Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach
Abstract
:1. Introduction
2. Mathematical Modeling of PV Modules and Arrays
3. PV Array Configurations: Conventional and Hybrid
3.1. Conventional Configurations
3.2. Hybrid Configurations
4. Two-Step Approach of Module Placement for PV Arrays
5. Analysis under Partial Shading (Results and Discussion)
5.1. Symmetric 6 × 6 PV Array
5.1.1. Evaluation under Partial Shading S1
5.1.2. Evaluation under Partial Shading S2
5.1.3. Evaluation under Partial Shading S3
5.1.4. Evaluation under Partial Shading S4
5.1.5. Evaluation under Partial Shading S5
5.2. Asymmetric 18 × 3 PV Array
6. Conclusions
- ➢
- Output value 5.35%, 20.15%, 18.21%, 6.46%, 11.74%, 11.90%, 11.73%, 12.44% and 14.60% higher than in the SP, BL, HC, TCT, SP-TCT, BL-TCT, HC-TCT, BL-HC and static reconfiguration in the 6 × 6 array.
- ➢
- Power output 22.73%, 21.09%, 19.65%, 16.25%, 16.67%, 16.68%, 16.61%, 17.94% and 13.64% higher than in the SP, BL, HC, TCT, SP-TCT, BL-TCT, HC-TCT, BL-HC and static reconfiguration in the 6 × 6 array under random shading.
- ➢
- Power output 22.14% higher than in all other configurations in the 16 × 3 array.
- ➢
- Reduced losses, higher performance and higher efficiency compared to other configurations in all partial shading cases.
- ➢
- Applicable for both symmetric and asymmetric arrays.
- ➢
- Requires no switches, sensors, or complex algorithms.
- ➢
- Wide practical application.
- ➢
- Easy to implement in PV arrays.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Badi, A.; Al Wahaibi, A.; Ahshan, R.; Malik, A. Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman. Energies 2022, 15, 5379. [Google Scholar] [CrossRef]
- Goh, H.H.; Li, C.; Zhang, D.; Dai, W.; Lim, C.S.; Kurniawan, T.A.; Goh, K.C. Application of choosing by advantages to determine the optimal site for solar power plants. Sci. Rep. 2022, 12, 4113. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, U.; Kekezoğlu, B. A review of solar photovoltaic incentives and Policy: Selected countries and Turkey. Ain Shams Eng. J. 2022, 13, 101669. [Google Scholar] [CrossRef]
- Raza, F.; Tamoor, M.; Miran, S.; Arif, W.; Kiren, T.; Amjad, W.; Lee, G.H. The socio-economic impact of using Photovoltaic (PV) energy for high-efficiency irrigation systems: A case study. Energies 2022, 15, 1198. [Google Scholar] [CrossRef]
- Kuo, T.C.; Pham, T.T.; Huang, P.T.; Nguyen, H.T.; Bui, D.M.; Le, P.D. Reliability analysis of PV generating systems in the islanded DC microgrid under dynamic and transient operation. IET Renew. Power Gener. 2022, 16, 988–1026. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Moradzadeh, A.; Pourhossein, K.; Akrami, M.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A. Photovoltaic array reconfiguration under partial shading conditions for maximum power extraction: A state-of-the-art review and new solution method. Energy Convers. Manag. 2022, 258, 115468. [Google Scholar] [CrossRef]
- Osmani, K.; Haddad, A.; Jaber, H.; Lemenand, T.; Castanier, B.; Ramadan, M. Mitigating the effects of partial shading on PV system’s performance through PV array reconfiguration: A review. Therm. Sci. Eng. Prog. 2022, 31, 101280. [Google Scholar] [CrossRef]
- Wolf, E.J.; Gould, I.E.; Bliss, L.B.; Berry, J.J.; McGehee, M.D. Designing modules to prevent reverse bias degradation in perovskite solar cells when partial shading occurs. Sol. RRL 2022, 6, 2100239. [Google Scholar] [CrossRef]
- Wasim, M.S.; Amjad, M.; Habib, S.; Abbasi, M.A.; Bhatti, A.R.; Muyeen, S.M. A critical review and performance comparisons of swarm-based optimization algorithms in maximum power point tracking of photovoltaic systems under partial shading conditions. Energy Rep. 2022, 8, 4871–4898. [Google Scholar] [CrossRef]
- Rehman, H.; Murtaza, A.F.; Sher, H.A.; Noman, A.M.; Al-Shamma’a, A.A.; Alkuhayli, A.; Spertino, F. Neighboring-Pixel-Based maximum power point tracking algorithm for partially shaded photovoltaic (PV) systems. Electronics 2022, 11, 359. [Google Scholar] [CrossRef]
- Ye, S.P.; Liu, Y.H.; Wang, S.C.; Pai, H.Y. A novel global maximum power point tracking algorithm based on Nelder-Mead simplex technique for complex partial shading conditions. Appl. Energy 2022, 321, 119380. [Google Scholar]
- Chtita, S.; Motahhir, S.; El Hammoumi, A.; Chouder, A.; Benyoucef, A.S.; El Ghzizal, A.; Askar, S.S. A novel hybrid GWO–PSO-based maximum power point tracking for photovoltaic systems operating under partial shading conditions. Sci. Rep. 2022, 12, 10637. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, S.; Sengodan, B.C.; Ramasamy, S.; Ahsan, M.; Haider, J.; Rodrigues, E.M. Social Grouping Algorithm Aided Maximum Power Point Tracking Scheme for Partial Shaded Photovoltaic Array. Energies 2022, 15, 2105. [Google Scholar] [CrossRef]
- Akram, N.; Khan, L.; Agha, S.; Hafeez, K. Global Maximum Power Point Tracking of Partially Shaded PV System Using Advanced Optimization Techniques. Energies 2022, 15, 4055. [Google Scholar] [CrossRef]
- Shams, I.; Mekhilef, S.; Tey, K.S. Advancement of voltage equalizer topologies for serially connected solar modules as partial shading mitigation technique: A comprehensive review. J. Clean. Prod. 2021, 285, 124824. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Babu, T.S.; Mahmoud, A.H.; Sharma, R.; Nastasi, B. A TCT-SC hybridized voltage equalizer for partial shading mitigation in PV arrays. IEEE Trans. Sustain. Energy 2021, 12, 2268–2281. [Google Scholar] [CrossRef]
- Uno, M.; Suzuki, T.; Fujii, Y. Module-to-Panel Modular Differential Power Processing Converter with Isolated DC Bus for Photovoltaic Systems Under Partial Shading. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 1–11. [Google Scholar] [CrossRef]
- Uno, M.; Sato, H.; Oyama, S. Switched Capacitor-Based Modular Differential Power Processing Architecture for Large-Scale Photovoltaic Systems Under Partial Shading. IEEE Trans. Energy Convers. 2022, 37, 1545–1556. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Jena, S.; Sharma, R. Power enhancement from partially shaded modules of solar PV arrays through various interconnections among modules. Energy 2018, 144, 839–850. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mahela, O.P.; Sharma, A.; Bai, J.; Chauhan, Y.K.; Khan, B.; Alhelou, H.H. Impact of partial shading on various PV array configurations and different modeling approaches: A comprehensive review. IEEE Access 2020, 8, 181375–181403. [Google Scholar] [CrossRef]
- Lappalainen, K.; Valkealahti, S. Output power variation of different PV array configurations during irradiance transitions caused by moving clouds. Appl. Energy 2017, 190, 902–910. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Babu, T.S.; Shanmugam, S.K.; Popavath, L.N.; Alhelou, H.H. Impact of uneven shading by neighboring buildings and clouds on the conventional and hybrid configurations of roof-top PV arrays. IEEE Access 2021, 9, 139059–139073. [Google Scholar] [CrossRef]
- Krishna, G.S.; Moger, T. Reconfiguration strategies for reducing partial shading effects in photovoltaic arrays: State of the art. Sol. Energy 2019, 182, 429–452. [Google Scholar] [CrossRef]
- La Manna, D.; Vigni, V.L.; Sanseverino, E.R.; Di Dio, V.; Romano, P. Reconfigurable electrical interconnection strategies for photovoltaic arrays: A review. Renew. Sustain. Energy Rev. 2014, 33, 412–426. [Google Scholar] [CrossRef]
- Aljafari, B.; Satpathy, P.R.; Thanikanti, S.B. Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration. Energy 2022, 257, 124795. [Google Scholar] [CrossRef]
- Solis-Cisneros, H.I.; Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, M.A.; Rodríguez-Resendíz, J.; Muñiz-Soria, J.; Hernández-Gutiérrez, C.A. A dynamic reconfiguration method based on neuro-fuzzy control algorithm for partially shaded PV arrays. Sustain. Energy Technol. Assess. 2022, 52, 102147. [Google Scholar] [CrossRef]
- Alanazi, M.; Fathy, A.; Yousri, D.; Rezk, H. Optimal reconfiguration of shaded PV based system using African vultures optimization approach. Alex. Eng. J. 2022, 61, 12159–12185. [Google Scholar] [CrossRef]
- Gao, X.; Deng, F.; Zheng, H.; Ding, N.; Ye, Z.; Cai, Y.; Wang, X. Followed The Regularized Leader (FTRL) prediction model based photovoltaic array reconfiguration for mitigation of mismatch losses in partial shading condition. IET Renew. Power Gener. 2022, 16, 159–176. [Google Scholar] [CrossRef]
- Durango-Flórez, M.; González-Montoya, D.; Trejos-Grisales, L.A.; Ramos-Paja, C.A. PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis. Sustainability 2022, 14, 3764. [Google Scholar] [CrossRef]
- Rao, P.S.; Ilango, G.S.; Nagamani, C. Maximum power from PV arrays using a fixed configuration under different shading conditions. IEEE J. Photovolt. 2014, 4, 679–686. [Google Scholar]
- Rani, B.I.; Ilango, G.S.; Nagamani, C. Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Trans. Sustain. Energy 2013, 4, 594–601. [Google Scholar] [CrossRef]
- Vijayalekshmy, S.; Bindu, G.R.; Iyer, S.R. A novel Zig-Zag scheme for power enhancement of partially shaded solar arrays. Sol. Energy 2016, 135, 92–102. [Google Scholar] [CrossRef]
- Harish Kumar Varma, G.; Barry, V.R.; Jain, R.K. A novel magic square based physical reconfiguration for power enhancement in larger size photovoltaic array. IETE J. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Reddy, S.S.; Yammani, C. A novel Magic-Square puzzle based one-time PV reconfiguration technique to mitigate mismatch power loss under various partial shading conditions. Optik 2020, 222, 165289. [Google Scholar] [CrossRef]
- Yousri, D.; Fathy, A.; El-Saadany, E.F. Four square sudoku approach for alleviating shading effect on total-cross-tied PV array. Energy Convers. Manag. 2022, 269, 116105. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Thanikanti, S.B.; Bai, J.; Yadav, V.K.; Aljafari, B.; Ghosh, S.; Alhelou, H.H. Ancient Chinese magic square-based PV array reconfiguration methodology to reduce power loss under partial shading conditions. Energy Convers. Manag. 2022, 253, 115148. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, N.; Wang, J.; Liu, Y.; Fu, L. Improved non-symmetrical puzzle reconfiguration scheme for power loss reduction in photovoltaic systems under partial shading conditions. Sustain. Energy Technol. Assess. 2022, 51, 101934. [Google Scholar] [CrossRef]
- Nihanth MS, S.; Ram, J.P.; Pillai, D.S.; Ghias, A.M.; Garg, A.; Rajasekar, N. Enhanced power production in PV arrays using a new skyscraper puzzle based one-time reconfiguration procedure under partial shade conditions (PSCs). Sol. Energy 2022, 194, 209–224. [Google Scholar] [CrossRef]
- Palpandian, M.; Winston, D.P.; Kumar, B.P.; Kumar, C.S.; Babu, T.S.; Alhelou, H.H. A new ken-ken puzzle pattern based reconfiguration technique for maximum power extraction in partial shaded solar PV array. IEEE Access 2021, 9, 65824–65837. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Bhowmik, P.; Babu, T.S.; Sain, C.; Sharma, R.; Alhelou, H.H. Performance and Reliability Improvement of Partially Shaded PV Arrays by One-Time Electrical Reconfiguration. IEEE Access 2022, 10, 46911–46935. [Google Scholar] [CrossRef]
- Raj RD, A.; Naik, K.A. Optimal reconfiguration of PV array based on digital image encryption algorithm: A comprehensive simulation and experimental investigation. Energy Convers. Manag. 2022, 261, 115666. [Google Scholar] [CrossRef]
- Yang, B.; Ye, H.; Wang, J.; Li, J.; Wu, S.; Li, Y.; Ye, H. PV arrays reconfiguration for partial shading mitigation: Recent advances, challenges and perspectives. Energy Convers. Manag. 2021, 247, 114738. [Google Scholar] [CrossRef]
Array with Total-Cross-Tied | ||||||
Row 1 | Row 2 | Row 3 | Row 4 | Row 5 | Row 6 | |
Row Currents | 3.45 IM | 3.45 IM | 3.45 IM | 4.80 IM | 4.80 IM | 4.80 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 20.7 VMIM | 17.25 VMIM | 13.8 VMIM | 14.4 VMIM | 9.60 VMIM | 4.80 VMIM |
Array with Static Electrical Reconfiguration | ||||||
Row 2 | Row 3 | Row 1 | Row 4 | Row 5 | Row 6 | |
Row Currents | 3.45 IM | 3.45 IM | 4.10 IM | 4.15 IM | 4.80 IM | 4.80 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 20.7 VMIM | 17.25 VMIM | 16.4 VMIM | 12.45 VMIM | 9.60 VMIM | 4.80 VMIM |
Array with Two-Step Approach | ||||||
Row 4 | Row 3 | Row 6 | Row 1 | Row 2 | Row 5 | |
Row Currents | 3.45 IM | 4.10 IM | 4.10 IM | 4.10 IM | 4.15 IM | 4.80 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 20.7 VMIM | 20.5 VMIM | 16.4 VMIM | 12.3 VMIM | 8.30 VMIM | 4.80 VMIM |
Array with Total-Cross-Tied | ||||||
Row 6 | Row 5 | Row 4 | Row 3 | Row 1 | Row 2 | |
Row Currents | 3 IM | 3.15 IM | 3.8 IM | 4.35 IM | 4.80 IM | 4.80 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 18 VMIM | 15.75 VMIM | 15.2 VMIM | 13.05 VMIM | 9.60 VMIM | 4.80 VMIM |
Array with Static Electrical Reconfiguration | ||||||
Row 3 | Row 2 | Row 4 | Row 5 | Row 1 | Row 6 | |
Row Currents | 3.15 IM | 3.30 IM | 3.65 IM | 4.20 IM | 4.80 IM | 4.80 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 18.9 VMIM | 16.50 VMIM | 14.60 VMIM | 12.60 VMIM | 9.60 VMIM | 4.80 VMIM |
Array with Two-Step Approach | ||||||
Row 1 | Row 5 | Row 2 | Row 3 | Row 4 | Row 6 | |
Row Currents | 3.60 IM | 3.70 IM | 3.80 IM | 4.20 IM | 4.25 IM | 4.25 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 21.6 VMIM | 18.50 VMIM | 15.20 VMIM | 12.60 VMIM | 8.50 VMIM | 4.25 VMIM |
Array with Total-Cross-Tied | ||||||
Row 4 | Row 2 | Row 3 | Row 1 | Row 5 | Row 6 | |
Row Currents | 3.6 IM | 4.0 IM | 4.0 IM | 4.8 IM | 4.8 IM | 4.8 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 21.6 VMIM | 20.0 VMIM | 16.0 VMIM | 14.4 VMIM | 9.60 VMIM | 4.80 VMIM |
Array with Static Electrical Reconfiguration | ||||||
Row 3 | Row 2 | Row 4 | Row 5 | Row 1 | Row 6 | |
Row Currents | 4.0 IM | 4.0 IM | 4.0 IM | 4.4 IM | 4.8 IM | 4.8 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 24 VMIM | 20 VMIM | 16 VMIM | 13.2 VMIM | 9.60 VMIM | 4.80 VMIM |
Array with Two-Step Approach | ||||||
Row 1 | Row 5 | Row 2 | Row 3 | Row 4 | Row 6 | |
Row Currents | 4.0 IM | 4.4 IM | 4.4 IM | 4.4 IM | 4.4 IM | 4.4 IM |
Row Voltages | 6 VM | 5 VM | 4 VM | 3 VM | 2 VM | VM |
Row Powers | 24 VMIM | 22 VMIM | 17.6 VMIM | 13.2 VMIM | 8.8 VMIM | 4.4 VMIM |
Partial Shading S1 | |||||
Configuration | Power Output | ML | PR | E | P Index |
SP | 7.08 kW | 1.09 kW | 2.49 kW | 14.49% | 73.98% |
BL | 7.07 kW | 1.09 kW | 2.49 kW | 14.49% | 73.98% |
HC | 7.14 kW | 1.03 kW | 2.43 kW | 14.62% | 74.60% |
TCT | 7.34 kW | 0.83 kW | 2.23 kW | 15.03% | 76.69% |
SP-TCT | 7.23 kW | 0.94 kW | 2.34 kW | 14.80% | 75.54% |
BL-TCT | 7.25 kW | 0.92 kW | 2.32 kW | 14.84% | 75.75% |
HC-TCT | 7.22 kW | 0.95 kW | 2.35 kW | 14.78% | 75.44% |
BL-HC | 7.18 kW | 0.99 kW | 2.39 kW | 14.70% | 75.02% |
Static Reconfiguration | 7.40 kW | 0.77 kW | 2.17 kW | 15.15% | 77.32% |
Two-Step Approach | 7.52 kW | 0.65 kW | 2.05 kW | 15.39% | 78.57% |
Partial Shading S2 | |||||
Configuration | Power Output | ML | PR | E | P Index |
SP | 6.19 kW | 1.72 kW | 3.38 kW | 12.67% | 64.68% |
BL | 6.39 kW | 1.52 kW | 3.18 kW | 13.08% | 66.77% |
HC | 6.49 kW | 1.42 kW | 3.08 kW | 13.29% | 67.81% |
TCT | 6.63 kW | 1.28 kW | 2.94 kW | 13.57% | 69.27% |
SP-TCT | 6.57 kW | 1.34 kW | 3 kW | 13.45% | 68.65% |
BL-TCT | 6.59 kW | 1.32 kW | 2.9 kW | 13.49% | 68.86% |
HC-TCT | 6.57 kW | 1.34 kW | 3 kW | 13.45% | 68.65% |
BL-HC | 6.51 kW | 1.4 kW | 3.06 kW | 13.33% | 68.02% |
Static Reconfiguration | 6.90 kW | 1.01 kW | 2.67 kW | 14.12% | 72.10% |
Two-Step Approach | 7.78 kW | 0.13 kW | 1.79 kW | 15.93% | 81.29% |
Partial Shading S3 | |||||
Configuration | Power Output | ML | PR | E | P Index |
SP | 7.50 kW | 1.38 kW | 2.47 kW | 14.53% | 74.19% |
BL | 7.52 kW | 0.96 kW | 2.05 kW | 15.39% | 78.57% |
HC | 7.55 kW | 0.93 kW | 2.02 kW | 15.46% | 78.89% |
TCT | 7.73 kW | 0.75 kW | 1.84 kW | 15.82% | 80.77% |
SP-TCT | 7.70 kW | 0.78 kW | 1.87 kW | 15.76% | 80.45% |
BL-TCT | 7.70 kW | 0.78 kW | 1.87 kW | 15.76% | 80.45% |
HC-TCT | 7.72 kW | 0.76 kW | 1.85 kW | 15.80% | 80.66% |
BL-HC | 7.59 kW | 0.89 kW | 1.98 kW | 15.54% | 79.31% |
Static Reconfiguration | 8.30 kW | 0.18 kW | 1.27 kW | 16.99% | 86.72% |
Two-Step Approach | 8.48 kW | 0.06 kW | 1.15 kW | 17.24% | 87.98% |
Partial Shading S4 | |||||
Configuration | Power Output | ML | PR | E | P Index |
SP | 7.88 kW | 0.89 kW | 1.69 kW | 16.13% | 82.34% |
BL | 8 kW | 0.77 kW | 1.57 kW | 16.38% | 83.59% |
HC | 8.12 kW | 0.65 kW | 1.45 kW | 16.62% | 84.84% |
TCT | 8.50 kW | 0.27 kW | 1.07 kW | 17.40% | 88.81% |
SP-TCT | 8.13 kW | 0.64 kW | 1.44 kW | 16.64% | 84.95% |
BL-TCT | 8.06 kW | 0.71 kW | 1.51 kW | 16.50% | 84.22% |
HC-TCT | 8.15 kW | 0.62 kW | 1.42 kW | 16.68% | 85.16% |
BL-HC | 8.10 kW | 0.67 kW | 1.47 kW | 16.58% | 84.63% |
Static Reconfiguration | 8.21 kW | 0.56 kW | 1.36 kW | 16.81% | 85.78% |
Two-Step Approach | 8.85 kW | 0 kW | 0.62 kW | 18.32% | 93.52% |
Partial Shading S5 | |||||
Configuration | Power Output | ML | PR | E | P Index |
SP | 4.42 kW | 4.44 kW | 5.15 kW | 9.05% | 46.18% |
BL | 3.7 kW | 5.16 kW | 5.87 kW | 7.57% | 38.66% |
HC | 3.87 kW | 4.99 kW | 5.7 kW | 7.92% | 40.43% |
TCT | 5.71 kW | 3.15 kW | 3.86 kW | 11.69% | 59.66% |
SP-TCT | 4.78 kW | 4.08 kW | 4.79 kW | 9.78% | 49.94% |
BL-TCT | 4.78 kW | 4.08 kW | 4.79 kW | 9.78% | 49.94% |
HC-TCT | 4.77 kW | 4.09 kW | 4.8 kW | 9.76% | 49.84% |
BL-HC | 4.78 kW | 4.09 kW | 4.8 kW | 9.76% | 49.84% |
Static Reconfiguration | 4.02 kW | 4.84 kW | 5.55 kW | 8.23% | 42% |
Two-Step Approach | 5.85 kW | 3.01 kW | 3.72 kW | 11.97% | 61.12% |
Shading Case | SP | BL | HC | TCT | SP-TCT | BL-TCT | HC-TCT | BL-HC | SER | Two-Step Approach |
---|---|---|---|---|---|---|---|---|---|---|
I | 6.17 | 6.31 | 6.24 | 6.47 | 6.36 | 6.33 | 6.38 | 6.31 | 6.92 | 7.87 |
II | 6.92 | 7.11 | 7.14 | 7.36 | 7.27 | 7.24 | 7.28 | 7.22 | 7.31 | 7.88 |
III | 8.00 | 8.10 | 8.10 | 8.19 | 8.06 | 8.07 | 8.10 | 8.10 | 8.20 | 8.70 |
IV | 7.99 | 8.27 | 8.24 | 8.14 | 8.28 | 8.26 | 8.26 | 8.27 | 8.21 | 8.91 |
V | 5.27 | 5.53 | 5.87 | 7.11 | 7.06 | 7.05 | 7.06 | 6.45 | 7.21 | 7.76 |
VI | 4.72 | 4.69 | 4.72 | 4.70 | 4.70 | 4.70 | 4.69 | 4.69 | 4.79 | 5.96 |
VII | 7.39 | 7.59 | 7.95 | 8.32 | 8.30 | 8.31 | 8.30 | 8.24 | 8.41 | 8.95 |
VIII | 4.71 | 4.57 | 4.62 | 4.57 | 4.58 | 4.57 | 4.58 | 4.58 | 4.76 | 5.93 |
IX | 9.12 | 9.12 | 9.12 | 9.14 | 9.13 | 9.12 | 9.13 | 9.13 | 9.14 | 9.54 |
X | 3.48 | 3.48 | 3.48 | 3.48 | 3.48 | 3.48 | 3.48 | 3.48 | 3.68 | 4.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljafari, B.; Satpathy, P.R.; Madeti, S.R.K.; Vishnuram, P.; Thanikanti, S.B. Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach. Energies 2022, 15, 7766. https://doi.org/10.3390/en15207766
Aljafari B, Satpathy PR, Madeti SRK, Vishnuram P, Thanikanti SB. Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach. Energies. 2022; 15(20):7766. https://doi.org/10.3390/en15207766
Chicago/Turabian StyleAljafari, Belqasem, Priya Ranjan Satpathy, Siva Rama Krishna Madeti, Pradeep Vishnuram, and Sudhakar Babu Thanikanti. 2022. "Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach" Energies 15, no. 20: 7766. https://doi.org/10.3390/en15207766
APA StyleAljafari, B., Satpathy, P. R., Madeti, S. R. K., Vishnuram, P., & Thanikanti, S. B. (2022). Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach. Energies, 15(20), 7766. https://doi.org/10.3390/en15207766