Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Transfer
2.1.1. Parabolic Trough Collectors
2.1.2. Heat Transfer from the Absorber Tube to the Fluid
2.1.3. Heat Transfer from the Absorber Tube to the Glass Cover
2.1.4. Heat Loss from the External Surface of the Glass Cover
2.1.5. Heat Transfer through Absorber Tube Support Brackets
2.2. Organic Rankine Cycle
2.2.1. Turbine
2.2.2. Condenser
2.2.3. Pump
2.3. Two-Tank Thermal Storage System
2.4. Validation of Mathematical Models
3. Results
3.1. Results of the Organic Rankine Cycle Coupled with the Parabolic Trough
3.2. Thermal Storage System Coupled to the Integrated PTC-ORC System
- Charging periods: In the system operation at this stage, the fluid or storage medium found in the cold tank was made to flow through the solar field when the maximum solar irradiation conditions were reached (higher solar irradiation at 694 W/m2). Once the fluid was heated, it was charged with the fluid coming out of the solar field’s hot tank.
- Discharge period: This took place when the solar irradiation dropped below 694 W/m2, a condition in which the fluid contained in the hot tank was discharged in order to supply the energy necessary to power the ORC system.
- For the tank’s charging period, which lasted 3 h and 40 min, the maximum temperature drop was 0.084 °C.
- The time required for thermal storage was 4800 s (1 h and 10 min). After this time, the stored energy needed to be used, and the fluid’s discharge process began to maintain the power produced by the ORC at approximately 7.4 kW. During this period, the maximum temperature drop was 0.06 °C.
- At the end of the discharge period, the final temperature of the fluid was 99.49 °C. During the discharge period, which lasted 3 h and 26 min, the maximum temperature drop was 0.15 °C.
- For the complete operation of the thermal storage system, there was a difference of 0.31 °C between the design temperature (99.8 °C) and the temperature at the end of the discharge period.
- At this point, it is possible to establish that when comparing the energy storage system’s behavior with and without considering heat losses (for the conditions evaluated in Table 8 and Table 9), the fluid temperature remains constant (99.8 °C) from the time it enters the hot tank onward, regardless the environmental conditions and the fluid temperature inside the hot tank.
- An evaluation of the thermal storage system demonstrated that a tank with a diameter of 4 m and a height of 4.55 m using Dowtherm A, a fluid storage medium, and heat transfer fluid from the solar field guarantees electricity generation for 3 h and 26 min, based on the design parameters proposed in this paper and on a working fluid inventory of 57.15 m3.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | Area (m2), absorber, collector aperture width (m), heating |
b | Normal, base, nozzle blade |
c | Convection |
d | Diffuse |
Diameter (m) | |
eva | Evaporator |
Fluid | |
Convective heat transfer coefficient, enthalpy (W/m2 K), hub | |
Solar irradiation (W/m2) | |
k | Thermal conductivity |
Incidence-angle modifier | |
L | Length (m) |
Mass flow rate (kg/s) | |
n | Nitrogen |
q | Heat transfer rate per unit length (W/m) |
Q | Heat absorbed (W) |
r | Receiver, radiation, radius (m) |
s | Sky, outlet, shroud, storage, dry section |
u | Wet section |
x | Side 1 or side 2 |
Greek Symbols | |
Absorbance | |
Emissivity coating, rotor radius ratio | |
σ | Stefan–Boltzmann constant |
ρ | Reflectance, density (kg/m3) |
Transmittance | |
Angle of incidence | |
γfi | Intercept factor |
Subscripts | |
0 | Total |
1 | Receiver side one |
2 | Receiver side two |
Ambient | |
ab | Absorber support bracket |
ae | External absorber |
ai | Internal absorber |
Col | Collector |
cond | Conduction |
con | Condenser |
Heat transfer fluid | |
in | Inlet |
Isentropic | |
ge | External glass cover |
gi | Internal glass cover |
gc | Glass cover |
Outlet | |
orc | Organic Rankine Cycle |
orc | Organic Rankine Cycle |
PTC | Parabolic Trough Collector |
wf | working fluid |
sat | Thermal storage system |
Surroundings |
References
- Peter, J. How does climate change affect electricity system planning and optimal allocation of variable renewable energy? Appl. Energy 2019, 252, 113397. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. Is emission trading scheme an opportunity for renewable energy in China? A perspective of ETS revenue redistributions. Appl. Energy 2020, 263, 114605. [Google Scholar] [CrossRef]
- Cuesta, M.A.; Castillo-Calzadilla, T.; Borges, C.E. A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimize systems in small communities. Renew. Sustain. Energy Rev. 2020, 122, 109691. [Google Scholar] [CrossRef]
- Vetter, C.; Wiemer, H.J.; Kuhn, D. Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering speci fi c net power output and efficiency. Appl. Therm. Eng. 2013, 51, 871–879. [Google Scholar] [CrossRef]
- Wasserbauer, C.A.; Glassman, A.J. FORTRAN Program for Predicting the Off-Design Performance of Radial Inflow Turbines; NASA Technical Note TN D-8063; NASA: Washington, DC, USA, 1 September 1975.
- Borunda, M.; Jaramillo, O.; Dorantes, R.; Reyes, A. Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes. Renew. Energy 2016, 86, 651–663. [Google Scholar] [CrossRef]
- Quoilin, S. Sustainable Energy Conversion through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications. Ph.D. Thesis, University of Liege, Liege, Belgium, 2011. Available online: https://hdl.handle.net/2268/96436 (accessed on 1 October 2020).
- He, Y.L.; Mei, D.H.; Tao, W.Q.; Yang, W.W.; Liu, H.L. Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle. Appl. Energy 2012, 97, 630–641. [Google Scholar] [CrossRef]
- Derbal-Mokrane, H.; Amrouche, F.; Omari, M.N.; Yahmi, I. Hydrogen production through parabolic trough power plant based on the Organic Rankine Cycle implemented in the Algerian Sahara. Int. J. Hydrogen Energy 2021, 46, 32768–32782. [Google Scholar] [CrossRef]
- Marinheiro, M.M.; Coraça, G.M.; Cabezas-Gómez, L.; Ribatski, G. Detailed transient assessment of a small-scale concentrated solar power plant based on the organic Rankine cycle. Appl. Therm. Eng. 2022, 204, 117959. [Google Scholar] [CrossRef]
- Chacartegui, R.; Vigna, L.; Becerra, J.A.; Verda, V. Analysis of two heat storage integrations for an Organic Rankine Cycle Parabolic trough solar power plant. Energy Convers. Manag. 2016, 125, 353–367. [Google Scholar] [CrossRef]
- Suresh, N.S.; Thirumalai, N.C.; Rao, B.S.; Ramaswamy, M.A. Methodology for sizing the solar field for parabolic trough technology with thermal storage and hybridization. Sol. Energy 2014, 110, 247–259. [Google Scholar] [CrossRef]
- Catapano, F.; Frazzica, A.; Freni, A.; Manzan, M.; Micheli, D.; Palomba, V.; Sementa, P.; Vaglieco, B. Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application. Appl. Energy 2022, 311, 118673. [Google Scholar] [CrossRef]
- Khedher, N.B.; Bantan, R.A.; Kolsi, L.; Omri, M. Performance investigation of a vertically configured LHTES via the combination of nano-enhanced PCM and fins: Experimental and numerical approaches. Int. Commun. Heat Mass Transf. 2022, 137, 106246. [Google Scholar] [CrossRef]
- Caballero, G.E.C. Modelagem do Comportamento Integrado de um Sistema de Coletor Cilíndrico Parabólico Operando com Ciclo Rankine Orgânico e Armazenamento Térmico de dois Tanques. Ph.D. Thesis, Universidade Federal De Itajubá, Itajuba, Brazil, 2018. [Google Scholar]
- Hachicha, A.A.; Rodriguez, I.; Capdevila, R.; Oliva, A. Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Appl. Energy 2013, 111, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure andPseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Dow. SYLTHERM 800—Heat Transfer Fluid 800. Product Technical Data; Dow: Midland, MI, USA, 1997. [Google Scholar]
- Dow. DOWTHERM A—Heat Transfer Fluid. Product Technical Data; Dow: Midland, MI, USA, 1997. [Google Scholar]
- Dow. DOWTHERM Q—Heat Transfer Fluid. Product Technical Data; Dow: Midland, MI, USA, 1997. [Google Scholar]
- Cheng, Z.D.; He, Y.L.; Qiu, Y. A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends. Renew. Energy 2015, 74, 139–147. [Google Scholar] [CrossRef]
- Reddy, K.S.; Satyanarayana, G.V. Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator. Eng. Appl. Comput. Fluid Mech. 2008, 2, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Ravi, K.; Reddy, K.S. Thermal analysis of solar parabolic trough with porous disc receiver. Appl. Energy 2009, 86, 1804–1812. [Google Scholar] [CrossRef]
- Al-Shemmeri, T. Engineering Thermodynamics. Nature 1958, 181, 1028. [Google Scholar]
- Lu, J.; Ding, J.; Yang, J.; Yang, X. Nonuniform heat transfer model and performance of parabolic trough solar receiver. Energy 2013, 59, 666–675. [Google Scholar] [CrossRef]
- Cengel, Y. Heat and Mass Transfer a Practical Approach, 3rd ed.; McGraw Hill Book Company: New York, NY, USA, 2006. [Google Scholar]
- Dudiey, V.E.; Kolb, G.J.; Sloan, M.; Kearney, D. SEGS LS 2 Solar Collector Rest Result. Technical Report. SAND94-1884. 1994. Available online: https://www.osti.gov/biblio/70756 (accessed on 1 May 2020).
- Good, P. Heat Transfer Modeling of a Solar Parabolic Trough Receiver by Direct Simultion Monte Carlo Method. Master’s Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 2011. [Google Scholar] [CrossRef]
- Forristall, R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. NREL/TP-550-34169. 1 October 2003. Available online: https://www.nrel.gov/docs/fy04osti/34169.pdf (accessed on 12 June 2020).
- Wagner, M.J.; Gilman, P. Technical Manual for the SAM Physical Trough Model. Technical Report. NREL/TP-5500-51825. Available online: https://www.osti.gov/biblio/1016437/ (accessed on 17 June 2020).
- Vaja, I.; Gambarotta, A. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs). Energy 2010, 35, 1084–1093. [Google Scholar] [CrossRef]
- Lukawski, M. Design and Optimization of Standardized Organic Rankine Cycle Power Plant for European Conditions. Master’s Thesis, School for Renewable Energy Science, Akureyri, Iceland, 2009. [Google Scholar]
- Khaled, A. Technical and Economic Performance of Parabolic trough in Jordan. Master’s Thesis, Cairo University, Cairo, Egypt, 2012. [Google Scholar]
- Muhammad, U.; Imran, M.; Lee, D.H.; Park, B.S. Design and experimental investigation of a 1kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam. Energy Convers. Manag. 2015, 103, 1089–1100. [Google Scholar] [CrossRef]
- Zaversky, F.; García-Barberena, J.; Sánchez, M.; Astrain, D. Transient molten salt two-tank thermal storage modeling for CSP performance simulations. Sol. Energy 2013, 93, 294–311. [Google Scholar] [CrossRef]
- Quoilin, S.; Orosz, M.; Hemond, H.; Lemort, V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Sol. Energy 2011, 85, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Guarino, S.; Buscemi, A.; Ciulla, G.; Bonomolo, M.; Brano, V.L. A dish-Stirling solar concentrator coupled to a seasonal thermal energy storage system in the southern mediterranean basin: A cogenerative layout hypothesis. Energy Convers. Manag. 2020, 222, 113228. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ghandehariun, S.; Rezaie, B. Energy and exergy analyses of a solar-based multi-generation energy plant integrated with heat recovery and thermal energy storage systems Steam Rankine cycle. Appl. Therm. Eng. 2021, 188, 116629. [Google Scholar] [CrossRef]
- Battisti, F.G.; Passos, L.A.D.A.; Silva, A.K. Performance mapping of packed-bed thermal energy storage systems for concentrating solar-powered plants using supercritical carbon dioxide. Appl. Therm. Eng. 2021, 183, 116032. [Google Scholar] [CrossRef]
Component | Parameter | Value |
---|---|---|
Reflector | Edge Angle (°) | 69.00 |
Focal length (m) | 0.78 | |
Length (m) | 5.09 | |
Aperture width (m) | 1.80 | |
Height (m) | 0.26 | |
Coating (m) | 5 × 10−4 | |
Reflectance | 0.85 | |
Absorber tube | Material | Stainless steel |
Coating | Black Chrome | |
Outer diameter (m) | 0.038 | |
Wall thickness (m) | 1.5 × 10−3 | |
Absorbance | 0.94 | |
Glass cover | Outer diameter (m) | 0.065 |
Wall thickness (m) | 2.2 × 10−3 | |
Transmittance | 0.92 | |
data | data |
Solar Irradiation (W/m2) | Volumetric Flow (m3/h) | Ambient Temp. (°C) | Wind Speed (m/s) | Collector Inlet Temp. (°C) | Collector Outlet Temp, Reference (°C) | Collector Outlet Temp., NEST Model (°C) | Difference (%) |
---|---|---|---|---|---|---|---|
984.2 | 3.7 | 40.3 | 3.0 | 57.2 | 67.3 | 66.5 | 1.1 |
986.0 | 3.7 | 38.9 | 1.1 | 75.9 | 83.6 | 66.5 | 2.0 |
985.9 | 3.7 | 39.2 | 0.4 | 76.5 | 84.3 | 85.9 | 1.9 |
988.0 | 3.7 | 38.7 | 1.5 | 79.0 | 86.45 | 88.5 | 2.3 |
990.1 | 3.7 | 38.8 | 1.6 | 91.9 | 97.8 | 101.4 | 3.7 |
989.9 | 3.7 | 37.4 | 1.1 | 97.7 | 102.5 | 107.2 | 4.7 |
Reference Results [29] | NEST Model Results | Difference (%) | ||
---|---|---|---|---|
Wturbine (kW) | 1.0 | Wturbine (kW) | 1.05 | 5 |
Qevaporator (kW) | 12.27 | Qevaporator (kW) | 12.65 | 3.1 |
QCondenser (kW) | 11.79 | QCondenser (kW) | 10.86 | 7.8 |
Mass flow (kg/s) | 0.054 | Mass flow (kg/s) | 0.055 | 2.7 |
Turbine inlet pressure (bar) | 12.50 | Turbine inlet pressure (bar) | 13.3 | 6.4 |
Turbine inlet temperature (°C) | 102.5 | Turbine inlet temp. (°C) | 104.32 | 1.8 |
Turbine outlet pressure (bar) | 2.0 | Turbine outlet pressure (bar) | 2.02 | 1.0 |
Condenser outlet temp. (°C) | 30.0 | Condenser outlet temp. (°C) | 31 | 3.3 |
Pump outlet temperature (°C) | 30.78 | Pump outlet temperature (°C) | 32 | 3.9 |
Turbine efficiency (%) | 60.0 | Working fluid | 245fa | - |
Pump efficiency (%) | 60.0 |
Time (hour:min) | Fluid Temperature-Reference (°C) | Fluid Temperature-NEST (°C) | Difference (%) |
---|---|---|---|
0:00 | 386.0 | 386.0 | - |
1:00 | 385.6 | 385.5 | 0.03 |
2:00 | 385.2 | 385.1 | 0.03 |
3:00 | 384.8 | 384.7 | 0.03 |
4:00 | 384.5 | 384.3 | 0.05 |
4:45 | 384.3 | 384.0 | 0.08 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Collector aperture (m) | 2.5 [36] | Inside diameter absorber tube (m) | 0.066 [36] |
Collector length (m) | 26 | Outside diameter absorber tube (m) | 0.070 [36] |
Number of collectors | 5 | Inside diameter glass cover (m) | 0.080 [36] |
Absorber tube material | Steel 304 | Outside diameter glass cover (m) | 0.088 [36] |
Coating | Black chrome | Wind speed (m/s) | 3 |
ambient temperature (°C) | 17 | Initial solar field inlet temp. (°C) | 45 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Evaporator area (m2) | 0.125 | Pressure ratio | 5.71 |
Number of plates | 60 | Generator efficiency (%) | 0.92 |
Available area (m2) | 7.5 | Mechanical efficiency (%) | 0.92 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Collector diameter (m) | 2.5 | Heat transfer fluid | Dowtherm A |
Collector length (m) | 18.5 | Volumetric flow (m3/h) | 34 |
Number of collectors | 4 | Selective coating | Solel UVAC Cermet |
Inside diameter absorber tube (m) | 0.078 | Absorber tube material | Steel 304 |
Outside diameter absorber tube (m) | 0.082 | Working fluid | R-245fa |
Inside diameter glass cover (m) | 0.09 | Evaporator area (m2) | 0.125 |
Outside diameter glass cover (m) | 0.098 | Number of plates | 60 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Thermal design power (kW) | 7.4 | Mass flow rate of heat transfer fluid (kg/s) | 4.5 |
Solar irradiation (W/m2) | 694 | Power cycle efficiency (%) | 8.7 |
Temperature of Dowtherm A at the outlet of the collector (°C) | 99.8 | Ambient temperature (°C) | 22 |
Parameter | Value | Parameter | Material |
---|---|---|---|
Tank roof thickness (m) | 0.006 | Thermal insulation of tank roof | Calcium silicate board |
Tank bottom thickness (m) | 0.04 | Thermal insulation of vertical tank wall | Mineral wool |
Vertical tank wall thickness (m) | 0.04 | Thermal insulation of tank bottom | Glass Foam |
Diameter of thermal insulation hot tank (m) | 0.4 | Tank material | Steel 304 |
Thickness of thermal insulation cold tank (m) | 0.3 | ||
Diameter of tanks (m) | 4 | Height of tanks (m) | 4.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo Caballero, G.; Escorcia, Y.C.; Mendoza Castellanos, L.S.; Galindo Noguera, A.L.; Venturini, O.J.; Silva Lora, E.E.; Gutiérrez Velásquez, E.I.; Alviz Meza, A. Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil. Energies 2022, 15, 8261. https://doi.org/10.3390/en15218261
Carrillo Caballero G, Escorcia YC, Mendoza Castellanos LS, Galindo Noguera AL, Venturini OJ, Silva Lora EE, Gutiérrez Velásquez EI, Alviz Meza A. Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil. Energies. 2022; 15(21):8261. https://doi.org/10.3390/en15218261
Chicago/Turabian StyleCarrillo Caballero, Gaylord, Yulineth Cardenas Escorcia, Luis Sebastián Mendoza Castellanos, Ana Lisbeth Galindo Noguera, Osvaldo José Venturini, Electo Eduardo Silva Lora, Elkin I. Gutiérrez Velásquez, and Anibal Alviz Meza. 2022. "Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil" Energies 15, no. 21: 8261. https://doi.org/10.3390/en15218261
APA StyleCarrillo Caballero, G., Escorcia, Y. C., Mendoza Castellanos, L. S., Galindo Noguera, A. L., Venturini, O. J., Silva Lora, E. E., Gutiérrez Velásquez, E. I., & Alviz Meza, A. (2022). Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil. Energies, 15(21), 8261. https://doi.org/10.3390/en15218261