Streaming Electrification of Different Insulating Fluids in Power Transformers
Abstract
:1. Introduction
2. Experimental Setup and Precautionary Measures
2.1. Techniques for the Measurement of Static Current
2.1.1. Flow Loop Device
2.1.2. Ministatic Charge Tester
2.1.3. Couette Charger
2.1.4. Spinning Disk System
2.1.5. Shuttle System with Two Parallel Electrodes
2.2. Noise Analyzer for Monitoring the Static Electrification Current
3. Results
3.1. Mechanism of Static Electrification
3.2. Factors Affecting the Streaming Electrification Phenomenon
3.3. Streaming Current in Different Insulating Fluids
3.3.1. Mineral Oil and Silicone Oil
3.3.2. Ester Fluid
3.3.3. Mixed Fluid
3.3.4. Nanofluids
3.4. Effect of Additives on Streaming Current
3.5. Effect of Electric Field on Streaming Current
3.6. Impact of Reclamation on Streaming Current
3.7. Influence of Sulfur Compounds on Streaming Current
4. Conclusions and Future Scope
- Different techniques are used for the evaluation of the charging tendency associated with an insulating liquid; each method employs a specific flow pattern, volume of oil, and solid material, which leads to different conclusions. There is still no specific standardized technique for measuring the streaming current of power transformers, and thus a suitable standard should be formulated to relate laboratory investigations to practical applications. When considering the present techniques used for measuring static electrification, the Couette charge test system has the greatest potential to become a standardized method because it evaluates the charging tendency of insulating fluids in the presence of an electric field.
- Various factors such as the speed, temperature, electric field, flow behavior, and surface roughness affect the streaming phenomenon. Mineral oil containing aromatic hydrocarbons has a lower electrostatic charging tendency compared to ester fluids. However, a ranking within the ester liquids is not possible because different grades of natural ester (MIDEL 1215, MIDEL 1204, and FR3) extracted from soyabean and rapeseed exhibited different behaviors to that of a synthetic ester manufactured through an esterification reaction. Among the different insulating liquids, ester fluids showed a higher streaming current than mineral oil and silicon liquid; however, when considering the overall transformer operational lifetime in terms of other physio-chemical and dielectric properties, ester fluids are viable for power transformers with some design modifications.
- Nanofluids, which have gained greater importance in transformers in recent years, have much less available information in terms of streaming electrification. Similar to the testing of the effects of different nanoparticles and surfactants on various dielectric characteristics, the charging tendencies of nanofluids should also be considered by the insulation engineers before their installation in real-time power transformers.
- The additives used for suppressing the streaming current should not exceed 100 ppm, thereby not affecting the other dielectric properties in power transformers. Nanofluids showed a higher streaming current and the requirement for additive concentration was more than 500 ppm with benzotriazole. Therefore, the selection of a suitable additive for suppression of the streaming current is also a major factor to be taken into consideration.
- In practical applications, streaming electrification is noticed in the presence of an electric field, but with advancements in alternative esters and nanofluids, such studies are still within the scope of various researchers in the field of high-voltage technology.
- The reclamation of aged fluid, which is performed to remove degradation byproducts, must also be considered in streaming electrification so that a potential buildup across the pressboard spacers that provide mechanical support for the copper windings in transformers can be avoided.
- The impact of copper sulfide (Cu2S) and silver sulfide (Ag2S) diffusion in oil is detrimental to both the pressboard/paper insulation and the copper windings. These two sulfides can be used with both mineral oil and ester fluids when the same adsorbents are reused again for the reclamation process. The interaction of sulfide ions at the electrical double layer can result in different physio-chemical reactions that lead to changes in the ion exchange in the fixed layer and the diffused layer.
Funding
Data Availability Statement
Conflicts of Interest
References
- Biçen, Y.; Aras, F.; Kirkici, H. Lifetime estimation and monitoring of power transformer considering annual load factors. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1360–1367. [Google Scholar] [CrossRef]
- Metwally, I.A. Failures, monitoring and new trends of power transformers. IEEE Potentials 2011, 30, 36–43. [Google Scholar] [CrossRef]
- Werle, P.; Brendel, H. Transformers. In Handbook of Power Systems; Papailiou, K.O., Ed.; Springer: Singapore, 2021; pp. 443–509. [Google Scholar]
- Prevost, T.A.; Oommen, T.V. Cellulose insulation in oil-filled power transformers: Part I-history and development. IEEE Electr. Insul. Mag. 2006, 22, 28–35. [Google Scholar] [CrossRef]
- Liu, Q.; Venkatasubramanian, R.; Matharage, S.; Wang, Z. Effect of oil regeneration on improving paper conditions in a distribution transformer. Energies 2019, 12, 1665. [Google Scholar] [CrossRef] [Green Version]
- Higaki, M.; Kako, Y.; Moriyama, M.; Hirano, M.; Hiraishi, K.; Kurita, K. Static electrification and partial discharges caused by oil flow in forced oil cooled core type transformers. IEEE Trans. Power Appar. Syst. 1979, 98, 1259–1267. [Google Scholar] [CrossRef]
- Crofts, D.W. The electrification phenomena in power transformers. IEEE Trans. Electr. Insul. 1988, 23, 137–146. [Google Scholar] [CrossRef]
- Borja, J.; Taleon, D.M.; Auresenia, J.; Gallardo, S. Polychlorinated biphenyls and their biodegradation. Process Biochem. 2005, 40, 1999–2013. [Google Scholar] [CrossRef]
- Fitzgerald, E.F.; Standfast, S.J.; Youngblood, L.G.; Melius, J.M.; Janerich, D.T. Assessing the health effects of potential exposure to PCBs, dioxins, and furans from electrical transformer fires: The Binghamton State Office Building medical surveillance program. Arch. Environ. Health Int. J. 1986, 41, 368–376. [Google Scholar] [CrossRef]
- Fernández, I.; Ortiz, A.; Delgado, F.; Renedo, C.; Perez, S. Comparative evaluation of alternative fluids for power transformers. Electr. Power Syst. Res. 2013, 98, 58–69. [Google Scholar] [CrossRef]
- Kuwahara, H.; Tsuruta, K.; Munemurs, H.; Ishii, T.; Shiomi, H. Partial discharge characteristics of silicone liquids. IEEE Trans. Electr. Insul. 1976, 11, 86–91. [Google Scholar] [CrossRef]
- Rouse, T.O. Mineral insulating oil in transformers. IEEE Electr. Insul. Mag. 1998, 14, 6–16. [Google Scholar] [CrossRef]
- Scatiggio, F.; Tumiatti, V.; Maina, R.; Tumiatti, M.; Pompili, M.; Bartnikas, R. Corrosive sulfur induced failures in oil-filled electrical power transformers and shunt reactors. IEEE Trans. Power Deliv. 2009, 24, 1240–1248. [Google Scholar] [CrossRef]
- Tokunaga, J.; Nikaido, M.; Koide, H.; Hikosaka, T. Palm fatty acid ester as biodegradable dielectric fluid in transformers: A review. IEEE Electr. Insul. Mag. 2019, 35, 34–46. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- Rao, U.M.; Sood, Y.R.; Jarial, R.K. Ester dielectrics: Current perspectives and future challenges. IETE Tech. Rev. 2017, 34, 448–459. [Google Scholar] [CrossRef]
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K.; Jhala, A.S. A review on critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers: Part 1. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 873–880. [Google Scholar] [CrossRef]
- Lashbrook, M. Ester fluids for power transformers at >100 kV. Transform. Mag. 2014, 1, 14–19. [Google Scholar]
- Asano, R.; Page, S.A. Reducing environmental impact and improving safety and performance of power transformers with natural ester dielectric insulating fluids. IEEE Trans. Ind. Appl. 2013, 50, 134–141. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.D. Streamer characteristic and breakdown in synthetic and natural ester transformer liquids under standard lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 285–294. [Google Scholar] [CrossRef]
- CIGRE Working Group A 2.35. Experiences in Service with New Insulating Liquids; CIGRE: Paris, France, 2010; ISBN 978-2-85873-124-4. [Google Scholar]
- Pierce, L.W. An investigation of the thermal performance of an oil filled transformer winding. IEEE Trans. Power Deliv. 1992, 7, 1347–1358. [Google Scholar] [CrossRef]
- Li, Y.; Tung, S.; Schneider, E.; Xi, S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009, 196, 89–101. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Zhou, Y.; Li, C.R.; Wang, Q.; Qi, B. Recent progress in nanofluids based on transformer oil: Preparation and electrical insulation properties. IEEE Electr. Insul. Mag. 2014, 30, 23–32. [Google Scholar] [CrossRef]
- Du, Y.; Lv, Y.; Li, C.; Zhong, Y.; Chen, M.; Zhang, S.; Zhou, Y.; Chen, Z. Effect of water adsorption at nanoparticle–oil interface on charge transport in high humidity transformer oil-based nanofluid. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 153–158. [Google Scholar] [CrossRef]
- Fontes, D.H.; Ribatski, G.; Bandarra Filho, E.P. Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diam. Relat. Mater. 2015, 58, 115–121. [Google Scholar] [CrossRef]
- Miao, J.; Dong, M.; Ren, M.; Wu, X.; Shen, L.; Wang, H. Effect of nanoparticle polarization on relative permittivity of transformer oil-based nanofluids. J. Appl. Phys. 2013, 113, 204103. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Li, J.; Wang, F.; Yao, W.; Yao, S. Influence of monodisperse Fe3O4 nanoparticle size on electrical properties of vegetable oil-based nanofluids. J. Nanomater. 2015, 2015, 560352. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.A.; Samikannu, R.; Yahya, A.; Mosalaosi, M. Investigation of Survival/Hazard Rate of Natural Ester Treated with Al2O3 Nanoparticle for Power Transformer Liquid Dielectric. Energies 2021, 14, 1510. [Google Scholar] [CrossRef]
- Sierota, A.; Rungis, J. Electrostatic charging in transformer oils. Testing and assessment. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 840–870. [Google Scholar] [CrossRef]
- Wu, H.; Jayaram, S. DC field effects on streaming electrification in insulating oils. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 499–506. [Google Scholar] [CrossRef]
- Arazoe, S.; Saruhashi, D.; Sato, Y.; Yanabu, S.; Ueta, G.; Okabe, S. Electrical characteristics of natural and synthetic insulating fluids. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 506–512. [Google Scholar] [CrossRef]
- Cabaleiro, J.M.; Paillat, T.; Moreau, O.; Touchard, G. Electrical double layer’s development analysis: Application to flow electrification in power transformers. IEEE Trans. Ind. Appl. 2009, 45, 597–605. [Google Scholar] [CrossRef]
- El-Adawy, M.; Cabaleiro, J.M.; Paillat, T.; Moreau, O.; Touchard, G. Experimental determination of space charge density associated with flow electrification phenomenon: Application to power transformers. J. Electrost. 2009, 67, 354–358. [Google Scholar] [CrossRef]
- Moreau, O.; Paillat, T.; Touchard, G. Flow electrification in transformers: Sensor propotype for electrostatic hazard. Electrostatics 2003, 178, 31–36. [Google Scholar]
- Paillat, T.; Touchard, G.; Bertrand, Y. Capacitive sensor to measure flow electrification and prevent electrostatic hazards. Sensors 2012, 12, 14315–14326. [Google Scholar] [CrossRef] [Green Version]
- Amalanathan, A.J.; Sarathi, R.; Harid, N.; Griffiths, H. Degradation Assessment of Ester Liquids. In Alternative Liquid Dielectrics for High Voltage Transformer Insulation Systems: Performance Analysis and Applications; Mohan Rao, U., Fofana, I., Sarathi, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 85–125. [Google Scholar]
- Oommen, T.V.; Petrie, E.M. Electrostatic Charging Tendency of Transformer Oils. IEEE Trans. Power Appar. Syst. 1984, 103, 1923–1931. [Google Scholar] [CrossRef]
- Lyon, D.J.; Melcher, J.R.; Zahn, M. Couette charger for measurement of equilibrium and energization flow electrification parameters: Application to transformer insulation. IEEE Trans. Electr. Insul. 1988, 23, 159–176. [Google Scholar] [CrossRef]
- Washabaugh, A.P.; Zahn, M. Flow electrification measurements of transformer insulation using a Couette flow facility. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 161–181. [Google Scholar] [CrossRef]
- Morin, A.J.; Zahn, M.; Melcher, J.R. Fluid electrification measurements of transformer pressboard/oil insulation in a Couette charger. IEEE Trans. Electr. Insul. 1991, 26, 870–901. [Google Scholar] [CrossRef]
- Peyraque, L.; Beroual, A.; Buret, F. Static electrification of pressboard/oil interface and transient phenomena. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 443–449. [Google Scholar] [CrossRef] [Green Version]
- CIGRE Joint Working Group 12/15-13. Static Electrification in Power Transformers, General Session, Paper 15/12-03; CIGRE: Paris, France, 1992. [Google Scholar]
- Zmarzły, D.; Frącz, P. Measurement of Dielectric Liquid Electrification in the Shuttle System with Two Parallel Electrodes. Energies 2021, 14, 970. [Google Scholar] [CrossRef]
- Zmarzły, D.; Frącz, P. Streaming electrification in the swinging plate system. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3217–3225. [Google Scholar] [CrossRef]
- Zmarzły, D.; Kędzia, J. A noise analyzer for monitoring static electrification current. J. Electrost. 2005, 63, 409–422. [Google Scholar] [CrossRef]
- Von Helmholtz, H.L.F. Studies of electric boundary layers. Wied. Ann. 1879, 7, 337–382. [Google Scholar]
- Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501. [Google Scholar] [CrossRef]
- Parsons, R. The electrical double layer: Recent experimental and theoretical developments. Chem. Rev. 1990, 90, 813–826. [Google Scholar] [CrossRef]
- Metwally, I.A. Characterization of static electrification in power transformers. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 307–315. [Google Scholar] [CrossRef]
- Yamada, N.; Kishi, A.; Nitta, T.; Tanaka, T. Model approach to the static electrification phenomena induced by the flow of oil in large power transformers. IEEE Trans. Power Appar. Syst. 1980, 99, 1097–1106. [Google Scholar] [CrossRef]
- Oommen, T.V. Static electrification properties of transformer oil. IEEE Trans. Electr. Insul. 1988, 23, 123–128. [Google Scholar] [CrossRef]
- Peyraque, L.; Boisdon, C.; Beroual, A.; Buret, F. Static electrification and partial discharges induced by oil flow in power transformers. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 40–45. [Google Scholar] [CrossRef]
- Liu, D.; Du, B.; Yan, M.; Wang, S.; Liu, X. Investigation of electrification and breakdown strength about transformer oil/pressboard. IET Electr. Power Appl. 2017, 11, 386–392. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Harid, N.; Griffiths, H. Modeling of Spinning Disk System for Charging Tendency of Ester-Based TiO2 Nanofluids Along With its Interfacial Zone. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 462–469. [Google Scholar]
- Harvey, T.J.; Wood, R.J.K.; Denuault, G.; Powrie, H.E.G. Effect of oil quality on electrostatic charge generation and transport. J. Electrost. 2002, 55, 1–23. [Google Scholar] [CrossRef]
- Walmsley, H.L.; Woodford, G. The polarity of the current generated by the laminar flow of a dielectric liquid. J. Electrost. 1981, 10, 283–288. [Google Scholar] [CrossRef]
- Radwan, R.M.; El-Dewieny, R.M.; Aish, T.D.; Metwally, I.H. Factors affecting transformer oil flow electrification in electric power apparatus. In Proceedings of the IEEE Annual Conference on Electrical Insulation and Dielectric Phenomena, Pocono Manor, PA, USA, 28–31 October 1990; pp. 642–647. [Google Scholar]
- Kedzia, J.; Willner, B. Electrification current in the spinning disk system. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 58–62. [Google Scholar] [CrossRef]
- Talhi, M.; Fofana, I.; Flazi, S. Comparative study of the electrostatic charging tendency between synthetic ester and mineral oil. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1598–1606. [Google Scholar] [CrossRef]
- Brubaker, M.A.; Nelson, J.K. A parametric study of streaming electrification in a full-scale core-form transformer winding using a network-based model. IEEE Trans. Power Deliv. 2000, 15, 1188–1192. [Google Scholar] [CrossRef]
- Liu, D.; Du, B.; Liu, F.; Wang, S. Effects of multiple parameters on static electrification and breakdown strength of transformer oil. IET Sci. Meas. Technol. 2016, 10, 597–601. [Google Scholar] [CrossRef]
- Nelson, J.K. Electrokinetic effects in pumped dielectric fluids. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Pocono Manor, PA, USA, 17–20 October 1993; pp. 25–61. [Google Scholar]
- Kedzia, J.; Brozostek, E. Static electrification in transformer oil as a measure of its aging. IEEE Trans. Electr. Insul. 1984, 19, 101–106. [Google Scholar] [CrossRef]
- Ueta, G.; Tsuboi, T.; Okabe, S.; Amimoto, T. Study on degradation causing components of various characteristics of transformer insulating oil. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 2216–2224. [Google Scholar] [CrossRef]
- Massala, G.; Lesaint, O.; Moreau, O. Influence of oil electrification on ac breakdown between metallic electrodes. In Proceedings of the IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Victoria, BC, Canada, 15–18 October 2000; pp. 89–92. [Google Scholar]
- Talhi, M.; Fofana, I.; Flazi, S. Impact of free radicals on the electrostatic charging tendency of transformer oils. Electr. Eng. 2020, 102, 1265–1274. [Google Scholar] [CrossRef]
- Okabe, S.; Kohtoh, M.; Tsuchie, M.; Amimoto, T. Influence of diverse compounds on electrostatic charging tendency of mineral insulating oil used for power transformer insulation. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 900–908. [Google Scholar] [CrossRef]
- Paillat, T.; Onic, L.; Moreau, O.; Bertrand, Y.; Mortha, G.; Charvet, N.; Touchard, G. Influence of pressboard physico-chemical composition on static electrification in power transformers. IEEE Trans. Ind. Appl. 2003, 39, 346–354. [Google Scholar] [CrossRef]
- Fofana, I.; Bouslimi, Y.; Hemmatjou, H.; Volat, C.; Tahiri, K. Relationship between static electrification of transformer oils with turbidity and spectrophotometry measurements. Int. J. Electr. Power Energy Syst. 2014, 54, 38–44. [Google Scholar] [CrossRef]
- Nakajima, A.; Miyahara, H.; Ishikawa, T.; Wada, J.; Yanabu, S. Streaming electrification characteristics of silicone oil. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 519–526. [Google Scholar] [CrossRef]
- Ishikawa, T.; Yasuda, K.; Igarashi, T.; Yanabu, S.; Ueta, G.; Okabe, S. Effect of temperature on the streaming electrification characteristics of silicone oil. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 273–280. [Google Scholar] [CrossRef]
- Paillat, T.; Zelu, Y.; Morin, G.; Perrier, C. Ester oils and flow electrification hazards in power transformers. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1537–1543. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Yang, G. Comparison of streaming electrification characteristics between an ester liquid and a mineral oil using rotating disc method. In Proceedings of the IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Chenzhen, China, 20–23 October 2013; pp. 1026–1029. [Google Scholar]
- Huang, Y.M.; Liu, Q. Comparisons of streaming electrification characteristics between an ester liquid and a mineral oil using pipe flow method. In Proceedings of the IEEE International Conference on Dielectrics (ICD), Palermo, Italy, 3–7 July 2016; pp. 1028–1031. [Google Scholar]
- Talhi, M.; Fofana, I.; Flazi, S. The electrostatic charging tendency of some environmentally friendly insulating fluids. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 378–382. [Google Scholar]
- Podesser, J.; Wieser, B.; Muhr, M.; Schwarz, R.; Pukel, G.J.; Lashbrook, M. Static electrification of different solid-liquid couples used in transformers for insulation. In Proceedings of the IEEE 18th International Conference on Dielectric Liquids (ICDL), Bled, Slovenia, 29 June–3 July 2014; pp. 1–4. [Google Scholar]
- Zdanowski, M. Streaming electrification of mineral insulating oil and synthetic ester MIDEL 7131. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1127–1132. [Google Scholar] [CrossRef]
- Kolcunova, I.; Kurimský, J.; Cimbala, R.; Petráš, J.; Dolník, B.; Džmura, J.; Balogh, J. Contribution to static electrification of mineral oils and natural esters. J. Electrost. 2017, 88, 60–64. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I.; Beroual, A. Studying the Electrostatic Charging Tendency of some environmentally friendly fluids in a spinning disk system. In Proceedings of the International Conference on High Voltage Engineering and Application (ICHVE), Poznan, Poland, 8–11 September 2014; pp. 1–4. [Google Scholar]
- Huang, Q.; Chen, Y.; Huang, H.; Wang, Y.; Song, H. Comparison Among Ester Liquids for Streaming Electrification of Power Transformers. In Proceedings of the IEEE 21st International Conference on Dielectric Liquids (ICDL), Seville, Spain, 22 May–2 June 2022; pp. 1–4. [Google Scholar]
- Fofana, I.; Wasserberg, V.; Borsi, H.; Gockenbach, E. Challenge of mixed insulating liquids for use in high-voltage transformers. 1. Investigation of mixed liquids. IEEE Electr. Insul. Mag. 2002, 18, 18–31. [Google Scholar] [CrossRef]
- Zdanowski, M.; Kędzia, J. Research on the electrostatic properties of liquid dielectric mixtures. J. Electrost. 2007, 65, 506–510. [Google Scholar] [CrossRef]
- Zdanowski, M.; Wolny, S.; Zmarzły, D.O.; Boczar, T. ECT of ethanol and hexane mixtures in the spinning disk system. J. Electrost. 2007, 65, 239–243. [Google Scholar] [CrossRef]
- Gayathri, R.; Sundari, P.D.; Thakur, S.; Sarathi, R. Investigation on the dielectric performance of titania nanoparticles and surfactant added mixture of mineral and natural ester oil. Mater. Res. Express 2019, 6, 125020. [Google Scholar] [CrossRef]
- Ranga, C.; Kumar Chandel, A.; Chandel, R. Performance analysis of alternative solid dielectrics of power transformers with a blend of mineral and silicon oils. IETE Tech. Rev. 2018, 35, 331–341. [Google Scholar] [CrossRef]
- Raof, N.A.; Yunus, R.; Rashid, U.; Azis, N.; Yaakub, Z. Effects of palm-based trimethylolpropane ester/mineral oil blending on dielectric properties and oxidative stability of transformer insulating liquid. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1771–1778. [Google Scholar] [CrossRef]
- Lyutikova, M.; Korobeynikov, S.; Rao, U.M.; Fofana, I. Mixed Insulating Liquids with Mineral Oil for High Voltage Transformer Applications: A Review. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 454–461. [Google Scholar] [CrossRef]
- Poovamma, P.K.; Pattanshetti, V.V.; Ahmed, T.A.; Sudhindra, A. Charging tendency of mineral oils and synthetic ester mixtures. In Proceedings of the IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 26–30 June 2011; pp. 1–4. [Google Scholar]
- Zdanowski, M.; Maleska, M. Streaming Electrification of Insulating Liquid Mixtures. Arch. Electr. Eng. 2019, 68, 387–397. [Google Scholar]
- Zdanowski, M. Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester. Energies 2020, 13, 4420. [Google Scholar] [CrossRef]
- Zdanowski, M. Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by using Rotating Disc Method. Energies 2020, 13, 6159. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Rafiq, M.; Lv, Y.; Li, C. A review on properties, opportunities, and challenges of transformer oil-based nanofluids. J. Nanomater. 2016, 2016, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Amizhtan, S.K.; Amalanathan, A.J.; Babu, M.S.; Sarathi, R.; Kumar, G.; Sangwai, J.S.; Edin, H.; Taylor, N. Experimental Study and ANN Analysis of Rheological Behavior of Mineral Oil-based SiO2 Nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 956–964. [Google Scholar] [CrossRef]
- Amizhtan, S.K.; Amalanathan, A.J.; Sarathi, R.; Srinivasan, B.; Gardas, R.L.; Edin, H.; Taylor, N. Impact of Surfactants on the Electrical and Rheological Aspects of Silica Based Synthetic Ester Nanofluids. IEEE Access 2022, 10, 18192–18200. [Google Scholar] [CrossRef]
- Anju, P.; Aryanandiny, B.; Amizhtan, S.K.; Gardas, R.L.; Sarathi, R. Investigation on the Electrical and Rheological Properties of AlN-Based Synthetic Ester Nanofluids. IEEE Access 2022, 10, 37495–37505. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Harid, N.; Griffiths, H. Investigation on flow electrification of ester-based TiO2 nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1492–1500. [Google Scholar] [CrossRef]
- Fofana, I. 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Qian, Y.; Su, W. Research on influencing factors of corrosive sulfur attacking copper in insulating oil and prevention. IEEJ Trans. Electr. Electron. Eng. 2013, 8, 546–549. [Google Scholar] [CrossRef]
- Tumiatti, V.; Maina, R.; Scatiggio, F.; Pompili, M.; Bartnikas, R. In service reduction of corrosive sulfur compounds in insulating mineral oils. In Proceedings of the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008; pp. 284–286. [Google Scholar]
- Wan, T.; Qian, H.; Zhou, Z.; Gong, S.K.; Hu, X.; Feng, B. Suppressive mechanism of the passivator irgamet 39 on the corrosion of copper conductors in transformers. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 454–459. [Google Scholar] [CrossRef]
- Sima, W.; Chen, J.; Sun, P.; Zhang, H.; Ye, L.; He, J.; Yin, Z.; Shao, Q. Breakdown characteristics of C60 modified transformer oil. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico, 21–24 October 2018; pp. 125–128. [Google Scholar]
- Watanabe, S.; Kawaguchi, S.; Fujil, M.; Tanabe, K.; Ohashi, A. The structure of additives and their relation to streaming current. In Proceedings of the Twenty-First Symposium on Electrical Insulating Materials, Tokyo, Japan, 26 September 1988; pp. 319–322. [Google Scholar]
- Watanabe, S.; Tanabe, K.; Fujii, M.; Ohashi, A.; Zerghouni, A.; Touchard, G. The relation between the chemical structure of anti-additives and streaming current. In Proceedings of the 10th International Conference on Conduction and Breakdown in Dielectric Liquids, Grenoble, France, 10–14 September 1990; pp. 212–216. [Google Scholar]
- Ieda, M.; Okugo, H.; Tsukioka, H.; Goto, K.; Miyamoto, T.; Kohno, Y. Suppression of static electrification of insulating oil for large power transformers. IEEE Trans. Electr. Insul. 1988, 23, 153–157. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Paillat, T.; Bertrand, Y.; Moreau, O.; Touchard, G. Physicochemical analysis at the interface between conductive solid and dielectric liquid for flow electrification phenomenon. IEEE Trans. Ind. Appl. 2010, 46, 1593–1600. [Google Scholar]
- Moreau, E.; Paillat, T.; Touchard, G. Oil electrification measured on a pressboard coming from a damaged power transformer. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Austin, TX, USA, 17–20 October 1999; pp. 794–797. [Google Scholar]
- Nelson, J.K. Dielectric fluids in motion. IEEE Electr. Insul. Mag. 1994, 10, 16–28. [Google Scholar] [CrossRef]
- Radwan, R.M.; El-Dewieny, R.M.; Metwally, I.A. Investigation of static electrification phenomenon due to transformer oil flow in electric power apparatus. IEEE Trans. Electr. Insul. 1992, 27, 278–286. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Harid, N.; Griffiths, H. Impact of benzotriazole on the degradation performance of ester fluid. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Virtual Event, 7–28 June 2021; pp. 610–613. [Google Scholar]
- Aksamit, P.; Zmarzły, D. C60 as flow electrification inhibitor in mineral insulating oil. J. Electrost. 2011, 69, 195–199. [Google Scholar] [CrossRef]
- Aksamit, P.; Zmarzly, D.; Boczar, T. Electrostatic properties of aged fullerene-doped mineral oil. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1459–1462. [Google Scholar] [CrossRef]
- Zdanowski, M. Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications. Energies 2022, 15, 2496. [Google Scholar] [CrossRef]
- Roach, J.F.; Templeton, J.B. An Engineering model for streaming electrification in power transformers. In Electrical Insulating Oils; Erdman, H.G., Ed.; ASTM: West Conshohocken, PA, USA, 1988; pp. 119–135. [Google Scholar]
- Miyao, H.; Higaki, M.; Kamata, Y. Influence of ac and dc Fields on Streaming Electrification of Transformer Oil. IEEE Trans. Electr. Insul. 1988, 23, 129–135. [Google Scholar] [CrossRef]
- Brubaker, M.A.; Nelson, J.K. Development and calibration of a streaming electrification model for a cellulose duct. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 157–166. [Google Scholar] [CrossRef]
- Metwally, I.A. Influence of solid insulating phase on streaming electrification of transformer oil. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 327–340. [Google Scholar] [CrossRef]
- Huh, C.S.; Jeong, J.I. Streaming electrification of thin insulating pipes under electric field. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 199–203. [Google Scholar]
- Metwally, I.A. Flow electrification of transformer oil effects of mixed fields. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 518–526. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, L.; Gao, Y.; Li, J. Flow electrification characteristics of oil-pressboard insulation under ac superimposed on DC electric field. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2915–2922. [Google Scholar] [CrossRef]
- Safiddine, L.; Hadj-Ziane Zafour, A.; Fofana, I.; Skender, A.; Guerbas, F.; Boucherit, A. Transformer oil reclamation by combining several strategies enhanced by the use of four adsorbents. IET Gener. Transm. Distrib. 2017, 11, 2912–2920. [Google Scholar] [CrossRef]
- IEEE C57.637. IEEE Guide for the Reclamation of Mineral insulating Oil and Criteria for Its Use; IEEE Std C57.637-2015 (Revision of IEEE Std 637-1985); IEEE SA Standard Association: New York, NY, USA, 2015; pp. 1–38. [Google Scholar]
- Velásquez, R.M.A.; Lara, J.V.M. Corrosive Sulphur effect in power and distribution transformers failures and treatments. Eng. Fail. Anal. 2018, 92, 240–267. [Google Scholar] [CrossRef]
- Smolka, T.; MacArthur, T.L.; Frotscher, R.; Mattos, R. Natural/synthetic esters usage from an OLTC Perspective. In Proceedings of the TechCon®—NZ 2018, Sydney, Australia, 16–18 April 1–20.
- Mahidhar, G.D.P.; Somasundaram Karthikeyan, A.; Sarathi, R.; Taylor, N.; Edin, H. Dielectric properties of mixed mineral and synthetic ester oil. IET Sci. Meas. Technol. 2020, 14, 704–714. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Harid, N.; Griffiths, H.; Sarathi, R. Impact of adding activated bentonite to thermally aged ester-based TiO2 nanofluids on insulation performance. IET Nanodielectrics 2021, 4, 63–74. [Google Scholar] [CrossRef]
- Scatiggio, F.; Tumiatti, V.; Maina, R.; Tumiatti, M.; Pompili, M.; Bartnikas, R. Corrosive sulfur in insulating oils: Its detection and correlated power apparatus failures. IEEE Trans. Power Deliv. 2007, 23, 508–509. [Google Scholar] [CrossRef]
- Akshatha, A.; Rajan, J.S.; Ramachandra, H. Study of degradation of sulphur compounds and depletion of metal passivators during thermal ageing of mineral oil. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2786–2797. [Google Scholar] [CrossRef]
- Amimoto, T.; Nagao, E.; Tanimura, J.; Toyama, S.; Fujita, Y.; Kawarai, H.; Yamada, N. Identification of affecting factors of copper sulfide deposition on insulating paper in oil. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 265–272. [Google Scholar] [CrossRef]
- Holt, A.F.; Facciotti, M.; Amaro, P.; Brown, R.C.D.; Lewin, P.L.; Pilgrim, J.A.; Wilson, G.; Jarman, P. An initial study into silver corrosion in transformers following oil reclamation. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 469–472. [Google Scholar]
- Samarasinghe, S.; Ma, H.; Martin, D.; Saha, T. Investigations of silver sulfide formation on transformer OLTC tap selectors and its influence on oil properties. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1926–1934. [Google Scholar] [CrossRef]
- Amizhtan, S.K.; Amalanathan, A.J.; Sarathi, R.; Vinu, R. Impact of DBDS and Silver Sulfide on the Performance of Thermally Aged Mineral oil Impregnated Pressboard Material. IEEE Access 2022, 10, 9618–9627. [Google Scholar] [CrossRef]
- Okabe, S.; Kohtoh, M.; Amimoto, T. Investigation of electrostatic charging mechanism in aged oil-immersed transformers. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 287–293. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Sarkar, B.; Gardas, R.L.; Harid, N.; Griffiths, H. Impact of silver sulfide on rheology and streaming electrification of mineral oil and mixed fluid. J. Electrost. 2022, 119, 103747. [Google Scholar] [CrossRef]
- Samarasinghe, S.; Ma, H.; Ekanayake, C.; Martin, D.; Saha, T. Investigating passivator effectiveness for preventing silver sulfide corrosion in power transformer on-load tap changers. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1761–1768. [Google Scholar] [CrossRef]
- Cong, H.; Pan, H.; Qian, D.; Zhao, H.; Li, Q. Reviews on sulphur corrosion phenomenon of the oil–paper insulating system in mineral oil transformer. High Volt. 2021, 6, 193–209. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Harid, N.; Griffiths, H. Investigation of the Effect of Silver Sulfide on the Dielectric Properties of Mixed Insulating Liquid. In Proceedings of the IEEE International Symposium on Electrical Insulating Materials (ISEIM), Tokyo, Japan, 13–17 September 2020; pp. 343–346. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amalanathan, A.J.; Zdanowski, M.; Sarathi, R. Streaming Electrification of Different Insulating Fluids in Power Transformers. Energies 2022, 15, 8121. https://doi.org/10.3390/en15218121
Amalanathan AJ, Zdanowski M, Sarathi R. Streaming Electrification of Different Insulating Fluids in Power Transformers. Energies. 2022; 15(21):8121. https://doi.org/10.3390/en15218121
Chicago/Turabian StyleAmalanathan, Arputhasamy Joseph, Maciej Zdanowski, and Ramanujam Sarathi. 2022. "Streaming Electrification of Different Insulating Fluids in Power Transformers" Energies 15, no. 21: 8121. https://doi.org/10.3390/en15218121
APA StyleAmalanathan, A. J., Zdanowski, M., & Sarathi, R. (2022). Streaming Electrification of Different Insulating Fluids in Power Transformers. Energies, 15(21), 8121. https://doi.org/10.3390/en15218121