Energy Consumption under Circular Economy Conditions in the EU Countries
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Sources and Descriptive Statistics
3.2. Methodology
3.2.1. Panel Model Specification
a. Panel Unit Root Testing
b. Pooled Model
c. Fixed-Effect Model
d. Random-Effect Model
3.2.2. Panel Diagnostic
a. Hausman Test
b. Breusch and Pagan Lagrangian Multiplier Test
c. Cross-Sectional Dependence Test
d. Autocorrelation Test
e. Heteroscedasticity Test
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EC | RENC | CMUR | DMCpc | ETAXM | ETAXP | FECHpc | FECpc | GHGIEC | GHGpc | GMWpc | IRDEB | IRDEG | RBW | PECpc | RGDPp | RGDPpc | TRM | SRECFC | RRMW | RP | RLP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 60.60 | 4.86 | 9.13 | 16.88 | 12,268.53 | 2.62 | 594.28 | 2.42 | 89.00 | 9.54 | 478.19 | 336.21 | 56.98 | 65.27 | 3.27 | 28,717.59 | 1.84 | 17,01536.00 | 21.09 | 35.23 | 1.70 | 99.70 |
Med | 27.81 | 2.28 | 7.6 | 15.67 | 5345.02 | 2.51 | 596 | 2.08 | 87.95 | 8.45 | 466 | 166 | 37.55 | 60 | 2.95 | 21,826.05 | 1.67 | 630,787 | 18.03 | 34.45 | 1.25 | 100 |
Max | 329.22 | 50.57 | 30 | 37.34 | 61,119 | 4.14 | 1084 | 8.54 | 124.5 | 26.6 | 931 | 1151.9 | 350.6 | 196 | 9.09 | 97,853.71 | 19.35 | 10,792,542 | 55.78 | 67.2 | 4.97 | 120.56 |
Min | 3.43 | 0.038 | 1.2 | 7.95 | 431.6 | 1.41 | 252 | 1.09 | 63.2 | 5.2 | 247 | 8.5 | 2.4 | 2 | 1.51 | 6871.97 | −11.13 | 17,383 | 2.852 | 4 | 0.29 | 76.58 |
SD. | 78.86 | 8.05 | 6.40 | 6.21 | 16,837.50 | 0.65 | 184.51 | 1.30 | 9.81 | 3.77 | 134.63 | 332.45 | 62.34 | 50.26 | 1.38 | 19,614.15 | 2.65 | 2,351,216.0 | 11.25 | 14.97 | 1.07 | 5.59 |
Skew | 2.01 | 3.27 | 1.13 | 0.83 | 1.90 | 0.49 | 0.14 | 2.64 | 0.59 | 1.81 | 0.91 | 0.80 | 2.85 | 0.69 | 1.73 | 1.65 | 0.56 | 1.96 | 0.81 | 0.12 | 0.90 | −0.46 |
Kurt | 6.38 | 15.17 | 3.99 | 3.32 | 5.31 | 2.33 | 2.59 | 10.71 | 3.90 | 7.21 | 4.10 | 2.22 | 11.80 | 2.53 | 6.42 | 6.28 | 12.61 | 6.48 | 3.36 | 2.22 | 3.03 | 7.06 |
JB | 276.78 | 1911.74 | 61.04 | 28.88 | 197.92 | 14.26 | 2.49 | 872.82 | 22.07 | 307.90 | 45.10 | 31.93 | 1099.44 | 21.02 | 236.26 | 216.95 | 936.46 | 275.39 | 27.85 | 6.64 | 32.11 | 173.76 |
Prob | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
Var | EC | RENC | DMCpc | CMUR | EXTAM | EXTAP | FECHPC | FECPC | GHGIEC | GHGPC | GMWPC | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | |
Intercept at level | Stat | −7.8 | −4.8 | 107.9 | 123.9 | −2.6 | 1.7 | 57.0 | 80.0 | −10.5 | −2.9 | 87.2 | 65.0 | −5.0 | −0.4 | 61.41 | 57.29 | −1.9 | 2.1 | 53.3 | 46.0 | −9.2 | −3.1 | 95.3 | 88.7 | −9.8 | −4.2 | 98.5 | 136.2 | −11.1 | −4.6 | 115.1 | 94.6 | −3.7 | 1.9 | 44.1 | 63.0 | −7.2 | −2.2 | 75.8 | 90.5 | −3.5 | −0.7 | 63.9 | 81.3 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.96 | 0.17 | 0.00 | 0.0 | 0.0 | 0.0 | 0.1 | 0.00 | 0.32 | 0.09 | 0.168 | 0.0 | 1.0 | 0.3 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | |
Result | S | S | S | S | S | NS | NS | S | S | S | S | S | S | NS | NS | NS | S | NS | NS | NS | S | S | S | S | S | S | S | S | S | S | S | S | S | NS | NS | S | S | S | S | S | S | NS | S | S | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | ||||||||||||
Intercept and trend at level | Stat | −9.6 | −1.2 | 73.9 | 91.4 | −7.8 | −0.7 | 67.0 | 100.1 | −17.6 | −3.3 | 112.7 | 123.4 | −7.6 | −0.3 | 58.43 | 69.28 | −9.9 | −1.1 | 90.4 | 88.1 | −10.0 | −0.5 | 70.5 | 66.6 | −11.4 | −1.4 | 77.2 | 152.8 | −29.0 | −4.2 | 111.1 | 110.7 | −7.2 | −0.4 | 61.7 | 125.7 | −9.7 | −0.8 | 65.5 | 64.2 | −14.0 | −1.9 | 83.6 | 130.3 |
p-value | 0.00 | 0.11 | 0.01 | 0.00 | 0.00 | 0.24 | 0.04 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.39 | 0.14 | 0.02 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.1 | 0.0 | 0.0 | 0.2 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | NS | S | S | S | S | S | S | S | S | S | S | NS | NS | S | S | NS | S | S | S | NS | S | S | S | S | S | S | S | S | S | S | S | NS | S | S | S | NS | S | S | S | S | S | S | ||
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | |||||||
Intercept at difference | Stat | −12.4 | −6.0 | 130.0 | 150.0 | −11.1 | −5.6 | 128.7 | 176.7 | −18.8 | −8.8 | 172.8 | 191.9 | −10.1 | −4.3 | 105.45 | 140.23 | −11.6 | −5.5 | 130.2 | 143.6 | −12.0 | −4.5 | 113.8 | 114.1 | −14.3 | −7.0 | 149.6 | 238.9 | −21.4 | −7.3 | 140.8 | 144.2 | −9.9 | −5.0 | 118.2 | 180.0 | −9.1 | −3.9 | 98.2 | 105.6 | −18.3 | −8.5 | 150.0 | 157.6 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | |
Intercept and trend at difference | Stat | −15.6 | −1.8 | 90.8 | 126.7 | −10.9 | −1.9 | 98.7 | 175.5 | −17.6 | −2.6 | 113.0 | 180.3 | −76.1 | −7.9 | 143.90 | 114.20 | −14.3 | −2.6 | 115.4 | 162.9 | −12.7 | −2.1 | 101.9 | 183.3 | −13.1 | −1.7 | 89.9 | 181.5 | −11.3 | −0.9 | 74.5 | 107.3 | −12.8 | −1.9 | 97.7 | 153.9 | −8.6 | −0.7 | 66.4 | 86.8 | −16.8 | −1.8 | 87.9 | 161.2 |
p-value | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | NS | S | S | S | S | S | S | S | NS | S | S | S | S | S | S | |
I order | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | ||||||||||
Var | IRDEB | IRDEG | PECPC | RBW | RGDPP2015 | RGDPPC2015 | RLP | RP | RRMW | SRECFC | TRM | ||||||||||||||||||||||||||||||||||
Test | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | |
Intercept at Level | Stat | 2.7 | 3.7 | 44.0 | 27.4 | −1.9 | 1.7 | 41.0 | 55.6 | −7.3 | −2.6 | 81.3 | 106.7 | 0.8 | 3.2 | 27.5 | 27.5 | 6.1 | 7.2 | 14.5 | 16.0 | −12.3 | −5.7 | 119.3 | 97.1 | 1.4 | 4.7 | 29.7 | 34.8 | −3.6 | −0.1 | 58.4 | 105.4 | −5.0 | −1.1 | 65.7 | 62.1 | −3.5 | 1.7 | 40.5 | 34.6 | −4.8 | −1.1 | 62.7 | 60.1 |
p-value | 1.0 | 1.0 | 0.6 | 1.0 | 0.0 | 1.0 | 0.8 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.0 | 1.0 | 0.9 | 0.0 | 0.5 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 1.0 | 0.8 | 0.9 | 0.0 | 0.1 | 0.1 | 0.1 | |
Result | NS | NS | NS | NS | S | NS | NS | NS | S | S | S | S | NS | NS | NS | NS | NS | NS | NS | NS | S | S | S | S | NS | NS | NS | NS | S | NS | NS | S | S | NS | S | S | S | NS | NS | NS | S | NS | S | NS | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | |||||||||||||||||||||||||||||
Intercept and trend at level | Stat | −3.9 | 1.0 | 40.9 | 38.9 | −4.1 | 1.2 | 36.6 | 54.0 | −9.6 | −0.9 | 63.7 | 73.8 | −7.0 | −0.3 | 57.5 | 76.3 | −18.3 | −1.7 | 92.2 | 61.7 | −17.5 | −3.6 | 127.3 | 116.5 | −7.3 | 0.0 | 60.2 | 39.3 | −11.3 | −1.8 | 90.1 | 141.0 | −14.7 | −2.2 | 93.0 | 104.6 | −7.2 | −0.4 | 59.7 | 59.2 | −9.3 | −1.1 | 72.4 | 58.1 |
p-value | 0.0 | 0.8 | 0.8 | 0.8 | 0.0 | 0.9 | 0.9 | 0.3 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.1 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | |
Result | S | NS | NS | NS | S | NS | NS | NS | S | NS | S | S | S | NS | NS | S | S | S | S | NS | S | S | S | S | S | NS | NS | NS | S | S | S | S | S | S | S | S | S | NS | NS | NS | S | NS | S | NS | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | ||
Intercept at difference | Stat | −5.5 | −2.0 | 78.7 | 114.9 | −11.6 | −4.6 | 114.7 | 151.8 | −10.6 | −5.0 | 116.3 | 148.8 | −15.0 | −6.4 | 139.1 | 168.3 | −9.9 | −3.1 | 88.3 | 94.8 | −20.4 | −9.8 | 187.1 | 186.0 | −11.3 | −5.0 | 117.4 | 128.7 | −16.9 | −7.9 | 162.6 | 231.9 | −15.2 | −7.9 | 160.9 | 198.7 | −12.1 | −5.1 | 115.8 | 132.9 | −19.4 | −7.8 | 154.2 | 154.6 |
p-value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |
I order | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | |
Intercept and trend at difference | Stat | −10.7 | −1.9 | 99.1 | 146.3 | −14.6 | −2.2 | 101.9 | 167.5 | −6.6 | −0.6 | 71.1 | 135.3 | −14.8 | −2.1 | 99.5 | 189.7 | −11.5 | −1.7 | 91.2 | 144.6 | −18.7 | −2.9 | 119.1 | 143.8 | −16.6 | −2.7 | 114.4 | 158.1 | −21.6 | −2.6 | 111.5 | 190.9 | −21.4 | −3.7 | 135.7 | 210.0 | −13.4 | −1.5 | 83.4 | 146.1 | −24.7 | −2.8 | 111.8 | 139.5 |
p-value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | NS | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |
I order | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) |
References
- MacArthur, E. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2015; Available online: https://emf.thirdlight.com/link/ip2fh05h21it-6nvypm/@/preview/1?o (accessed on 22 September 2022).
- Jawahir, I.S.; Bradley, R. Technological elements of circular economy and the principles of 6R-based closed-loop material flow in sustainable manufacturing. Procedia CIRP 2016, 40, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2013, 2, 23–44. Available online: https://www.werktrends.nl/app/uploads/2015/06/Rapport_McKinsey-Towards_A_Circular_Economy.pdf (accessed on 1 September 2022).
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2012, 23, 216–224. [Google Scholar] [CrossRef]
- George, D.A.; Lin, B.C.A.; Chen, Y. A circular economy model of economic growth. Environ. Model. Softw. 2015, 73, 60–63. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The circular economy: A new development strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Dinda, S. A Circular Economy Approach for Sustainable Economic Growth; University Library of Munich: Munich, Germany, 2016; (No. 89587); Available online: https://mpra.ub.uni-muenchen.de/104522/1/MPRA_paper_104522.pdf (accessed on 15 August 2022).
- Yong, R. The circular economy in China. J. Mater Cycles Waste Manag. 2007, 9, 121–129. [Google Scholar] [CrossRef]
- Sakai, S.I.; Yoshida, H.; Hirai, Y.; Asari, M.; Takigami, H.; Takahashi, S.; Tomoda, K.; Peeler, M.V.; Wejchert, J.; Schmid-Unterseh, T.; et al. International comparative study of 3R and waste management policy developments. J. Mater. Cycles Waste Manag. 2011, 13, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Preston, F. A Global Redesign? Shaping the Circular Economy. 2012. Available online: https://www.biblioteca.fundacionicbc.edu.ar/images/d/d7/Bp0312_preston.pdf (accessed on 13 September 2022).
- Reh, L. Process engineering in circular economy. Particuology 2013, 11, 119–133. [Google Scholar] [CrossRef]
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A review of the circular economy in China: Moving from rhetoric to implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Lett, L.A. Global threats, waste recycling and the circular economy concept. Rev. Argent. Microbiol. 2014, 46, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M. Barriers to the circular economy: Evidence from the European Union (EU). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Nocera, S.; Cavallaro, F.; Irranca Galati, O. Options for reducing external costs from freight transport along the Brenner corridor. Eur. Transp. Res. Rev. 2018, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Papież, M.; Śmiech, S.; Frodyma, K. The role of energy policy on the decoupling processes in the European Union countries. J. Clean. Prod. 2021, 318, 128484. [Google Scholar] [CrossRef]
- Hailemariam, A.; Erdiaw-Kwasie, M.O. Towards a circular economy: Implications for emission reduction and environmental sustainability. Bus. Strategy Environ. 2020, 1–15. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the Circular Economy: Accelerating the Scale-Up Across Global Supply Chains. 2014. Available online: https://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf (accessed on 22 September 2022).
- European Commission. Directive 2008/98/E.C. of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 312. E. Commission. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0098-20180705&from=EN (accessed on 10 July 2021).
- Van Buren, N.; Demmers, M.; Van der Heijden, R.; Witlox, F. Towards a circular economy: The role of Dutch logistics industries and governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left–How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- Cavallaro, F.; Galati, O.I.; Nocera, S. Policy strategies for the mitigation of GHG emissions caused by the mass-tourism mobility in coastal areas. Transp. Res. Procedia 2017, 27, 317–324. [Google Scholar] [CrossRef]
- Ekins, P.; Hughes, N.; Brigenzu, S.; Arden Clark, C.; Fischer-Kowalski, M.; Graedel, T.; Westhowk, H. Resource Efficiency: Potential and Economic Implications. A Report of the International Resource Panel. 2016. Available online: https://pure.iiasa.ac.at/id/eprint/13813/1/-Resource_Efficiency__Potential_and_Economic_Implications;_summary_for_Policy-MakersResource-Eff-irp-lr.pdf.pdf (accessed on 22 September 2022).
- Global Bioeconomy Summit. Communiqué—Making Bioeconomy Work for Sustainable Development. 2015. Available online: https://gbs2020.net/wp-content/uploads/2021/10/Communique_final_neu.pdf (accessed on 22 September 2022).
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nat. News 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buechler, E.; Powell, S.; Sun, T.; Astier, N.; Zanocco, C.; Bolorinos, J.; Rajagopal, R. Global changes in electricity consumption during COVID-19. Inscience 2022, 25, 103568. [Google Scholar] [CrossRef] [PubMed]
- Figge, F.; Thorpe, A.S.; Manzhynski, S. Between you and I: A portfolio theory of the circular economy. Ecol. Econ. 2021, 190, 107190. [Google Scholar] [CrossRef]
- Hansen, J.P.; Narbel, P.A.; Aksnes, D.L. Limits to growth in the renewable energy sector. Renew. Sustain. Energy Rev. 2017, 70, 769–774. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. The limits of renewable energy. In Switching Off; Springer: Singapore, 2022; pp. 35–54. [Google Scholar] [CrossRef]
- Parajuly, K.; Fitzpatrick, C.; Muldoon, O.; Kuehr, R. Behavioral change for the circular economy: A review with focus on electronic waste management in the EU. Resour. Conserv. Recycl. X 2020, 6, 100035. [Google Scholar] [CrossRef]
- Perrow, C. Why we disagree about climate change: Understanding controversy, inaction, and opportunity. Contemp. Sociol. 2010, 39, 46. [Google Scholar] [CrossRef]
- von Wehrden, H.; Luederitz, C.; Leventon, J.; Russell, S. Methodological challenges in sustainability science: A call for method plurality, procedural rigor and longitudinal research. Chall. Sustain. 2017, 5, 35–42. [Google Scholar] [CrossRef]
- Van der Ploeg, F. Natural resources: Curse or blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef] [Green Version]
- Kok, L.; Wurpel, G.; Ten Wolde, A. Unleashing the Power of the Circular Economy. 2013. Available online: http://www.imsa.nl/uploads/Unleashing_the_Power_of_the_Circular_Economy-Circle_Economy.pdf (accessed on 22 August 2021).
- European Commission. European Resource Efficiency Platform (EREP): Manifesto and Policy Recommendations. 2012. Available online: https://ec.europa.eu/environment/resource_efficiency/documents/erep_manifesto_and_policy_recommendations_31-03-2014.pdf (accessed on 22 September 2022).
- Pieratti, E.; Paletto, A.; De Meo, I.; Fagarazzi, C.; Migliorini, M.G.R. Assessing the forest-wood chain at local level: A Multi-Criteria Decision Analysis (MCDA) based on the circular bioeconomy principles. Ann. For. Res. 2019, 62, 123–138. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Hetemäki, L.; Hanewinkel, M.; Muys, B.; Ollikainen, M.; Palahí, M.; Trasobares, A.; Potoćnik, J. Leading the Way to a European Circular Bioeconomy Strategy. 2017. Available online: https://efi.int/sites/default/files/files/publication-bank/2018/efi_fstp_5_2017.pdf (accessed on 22 September 2022).
- Caeiro, S.; Ramos, T.B.; Huisingh, D. Procedures and criteria to develop and evaluate household sustainable consumption indicators. J. Clean. Prod. 2012, 27, 72–91. [Google Scholar] [CrossRef]
- Bocken, N.M.; De Pauw, I.; Bakker, C.; Van Der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Trica, C.L.; Banacu, C.S.; Busu, M. Environmental factors and sustainability of the circular economy model at the European Union level. Sustainability 2019, 11, 1114. [Google Scholar] [CrossRef] [Green Version]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The relevance of circular economy practices to the sustainable development goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Schroder, P. Promoting a Just Transition to an Inclusive Circular Economy; Energy, Environment and Resource Program; Catham House: London, UK, 2020; pp. 1–33. [Google Scholar]
- Halkos, G.; Petrou, K.N. Analysing the energy efficiency of EU member states: The potential of energy recovery from waste in the circular economy. Energies 2019, 12, 3718. [Google Scholar] [CrossRef] [Green Version]
- Robaina, M.; Villar, J.; Pereira, E.T. The determinants for a circular economy in Europe. Environ. Sci. Pollut. Res. 2020, 27, 12566–12578. [Google Scholar] [CrossRef]
- Knäble, D.; de Quevedo Puente, E.; Cornejo, C.P.; Baumgärtler, T. The impact of the circular economy on sustainable development: A European panel data approach. Sustain. Prod. Consum. 2022, 34, 233–243. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Spencer, N. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxf. Bull. Econ. Stat. 1999, 61 (Suppl S1), 631–652. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0084.0610s1631 (accessed on 20 August 2022). [CrossRef]
- Colonescu, C. Using R for Principles of Econometrics; CreateSpace Independent Publishing Platform: Scott Valley, CA, USA, 2018. [Google Scholar]
- Busu, M.; Trica, C.L. Sustainability of circular economy indicators and their impact on economic growth of the European Union. Sustainability 2019, 11, 5481. [Google Scholar] [CrossRef] [Green Version]
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular economy innovation and environmental sustainability impact on economic growth: An integrated model for sustainable development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Sverko Grdic, Z.; Krstinic Nizic, M.; Rudan, E. Circular economy concept in the context of economic development in EU countries. Sustainability 2020, 12, 3060. [Google Scholar] [CrossRef] [Green Version]
- Tantau, A.D.; Maassen, M.A.; Fratila, L. Models for analyzing the dependencies between indicators for a circular economy in the European Union. Sustainability 2018, 10, 2141. [Google Scholar] [CrossRef] [Green Version]
- Pineiro-Villaverde, G.; García-Álvarez, M.T. Sustainable consumption and production: Exploring the links with resources productivity in the EU-28. Sustainability 2020, 12, 8760. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics; Tata McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Baltagi, B. Econometric Analysis of Panel Data; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ba, Y.; Berrett, J.; Coupet, J. Panel data analysis: A guide for nonprofit studies. VOLUNTAS Int. J. Volunt. Nonprofit Organ. 2021, 1–16. [Google Scholar] [CrossRef]
- Hausman, J.A.; Taylor, W.E. Panel data and unobservable individual effects. Econom. J. Econom. Soc. 1981, 49, 1377–1398. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing weak cross-sectional dependence in large panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010; pp. 282–283. [Google Scholar]
- Greene, W.H. Econometric Analysis; Pearson: New York, NY, USA, 2018; p. 136. [Google Scholar]
- Yildirim, E.; Saraç, Ş.; Aslan, A. Energy consumption and economic growth in the USA: Evidence from renewable energy. Renew. Sustain. Energy 2012, 16, 6770–6774. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Arellano, M. Computing robust standard errors for within-groups estimators. Oxf. Bull. Econ. Stat. 1987, 49, 431–434. [Google Scholar] [CrossRef]
- Pilatowska, M.; Geise, A.; Wlodarczyk, A. Asymmetric Impact of Economic Growth on CO2 Emissions: Evidence from the EU Countries. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Šikić, T.F. The impact of energy consumption on economic growth in developed and post-transition countries of European Union. Zb. Rad. Ekon. Fak. Rij. 2020, 38, 475–497. [Google Scholar] [CrossRef]
- Bilbao-Osorio, B.; Rodríguez-Pose, A. From R&D to innovation and economic growth in the EU. Growth Chang. 2004, 35, 434–455. [Google Scholar] [CrossRef]
Country | Code | Country | Code | Country | Code | Country | Code |
---|---|---|---|---|---|---|---|
Austria | AUT | Finland | FIN | Italy | ITA | Portugal | PRT |
Belgium | BEL | France | FRA | Latvia | LVA | Romania | ROU |
Croatia | HRV | Germany | DEU | Lithuania | LTU | Slovak Republic | SVK |
Czech Republic | CZE | Greece | GRC | Luxembourg | LUX | Slovenia | SVN |
Denmark | DNK | Hungary | HUN | Netherlands | NLD | Spain | ESP |
Estonia | EST | Ireland | IRL | Poland | POL | Sweden | SWE |
Variable | Name | Definition | Unit | Eurostat Codes |
---|---|---|---|---|
Y1 | EC | Aggregate energy consumption | Mtoe | BP |
Y2 | RENC | Renewable energy consumption | Mtoe | BP |
X1 | RGDP | Real GDP per capita at market prices in 2015 | Chain-linked volumes (2010), Euros per capita | SDG_08_10 |
X2 | RGDPpc | Real GDP per capita at market prices in 2015 | Percentage (%) | SDG_08_10 |
X3 | RP | Gross domestic product divided by domestic material consumption | Euros per kilogram, chain-linked volumes (2015) | SDG_12_20 |
X4 | RRMW | Recycling rate of municipal waste | Percentage (%) | cei_wm011 |
X5 | RBW | Recycling of biowaste | Kilograms per capita | cei_wm030 |
X6 | CMUR | Ratio of the circular use of materials to the overall material use | Percentage (%) | cei_srm030 |
X7 | TRM | Imports intra-EU27 (from 2020) | Tons | cei_srm020 |
X8 | ETAXM | Environmental taxes by economic activity (NACE Rev. 2) | Million euro | env_ac_taxind2 |
X9 | ETAXP | Environmental tax revenue (% of GDP) | Percentage of GDP | T2020_RT320 |
X10 | RLP | Productivity per person employed in relation to the EU average | Percentage (%) | NAMA_10_LP_ULC |
X11 | GHGpc | Greenhouse gas emissions per capita | Tons of CO2 equivalent per capita. | T2020_RD300 |
X12 | GHGIEC | Greenhouse gas emissions intensity of energy consumption | Index, 2000 = 100 | sdg_13_20 |
X13 | DMCpc | Domestic material consumption per capita | Tons per capita | T2020_RL110 |
X14 | SRECFC | Share of renewable energy sources in gross final energy consumption | Percentage (%) | SDG_07_40 |
X15 | FECHpc | Final energy consumption in households per capita | Kilogram of oil equivalent (KGOE) | SDG_07_20 |
X16 | PECpc | Primary energy consumption per capita | Kilograms of oil equivalent per capita | sdg_07_10 |
X17 | FECpc | Final energy consumption per capita | Kilograms of oil equivalent per capita | sdg_07_11 |
X18 | IRDEB | Intramural R&D expenditure (GERD)—Business | Euros per inhabitant | rd_e_gerdtot |
X19 | IRDEG | Intramural R&D expenditure (GERD)—Government | Euros per inhabitant | rd_e_gerdtot |
No. | Authors | Sample | Dependent Variables | Independent Variables |
---|---|---|---|---|
1 | [58] | 2010–2017 | GDP per capita growth (%) | CMUR (%); RRMW (Tons); TRM (Imports intra-EU27 (from 2020)); ETAXM (Euros); RLP (%); RP (Euros/kg) |
2 | [59] | 2000–2017 | GDP per capita growth (%) | ETAXP (% of GDP); RRMW; TRM (imports intra-EU27 (from 2020)); INV |
3 | [60] | 2008–2016 | GDP per capita (Euros) | GMWpc (kilograms per capita); RRMW (%); RRPTP (%); RREW (%); RBW (kilograms per capita); VAFC (million euros); PAT (number) |
4 | [61] | 2010–2014 | RRMW (%) | CMUR (%); ETAXM (in million Euros); RP (Euros per kg); TRM (imports intra-EU27 (from 2020)); GERD (in million Euros) |
5 | [62] | 2001–2018 | RP (Euros per kilogram, chain-linked volumes (2015)) | RRMW (%); CMUR (%); RRCDW (%); DMCpc (tons per capita); SRECFC (%); FECHpc (KGOE); PECpc (in kilograms of oil equivalent per capita); FECpc (in kilograms of oil equivalent per capita); IRDEB (Euros per inhabitant); IRDEG (Euros per inhabitant); GHGpc (tons of CO2 equivalent per capita); GHGIEC (Index, 2000 = 100) |
EC | RENC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exogenous Variable | Model 1a | Model 2a | Model 3a | Model 4a | Model 5a | Model 1b | Model 2b | Model 3b | Model 4b | Model 5b |
RGDPpc | − | − | − | − | − | + | ||||
RGDP | + | + | ||||||||
ETAXM | + | − | + | + | − | + | ||||
ETAXP | + | − | ||||||||
RP | + | + | + | + | + | − | + | − | + | + |
RLP | + | − | − | + | − | − | − | − | ||
RRMW | − | − | − | − | − | − | − | − | − | − |
CMUR | − | − | + | − | + | − | − | − | − | − |
TRM | − | − | − | − | − | − | + | + | ||
GMWpc | − | − | − | − | ||||||
RBW | − | − | ||||||||
DMCpc | − | + | + | − | − | + | ||||
PECpc | + | − | + | − | − | − | ||||
FECpc | − | − | − | − | − | − | ||||
SRECFC | − | − | − | + | + | + | ||||
FECHpc | − | − | − | − | − | + | ||||
GHGpc | − | − | − | − | − | − | ||||
GHGIEC | − | − | − | − | − | − | ||||
IRDEB | − | − | − | − | − | − | ||||
IRDEG | + | + | + | − | − | − | ||||
Model diagnostics | ||||||||||
R2 within the groups | 0.496 | 0.344 | 0.421 | 0.597 | 0.4775 | 0.3756 | 0.2851 | 0.4164 | 0.5698 | 0.4912 |
R2 between the groups | 0.7216 | 0.006 | 0.0535 | 0.5216 | 0.0010 | 0.2817 | 0.1768 | 0.1123 | 0.1384 | 0.0247 |
R2 overall | 0.7004 | 0.004 | 0.0499 | 0.5019 | 0.0014 | 0.2854 | 0.1326 | 0.1206 | 0.1531 | 0.0148 |
BIC | 1086.24 | 1129.28 | 1146.65 | 1002.16 | 1144.25 | 955.48 | 998.92 | 966.63 | 915.37 | 955.65 |
EC | RENC | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coef. | St. Err. | t-Value | p-Value | Coef. | St. Err. | t-Value | p-Value |
RGDP | 0.000 | 0.000 | 1.83 | 0.080 | 0.000 | 0.000 | −1.93 | 0.066 |
TRM | 0.000 | 0.000 | 0.76 | 0.455 | 0.000 | 0.000 | −1.77 | 0.090 |
RLP | 0.068 | 0.063 | 1.08 | 0.291 | 0.045 | 0.035 | 1.26 | 0.219 |
RP | −6.879 | 2.173 | −3.17 | 0.004 | 2.342 | 1.164 | 2.01 | 0.056 |
ETAXM | −0.001 | 0.000 | −7.82 | 0.000 | 0.000 | 0.000 | 3.6 | 0.002 |
RRMW | 0.004 | 0.025 | 0.18 | 0.861 | 0.000 | 0.016 | 0.000 | 0.996 |
CMUR | −0.174 | 0.154 | −1.13 | 0.270 | −0.236 | 0.188 | −1.26 | 0.221 |
DMCpc | −0.344 | 0.157 | −2.19 | 0.039 | −0.051 | 0.132 | −0.38 | 0.704 |
SRECFC | −0.003 | 0.082 | −0.04 | 0.969 | 0.127 | 0.068 | 1.86 | 0.075 |
FECHpc | 0.011 | 0.007 | 1.56 | 0.132 | −0.003 | 0.003 | −1.03 | 0.315 |
PECpc | 3.003 | 2.164 | 1.39 | 0.178 | 1.361 | 2.316 | 0.59 | 0.563 |
FECpc | 1.431 | 1.636 | 0.88 | 0.391 | 1.325 | 0.873 | 1.52 | 0.143 |
IRDEB | 0.004 | 0.006 | 0.6 | 0.555 | 0.02 | 0.013 | 1.5 | 0.147 |
IRDEG | 0.029 | 0.016 | 1.81 | 0.084 | 0.046 | 0.041 | 1.13 | 0.270 |
GHGpc | 0.207 | 0.589 | 0.35 | 0.728 | −0.02 | 0.417 | −0.05 | 0.963 |
GHGIEC | −0.044 | 0.063 | −0.7 | 0.492 | 0.014 | 0.05 | 0.27 | 0.791 |
Constant | 50.803 | 8.603 | 5.91 | 0.000 | −12.538 | 9.309 | −1.35 | 0.191 |
Model diagnostics for parameter significance | ||||||||
F-TEST | F-TEST = 39.668, Prob > F = 0.000 | F-TEST = 8.817, Prob > F = 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.M.; Osińska, M. Energy Consumption under Circular Economy Conditions in the EU Countries. Energies 2022, 15, 7839. https://doi.org/10.3390/en15217839
Khan AM, Osińska M. Energy Consumption under Circular Economy Conditions in the EU Countries. Energies. 2022; 15(21):7839. https://doi.org/10.3390/en15217839
Chicago/Turabian StyleKhan, Atif Maqbool, and Magdalena Osińska. 2022. "Energy Consumption under Circular Economy Conditions in the EU Countries" Energies 15, no. 21: 7839. https://doi.org/10.3390/en15217839
APA StyleKhan, A. M., & Osińska, M. (2022). Energy Consumption under Circular Economy Conditions in the EU Countries. Energies, 15(21), 7839. https://doi.org/10.3390/en15217839