Asia Classification Society (ACS): Tehran, Iran. Available online: http://asiaclass.org/wp-content/uploads/2018/04/ACS-SPM-Rules.pdf (accessed on 5 August 2022).
- American Bureau of Shipping (ABS). Guide for the Certification of Offshore Mooring Chain; American Bureau of Shipping (ABS): Houston, TX, USA, 2017; Available online: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/survey_and_inspection/39_certificationoffshoremooringchain_2017/Mooring_Chain_Guide_e-May17.pdf (accessed on 17 May 2022).
- American Petroleum Institute (API). API RP 2SM, Recommended Practice for Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring, 2nd ed.; American Petroleum Institute (API): Washington, DC, USA, 2014. [Google Scholar]
- American Petroleum Institute (API). API-RP-2SK, Design and Analysis of Stationkeeping Systems for Floating Structures, 3rd ed.; American Petroleum Institute (API): Washington, DC, USA, 2005. [Google Scholar]
- Wei, D.; An, C.; Zhang, J.; Huang, Y.; Gu, C. Effect of Winding Steel Wire on the Collapse Pressure of Submarine Hose. J. Mar. Sci. Eng. 2022, 10, 1365. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Chesterton, C.; Butler, H.O.; Gu, Z.; Odijie, A.C. Numerical Modelling on the Local Design of a Marine Bonded Composite Hose (MBCH) and Its Helix Reinforcement. J. Compos. Sci. 2022, 6, 79. [Google Scholar] [CrossRef]
- Bai, Y.; Han, P.; Liu, T.; Yuan, S.; Tang, G. Mechanical responses of metallic strip flexible pipe subjected to combined bending and external pressure. Ships Offshore Struct. 2017, 13, 320–329. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Chesterton, C.; Butler, H.O.; Gu, Z.; Odijie, A.C.; Wang, F.; Hou, X.; Ye, J. Finite Element Modelling on the Mechanical Behaviour of Marine Bonded Composite Hose (MBCH) under Burst and Collapse. J. Mar. Sci. Eng. 2022, 10, 151. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yan, J.; Wang, G.; Shi, D.; Zhou, B.; Li, Y. Prediction Method and Validation Study of Tensile Performance of Reinforced Armor Layer in Marine Flexible Pipe/Cables. J. Mar. Sci. Eng. 2022, 10, 642. [Google Scholar] [CrossRef]
Grant Numbers | Record Count | % of 223 | Grant Numbers | Record Count | % of 223 |
---|---|---|---|---|---|
51922064 | 10 | 4.484 | 919929 | 1 | 0.448 |
51879143 | 5 | 2.242 | 943682 | 1 | 0.448 |
2000.0067652.11.9 | 4 | 1.794 | 1048926 | 1 | 0.448 |
200020_172476 | 3 | 1.345 | 1061335 | 1 | 0.448 |
17h06323 | 2 | 0.897 | 1063441 | 1 | 0.448 |
2017561 | 2 | 0.897 | 11170682 | 1 | 0.448 |
22101005 | 2 | 0.897 | 11171068 | 1 | 0.448 |
243908 | 2 | 0.897 | 1118615 | 1 | 0.448 |
Jp1801633 | 2 | 0.897 | 1129580 | 1 | 0.448 |
Nrg-2006.06 | 2 | 0.897 | 118 | 1 | 0.448 |
S-10 | 2 | 0.897 | 1266 | 1 | 0.448 |
Sg-06-267 | 2 | 0.897 | 139656 | 1 | 0.448 |
325421 | 1 | 0.448 | 1401778 | 1 | 0.448 |
325556 | 1 | 0.448 | 1401802 | 1 | 0.448 |
744636 | 1 | 0.448 | 14gs0202 | 1 | 0.448 |
Publication Titles | H-Index | Record Count | % of 223 |
---|---|---|---|
Journal of Marine Science and Engineering | 29 | 10 | 4.484 |
Marine Environmental Research | 100 | 7 | 3.139 |
Marine and Freshwater Research | 93 | 6 | 2.691 |
Climate Dynamics | 172 | 5 | 2.242 |
Journal of Coastal Research | 95 | 5 | 2.242 |
Ocean Engineering | 109 | 5 | 2.242 |
Quaternary Science Reviews | 192 | 5 | 2.242 |
Marine Structures | 71 | 4 | 1.794 |
Marine Technology Society Journal | 45 | 4 | 1.794 |
Proceedings of the International Offshore and Polar Engineering Conference | 49 | 3 | 1.345 |
Science of the Total Environment | 275 | 3 | 1.345 |
Engineering Structures | 155 | 2 | 0.897 |
Environmental Science Technology | 425 | 2 | 0.897 |
ICES Journal of Marine Science | 125 | 2 | 0.897 |
IOP Conference Series Earth and Environmental Science | 34 | 2 | 0.897 |
Proc. of the ASME Inter. Conf. on Ocean Offshore Mech. and Arctic Engin.-OMAE | 47 | 2 | 0.897 |
Proc. of the Inst. Of Mech. Engin. Part L Journal of Materials Design And Appli. | 38 | 2 | 0.897 |
Proc. of the Inst. of Mech. Engin. Part M Journal of Engin. for The Maritime Env. | 36 | 2 | 0.897 |
Ships and Offshore Structures | 32 | 2 | 0.897 |
Engineering with Computers | 60 | 1 | 0.448 |
Environmental Health Perspectives | 297 | 1 | 0.448 |
Environmental Research Letters | 142 | 1 | 0.448 |
Fluids | 18 | 1 | 0.448 |
Frontiers in Earth Science | 35 | 1 | 0.448 |
Inventions | 18 | 1 | 0.448 |
Journal of Advances in Modeling Earth Systems | 69 | 1 | 0.448 |
Journal of Composites Science | 23 | 1 | 0.448 |
Journal of Engineering Mechanics ASCE | 131 | 1 | 0.448 |
Journal of Marine Science and Application | 25 | 1 | 0.448 |
Journal of Marine Science and Technology | 50 | 1 | 0.448 |
Journal of Ocean University of China | 26 | 1 | 0.448 |
Maritime Policy Management | 61 | 1 | 0.448 |
Ocean Coastal Management | 90 | 1 | 0.448 |
Ocean Dynamics | 61 | 1 | 0.448 |
Ocean Science | 60 | 1 | 0.448 |
Science | 1229 | 1 | 0.448 |
Science Advances | 178 | 1 | 0.448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaechi, C.V.; Ja’e, I.A.; Reda, A.; Ju, X. Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses. Energies 2022, 15, 7723. https://doi.org/10.3390/en15207723
Amaechi CV, Ja’e IA, Reda A, Ju X. Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses. Energies. 2022; 15(20):7723. https://doi.org/10.3390/en15207723
Chicago/Turabian StyleAmaechi, Chiemela Victor, Idris Ahmed Ja’e, Ahmed Reda, and Xuanze Ju. 2022. "Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses" Energies 15, no. 20: 7723. https://doi.org/10.3390/en15207723
APA StyleAmaechi, C. V., Ja’e, I. A., Reda, A., & Ju, X. (2022). Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses. Energies, 15(20), 7723. https://doi.org/10.3390/en15207723