A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects
Abstract
:1. Introduction
2. R&D and Main Features of MSR
2.1. MSR R&D Worldwide
2.2. Main Operational and Physical Mechanisms of MSRs
3. Development of MSR Multi-Physics Coupling Models
3.1. N-TH Coupling
3.1.1. Point Neutronic Kinetics (0-Dimension N) Coupling with Lumped TH Parameters (0-Dimension/1-Dimension/2-Dimension TH)
3.1.2. The 1-Dimension Neutronics Coupling with 1-Dimension Thermal Hydraulics
3.1.3. 2-Dimension Neutronics Coupling with 2-Dimension Thermal Hydraulics
3.1.4. 3-Dimension Neutronics Coupling with 2-Dimension/3-Dimension Thermal Hydraulics
3.1.5. N-TH Coupling for Steady-State Analysis
3.2. N-TH-BN Coupling Development
3.2.1. The N-TH-BN Coupling Model, Considering Online Refueling and Reprocessing
3.2.2. N-TH-BN Coupling Model with Considering Helium Bubbling
Codes/Developers/Platforms | N Model | TH Model | Burnup Model | |||
---|---|---|---|---|---|---|
Nuclide Evolution | Reprocessing | Refueling | Helium Bubbling | |||
ROD, 1962 [81] | 2D diffusion | Given temperature | Equilibrium | Removal rate | Feed rate | - |
ORNL, 1960s–1970s [92,93,94] | Given neutron flux | Given temperature | 135Xe time-step evolution | - | - | 135Xe migration among fuel salt, graphite and bubble |
Nuttin et al., 2005 [7] | Monte Carlo | Given temperature | Time-step | Fictive time decay constant | Feed rate | Fictive time decay constant for fission gas and NM removal |
MOCUP, 2008 [82] | Monte Carlo | Given temperature | Equilibrium | Fictive time decay constant | Feed rate | Fictive time decay constant for fission gas and NM removal |
Sheu et al., 2012 [85] | Monte Carlo | Given temperature | Time-step | 100% removal efficiency | Feed rate | 100% removal efficiency for fission gas and NM removal |
Improved ERANOS, 2013 [88] | 3D diffusion | Given temperature | Equilibrium | Fictive time decay constant | Feed rate | - |
Frima, 2013 [89] | 3D diffusion | CFD | Time-step | Fictive time decay constant | Feed rate | - |
Improved SERPENT-2, 2013 [87] | Monte Carlo | Given temperature | Time-step | Fictive time decay constant | Feed rate | Fictive time decay constant for fission gas and NM removal |
Doligez et al., 2014 [84] | Monte Carlo | Given temperature | Time-step | Fictive time decay constant, accounting for nuclide evolution in reprocessing unit and storage | Feed rate | Fictive time decay constant for fission gas and NM removal |
MSR-RS, 2015 [86] | Monte Carlo | Given temperature | Time-step | Fictive time decay constant | Feed rate | Fictive time decay constant for fission gas and NM removal |
Wu et al., 2017 [13,97] | 3D diffusion | Given temperature | 135Xe time-step evolution | - | - | 135Xe removal rate |
VERA, 2019 [90] | 3D neutron transport | Sub-channel | Time-step, accounting for interaction of each nuclide with system components | Removal rate | Feed rate | Removal rate for fission gases and NMs |
Price et al., 2020 [95,96] | Given neutron flux | Given temperature | 135Xe time-step evolution | - | - | 135Xe migration among fuel salt, graphite and bubble, accounting for 135Xe diffusion in the graphite |
Walker, et al., 2021 [99] | Given neutron flux | Sub-channel | Noble metal time-step evolution | - | - | Two-phase model, accounting for noble metal transport, deposition and extraction |
Caruggi et al., 2022 [26] | 3D neutron transport | CFD | Fission gas time-step evolution | - | - | Two-phase model, accounting for fission gases interaction between a liquid and gas |
Ronco et al., 2022 [27,91] | 2D neutron transport | CFD | FPs time-step evolution, accounting for FPs deposition on the wall | - | - | - |
VERA, 2022 [98] | 3D neutron transport | Sub-channel | Fission gas time-step evolution | - | - | Two-phase model, accounting for fission gases interaction between a liquid and a gas |
Pathirana, et al., 2022 [28] | Point kinetics | Lumped parameters | Given nuclide evolution data over the burnup cycle | - | - | - |
3.3. N-TH-BN-G Coupling Development
Codes/Developers/Platforms | N Model | TH Model | BN Model | G Model |
---|---|---|---|---|
Scott and Eatherly, 1969 [100] | Given neutron flux | Lumped parameters | - | Parabolic curve |
Kasten et al., 1969 [101] | Given neutron flux | Given temperature | - | Stress-strain |
Zhu et al., 2020 [102] | Monte Carlo | Multi-channel | Time-step | Parabolic curve |
Wang et al., 2021 [103] | Monte Carlo | CFD | - | Parabolic curve |
Stewart, 2020 [28] | 3D neutron diffusion | Porous media | - | Stress-strain |
4. Improvements in the Future Work of the Multi-Physics Coupling Model Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Chen, J.; Zou, C.; Yu, C.; Cai, X.; Zhang, Y. Transition to thorium fuel cycle on a heavy water moderated molten salt reactor by using low enrichment uranium. Ann. Nucl. Energy 2022, 165, 108638. [Google Scholar] [CrossRef]
- Lung, M.; Gremm, O. Perspectives of the thorium fuel cycle. Nucl. Eng. Des. 1998, 180, 133–146. [Google Scholar] [CrossRef]
- GIF. Technology Roadmap for Generation IV Nuclear Energy Systems; GIF Technical Report No. GIF-002-00; GIF: 2002. Available online: https://www.gen-4.org/gif/upload/docs/application/pdf/2013-09/genivroadmap2002.pdf (accessed on 31 August 2022).
- Haubenreich, P.N.; Engel, J.R.; Prince, B.E.; Claiborne, H.C. MSRE Design and operations Report; Part III. Nuclear Analysis; Technical Report No. ORNL-TM-730; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1964. [Google Scholar]
- Dolan, T.J. Molten Salt Reactors and Thorium Energy; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.; et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- Nuttin, A.; Heuer, D.; Billebaud, A.; Brissot, R.; Le Brun, C.; Liatard, E.; Loiseaux, J.-M.; Mathieu, L.; Meplan, O.; Merle-Lucotte, E.; et al. Potential of thorium molten salt reactors: Detailed calculations and concept evolution with a view to large scale energy production. Prog. Nucl. Energy 2005, 46, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, K.; Lecocq, A.; Kato, Y.; Mitachi, K. Thorium molten-salt nuclear energy synergetics. J. Nucl. Sci. Technol. 1990, 27, 1157–1178. [Google Scholar] [CrossRef]
- Jorgensen, L. ThorCon reactor. In Molten Salt Reactors and Thorium Energy; Woodhead Publishing: Cambridge, UK, 2017; pp. 557–564. [Google Scholar]
- Leblanc, D. The integral molten salt reactor (IMSR). Can. Nucl. Soc. Bull. 2014, 35, 28–34. [Google Scholar]
- Wu, J.; Chen, J.; Kang, X.; Li, X.; Yu, C.; Zou, C.; Cai, X. A novel concept for a molten salt reactor moderated by heavy water. Ann. Nucl. Energy 2019, 132, 391–403. [Google Scholar] [CrossRef]
- Mathieu, L.; Heuer, D.; Brissot, R.; Garzenne, C.; Le Brun, C.; Lecarpentier, D.; Liatard, E.; Loiseaux, J.-M.; Méplan, O.; Merle-Lucotte, E.; et al. The thorium molten salt reactor: Moving on from the MSBR. Prog. Nucl. Energy 2006, 48, 664–679. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Guo, C.; Cai, X.; Yu, C.; Zou, C.; Han, J.; Chen, J. Flow effect on 135I and 135Xe evolution behavior in a molten salt reactor. Nucl. Eng. Des. 2017, 314, 318–325. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Yu, C.; Zou, C.; Ma, Y.; Li, X.; Cai, X. 149Sm evolution behavior in a small modular molten salt reactor. Ann. Nucl. Energy 2018, 120, 100–107. [Google Scholar] [CrossRef]
- Dulla, S.; Ravetto, P. Interactions between fluid-dynamics and neutronic phenomena in the physics of molten-salt systems. Nucl. Sci. Eng. 2007, 155, 475–488. [Google Scholar] [CrossRef]
- Dulla, S.; Ravetto, P.; Rostagno, M. Neutron kinetics of fluid–fuel systems by the quasi-static method. Ann. Nucl. Energy 2004, 31, 1709–1733. [Google Scholar] [CrossRef]
- Nestor, C. Murgatroyd—An IBM 7090 Program for the Analysis of the Kinetics of the MSRE; Technical Report No. ORNL-TM-203; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1962. [Google Scholar]
- Mitachi, K.; Yamana, Y.; Suzuki, T.; Furukawa, K.; Kato, Y. Neutronic Examination on Plutonium Transmutation by a Small Molten Salt Fission Power Station. Technical Report No. IAEA-TECDOC-840. In Proceedings of the a Technical Committee Meeting, Obninsk, Russia, 7–11 November 1994; International Atomic Energy Agency: Vienna, Austria, 1995; pp. 183–193. [Google Scholar]
- Mattioda, F.; Ravetto, P.; Ritter, G. Effective Delayed Neutron Fraction for Fluid-Fuel Systems. Ann. Nucl. Energy 2000, 27, 1523–1532. [Google Scholar] [CrossRef]
- Lapenta, G.; Mattioda, F.; Ravetto, P. Point kinetic model for fluid fuel systems. Ann. Nucl. Energy 2001, 28, 1759–1772. [Google Scholar] [CrossRef]
- Aufiero, M.; Cammi, A.; Geoffroy, O.; Losa, M.; Luzzi, L.; Ricotti, M.E.; Rouch, H. Development of an OpenFOAM model for the Molten Salt Fast Reactor transient analysis. Chem. Eng. Sci. 2014, 111, 390–401. [Google Scholar] [CrossRef]
- Fiorina, C.; Clifford, I.; Aufiero, M.; Mikityuk, K. GeN-Foam: A novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors. Nucl. Eng. Des. 2015, 294, 24–37. [Google Scholar] [CrossRef]
- Linden, E. Coupled Neutronics and Computational Fluid Dynamics for the Molten Salt Fast Reactor. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Tiberga, M. Development of a High-Fidelity Multi-Physics Simulation Tool for Liquid-Fuel Fast Nuclear Reactors. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Ridley, G.; Huff, K.; Turk, M.; Lindsay, A. Multiphysics Analysis of Molten Salt Reactor Transients; Technical Report No. UIUC-ARFC-2017-01; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2017. [Google Scholar]
- Caruggi, F.; Cammi, A.; Cervi, E.; Di Ronco, A.; Lorenzi, S. Multiphysics modelling of gaseous fission products in the Molten Salt Fast Reactor. Nucl. Eng. Des. 2022, 392, 111762. [Google Scholar] [CrossRef]
- Di Ronco, A.; Lorenzi, S.; Giacobbo, F.; Cammi, A. An Eulerian Single-Phase Transport Model for Solid Fission Products in the Molten Salt Fast Reactor: Development of an Analytical Solution for Verification Purposes. Front. Energy Res. 2021, 9, 692627. [Google Scholar] [CrossRef]
- Pathirana, V.; Chvala, O.; Skutnik, S. Depletion dependency of molten salt reactor dynamics. Ann. Nucl. Energy 2022, 168, 108852. [Google Scholar] [CrossRef]
- Stewart, J. Gen-Foam Multiphysics Model Development for Molten Salt Reactors. Ph.D. Thesis, University of Nevada, Las Vegas, NV, USA, 2020. [Google Scholar]
- Bettis, E.S.; Schroeder, R.W.; Cristy, G.A.; Savage, H.W.; Affel, R.G.; Hemphill, L.F. The aircraft reactor experiment-design and construction. Nucl. Sci. Eng. 1957, 2, 804–825. [Google Scholar] [CrossRef] [Green Version]
- Nagy, K. Dynamics and Fuel Cycle Analysis of a Moderated Molten Salt Reactor. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Robertson, R.C.; Briggs, R.B.; Smith, O.L.; Bettis, E.S. Two-Fluid Molten-Salt Breeder Reactor Design Study; Technical Report No. ORNL-4528; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1970. [Google Scholar]
- Kasten, P.R.; Bettis, E.S.; Robertson, R.C. Desing Studies of 1000-MW(e) MoltenSalt Breeder Reactors; Technical Report No. ORNL-3996; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1966. [Google Scholar]
- Bettis, E.S.; Robertson, R.C. The design and performance features of a single-fluid molten-salt breeder reactor. Nucl. Appl. Tech. 1970, 8, 190–207. [Google Scholar] [CrossRef]
- Engel, J.R.; Grimes, W.W.; Bauman, H.F.; Mccoy, H.E.; Rhoades, W.A. Conceptual Design Characteristics of Denatured Molten-Salt Reactor with Once-Through Fueling; Technical Report No. ORNL/TM-7207; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1980. [Google Scholar]
- Smith, J.; Simmons, W.E. An Assessment of a 2500 MWe Molten Chloride Salt Fast Reactor; Technical Report; United Kingdom Atomic Energy Authority Reactor Group: Oxfordshire, UK, 1974. [Google Scholar]
- World Nuclear Association. Available online: https://world-nuclear.org/information-library/current-and-future-generation/molten-salt-reactors.aspx (accessed on 31 August 2022).
- Mallapaty, S. China prepares to test thorium-fuelled nuclear reactor. Nature 2021, 597, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Ignatiev, V.; Merzlyakov, A.; Afonichkin, V.; Khokhlov, V.; Salyulev, A. Transport properties of molten-salt reactor fuel mixtures: The case of Na, Li, Be/F and Li, Be, Th/F salts. In Proceedings of the Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Jeju, Korea, 14–16 October 2002. [Google Scholar]
- Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Mathieu, L.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A. Fast thorium molten salt reactors started with plutonium. In Proceedings of the ICAPP’06 International Congress on Advances in Nuclear Power Plants, Reno, NV, USA, 4–8 June 2006. [Google Scholar]
- Zhang, D.; Liu, L.; Liu, M.; Xu, R.; Gong, C.; Zhang, J.; Wang, C.; Qiu, S.; Su, G. Review of conceptual design and fundamental research of molten salt reactors in China. Int. J. Energy Res. 2018, 42, 1834–1848. [Google Scholar] [CrossRef]
- Scott, I.; Abram, T.; Negri, O. Stable salt reactor design concept. In Proceedings of the International Thorium Energy Conference Gateway to Thorium Energy, Mumbai, India, 12–15 October 2015. [Google Scholar]
- Huke, A.; Ruprecht, G.; Weißbach, D.; Gottlieb, S.; Hussein, A.; Czerski, K. The Dual Fluid Reactor–A novel concept for a fast nuclear reactor of high efficiency. Ann. Nucl. Energy 2015, 80, 225–235. [Google Scholar] [CrossRef]
- Leblanc, D.; Rodenburg, C. Integral molten salt reactor. In Molten Salt Reactors and Thorium Energy; Woodhead Publishing: Cambridge, UK, 2017; pp. 541–556. [Google Scholar]
- Maiorino, J.R.; D’Auria, F.; Reza, A.J. An overview of thorium utilization in nuclear reactors and fuel cycle. In Proceedings of the 12th International Conference of the Croatian Nuclear Society, Zadar, Croatia, 3–6 June 2018. [Google Scholar]
- Lee, A.J. Neutronics and Thermal-Hydraulics Analysis of Transatomic Power Molten Salt Reactor (TAP MSR) Core under Load Following Operations. Master’s Thesis, University of Illinois at Urbana, Champaign, IL, USA, 2020. [Google Scholar]
- Wheeler, A.M.; Singh, V.; Miller, L.F.; Chvála, O. Initial calculations for source term of Molten Salt Reactors. Prog. Nucl. Energy 2021, 132, 103616. [Google Scholar] [CrossRef]
- Scarlat, R.O.; Laufer, M.R.; Blandford, E.D.; Zweibaum, N.; Krumwiede, D.L.; Cisneros, A.T.; Andreades, C.; Forsberg, C.W.; Greenspan, E.; Hu, L. Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology. Prog. Nucl. Energy 2014, 77, 406–420. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.J. Copenhagen Atomics waste burner. In Molten Salt Reactors and Thorium Energy; Woodhead Publishing: Cambridge, UK, 2017; pp. 599–607. [Google Scholar]
- Robertson, R.C. Conceptual Design Study of a Single-Fluid Molten Salt Breeder Reactor; Technical Report No. ORNL-4541; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1971. [Google Scholar]
- Wu, J.; Yu, C.; Zou, C.; Jia, G.; Cai, X.; Chen, J. Influences of reprocessing separation efficiency on the fuel cycle performances for a Heavy Water moderated Molten Salt Reactor. Nucl. Eng. Des. 2021, 380, 111311. [Google Scholar] [CrossRef]
- Henson, R.; Perks, A.; Simmons, J. Lattice parameter and dimensional changes in graphite irradiated between 300 and 1350 °C. Carbon 1968, 6, 789–806. [Google Scholar] [CrossRef]
- Sides, W.H. MSBR Control Studies: Analog Simulation Program; Technical Report No. ORNL-TM-3102; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1971. [Google Scholar]
- Auwerda, G.J. Computational Modeling of a Molten Salt Reactor. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2007. [Google Scholar]
- Suzuki, N.; Shimazu, Y. Reactivity-initiated-accident analysis without scram of a molten salt reactor. J. Nucl. Sci. Technol. 2008, 45, 575–581. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, D.; Xiao, Y.; Tian, W.; Su, G.; Qiu, S. Simulations of unprotected loss of heat sink and combination of events accidents for a molten salt reactor. Ann. Nucl. Energy 2013, 53, 309–319. [Google Scholar] [CrossRef]
- Cai, J.; Xia, X. Analysis on reactivity initiated transient from control rod failure events of a molten salt reactor. Nucl. Sci. Technol. 2014, 25, 030602. [Google Scholar]
- Shi, C.; Cheng, M.; Liu, G. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code. Nucl. Eng. Des. 2016, 305, 378–388. [Google Scholar] [CrossRef]
- Lecarpentier, D.; Carpentier, V. A neutronic program for critical and nonequilibrium study of mobile fuel reactors: The Cinsf1D code. Nucl. Sci. Eng. 2003, 143, 33–46. [Google Scholar] [CrossRef]
- Krepel, J.; Grundmann, U.; Rohde, U.; Weiss, F.P. DYN1D-MSR dynamics code for molten salt reactors. Ann. Nucl. Energy 2005, 32, 1799–1824. [Google Scholar] [CrossRef]
- Zhang, D.; Qiu, S.; Su, G.; Liu, C.; Qian, L. Analysis on the neutron kinetics for a molten salt reactor. Prog. Nucl. Energy 2009, 51, 624–636. [Google Scholar] [CrossRef]
- Wang, S.; Rineiski, A.; Maschek, W. Molten salt related extensions of the SIMMER-III code and its application for a burner reactor. Nucl. Eng. Des. 2006, 236, 1580–1588. [Google Scholar] [CrossRef]
- Nicolino, C.; Lapenta, G.; Dulla, S.; Ravetto, P. Coupled dynamics in the physics of molten salt reactors. Ann. Nucl. Energy 2008, 35, 314–322. [Google Scholar] [CrossRef]
- Cammi, A.; Marcello, V.; Luzzi, L.; Vito, M.; Ricotti, M. A multi-physics modelling approach to the dynamics of molten salt reactors. Ann. Nucl. Energy 2011, 38, 1356–1372. [Google Scholar] [CrossRef]
- Yamamoto, T.; Mitachi, K.; Ikeuchi, K.; Suzuki, T. Transient characteristics of small molten salt reactor during blockage accident. Heat Transf. 2006, 35, 434–450. [Google Scholar] [CrossRef]
- Krepel, J.; Rohde, U.; Grundmann, U.; Weiss, F. DYN3D-MSR spatial dynamics code for molten salt reactors. Ann. Nucl. Energy 2007, 34, 449–462. [Google Scholar] [CrossRef]
- Zhuang, K.; Cao, L.; Zheng, Y.; Wu, H. Studies on the molten salt reactor: Code development and neutronics analysis of MSRE-type design. J. Nucl. Sci. Technol. 2015, 52, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, J.; Wu, J.; Zou, C.; Cui, L.; He, F.; Cai, X. Development and verification of a three-dimensional spatial dynamics code for molten salt reactors. Ann. Nucl. Energy 2022, 171, 109040. [Google Scholar] [CrossRef]
- Kophazi, J.; Lathouwers, D.; Kloosterman, J. Development of a three dimensional time-dependent calculation scheme for molten salt reactors and validation of the measurement data of the molten salt reactor experiment. Nucl. Sci. Eng. 2009, 163, 118–131. [Google Scholar] [CrossRef]
- Nagy, K.; Lathouwers, D.; T’Joen, C.; Kloosterman, J.; van der Hagen, T. Steady-state and dynamic behavior of a moderated molten salt reactor. Ann. Nucl. Energy 2014, 64, 365–379. [Google Scholar] [CrossRef]
- Bajpai, P.; Lorenzi, S.; Cammi, A. A multiphysics model for analysis of inert gas bubbles in Molten Salt Fast Reactor. Eur. Phys. J. Plus 2020, 135, 409. [Google Scholar] [CrossRef]
- Yang, G.; Jaradat, M.; Yang, W.; Lee, C. Development of coupled PROTEUS-NODAL and SAM code system for multiphysics analysis of molten salt reactors. Ann. Nucl. Energy 2022, 168, 108889. [Google Scholar] [CrossRef]
- Engel, J.R.; Haubenreich, P.N. Temperatures in the MSRE Core During Steady State Power Operations; Technical Report No. ORNL-TM-0378; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1962. [Google Scholar]
- Zhang, D.L.; Qiu, S.Z.; Liu, C.L.; Su, G.H. Steady thermal hydraulic analysis for a molten salt reactor. Nucl. Sci. Technol. 2008, 19, 187–192. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, J.; Zhang, D.; Chaudri, K.; Tian, W.; Su, G.; Qiu, S. Coupled neutronics/thermal-hydraulics for analysis of molten salt reactor. Nucl. Eng. Des. 2013, 258, 144–156. [Google Scholar] [CrossRef]
- Laureau, A.; Rubiolo, P.R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M. Coupled neutronics and thermal–hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR). In Proceedings of the Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo, Paris, France, 27–31 October 2013. [Google Scholar]
- Deng, B.; Cui, Y.; Chen, J.-G.; He, L.; Xia, S.-P.; Yu, C.-G.; Zhu, F.; Cai, X.-Z. Core and blanket thermal–hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM. Nucl. Sci. Technol. 2020, 31, 85. [Google Scholar] [CrossRef]
- Wu, J.; Oka, Y. Core design of super LWR with double tube water rods. Nucl. Eng. Des. 2014, 269, 340–348. [Google Scholar] [CrossRef]
- Wu, J.; Maekawa, N.; Oka, Y. Single-pass core design of a low-temperature Super LWR. J. Nucl. Sci. Technol. 2013, 50, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Oka, Y. Improved single pass core design for high temperature Super LWR. Nucl. Eng. Des. 2013, 267, 100–108. [Google Scholar] [CrossRef]
- Bauman, H.F.; Cunningham, G.W., III; Lucius, J.L.; Kerr, H.T.; Craven, C.W., Jr. ROD: A Nuclear and Fuel-Cycle Analysis Code for Circulating-Fuel Reactors; Technical Report No. ORNL-TM-3359; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1971. [Google Scholar]
- Becker, B.; Fratoni, M.; Greenspan, E. Feasibility of a critical molten salt reactor for waste transmutation. Prog. Nucl. Energy 2008, 50, 236–241. [Google Scholar] [CrossRef]
- Merlelucotte, E.; Doligez, X.; Heuer, D.; Allibert, M.; Ghetta, V. Simulation tools and new developments of the molten salt fast reactor. Rev. Générale Nucléaire 2010, 6, 95–100. [Google Scholar]
- Doligez, X.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Ghetta, V. Coupled study of the Molten Salt Fast Reactor core physics and its associated reprocessing unit. Ann. Nucl. Energy 2014, 64, 430–440. [Google Scholar] [CrossRef]
- Sheu, R.J.; Chang, C.H.; Chao, C.C.; Liu, Y. Depletion analysis on long-term operation of the conceptual molten salt actinide recycler & transmuter (mosart) by using a special sequence based on scale6/triton. Ann. Nucl. Energy 2013, 53, 1–8. [Google Scholar]
- Zou, C.; Cai, X.; Jiang, D.; Yu, C.; Li, X.; Ma, Y.; Han, J.; Chen, J. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor. Nucl. Eng. Des. 2015, 281, 114–120. [Google Scholar] [CrossRef]
- Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor. J. Nucl. Mater. 2013, 441, 473–486. [Google Scholar] [CrossRef]
- Fiorina, C.; Cammi, A.; Krepel, J.; Mikityuk, K.; Ricotti, M. Preliminary analysis of the MSFR fuel cycle using modified-EQL3D procedure. In Proceedings of the ICONE20, Anaheim, CA, USA, 30 July–3 August 2012. [Google Scholar]
- Frima, L. Burnup in a Molten Salt Fast Reactor. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2013. [Google Scholar]
- Graham, A.; Collins, B.; Salko, J.; Taylor, Z.; Gentry, C. Development of Molten Salt Reactor Modeling and Simulation Capabilities in VERA. In Proceedings of the Global/Top Fuel Conference, Seattle, WA, USA, 22–27 September 2019. [Google Scholar]
- Di Ronco, A.; Lorenzi, S.; Giacobbo, F.; Cammi, A. Multiphysics analysis of RANS-based turbulent transport of solid fission products in the Molten Salt Fast Reactor. Nucl. Eng. Des. 2022, 391, 111739. [Google Scholar] [CrossRef]
- Engel, J. Preliminary Equations to Describe Iodine and Xenon Behavior in the MSRE; Technical Report No. ORNL-CF-62-11-69; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1962. [Google Scholar]
- Watson, G.; Evans, R. Xenon Diffusion in Graphite: Effects of Xenon Absorption in Molten Salt Reactors Containing Graphite; Technical Report No. ORNL-TM-262; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1962. [Google Scholar]
- Kedl, R.; Houtzeel, A. Development of a Model for Computing 135Xe Migration in the MSRE; Technical Report No. ORNL-4069; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1967. [Google Scholar]
- Engel, J.R.; Steffy, R.C. Xenon Behavior in the Molten Salt Reactor Experiment; Technical Report No. ORNL-TM-3464; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1971. [Google Scholar]
- Price, T.; Chvala, O.; Bereznai, G. A dynamic model of xenon behavior in the Molten Salt Reactor Experiment. Ann. Nucl. Energy 2020, 144, 107535. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Hu, J.; Chen, J.; Yu, C.; Zou, C.; Cai, X. Influence of Xe-135 Dynamic Behavior on Core Operation Safety for a Molten Salt Reactor. In Proceedings of the 2018 26th International Conference on Nuclear Engineering, London, UK, 22–26 July 2018. [Google Scholar]
- Taylor, Z.; Salko, R.; Graham, A.M.; Collins, B.S.; Maldonado, G.I. Implementation of two-phase gas transport into VERA for molten salt reactor analysis. Ann. Nucl. Energy 2022, 165, 108672. [Google Scholar] [CrossRef]
- Walker, S.A.; Ji, W. Species transport analysis of noble metal fission product transport, deposition, and extraction in the molten salt reactor experiment. Ann. Nucl. Energy 2021, 158, 108250. [Google Scholar] [CrossRef]
- Scott, D.; Eatherly, W.P. Graphite and xenon behavior and their influence on molten-salt reactor design. Nucl. Appl. Tech. 1970, 8, 179–189. [Google Scholar] [CrossRef]
- Kasten, P.R.; Bettis, E.S.; Cook, W.H.; Eatherly, W.P.; Holmes, D.K.; Kedl, R.J.; Kennedy, C.R.; Kirslis, S.S.; McCoy, H.E.; Perry, A.M. Graphite behavior and its effects on MSBR performance. Nucl. Eng. Des. 1969, 9, 157–195. [Google Scholar] [CrossRef]
- Zhu, G.; Guo, W.; Kang, X.; Zou, C.; Zou, Y.; Yan, R.; Dai, Y. Neutronic effect of graphite dimensional change in a small modular molten salt reactor. Int. J. Energy Res. 2021, 45, 11976–11991. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Zhu, G.; Dai, Y.; Zhong, Y.; Zou, Y.; Chen, J.; Cai, X. A new structure design to extend graphite assembly lifespan in small modular molten salt reactors. Int. J. Energy Res. 2021, 45, 12247–12257. [Google Scholar] [CrossRef]
- Avramova, M.; Abarca, A.; Hou, J.; Ivanov, K. Innovations in Multi-Physics Methods Development, Validation, and Uncertainty Quantification. J. Nucl. Eng. 2021, 2, 44–56. [Google Scholar] [CrossRef]
- Gomez-Fernandez, M.; Higley, K.; Tokuhiro, A.; Welter, K.; Wong, W.; Yang, H. Status of research and development of learning-based approaches in nuclear science and engineering: A review. Nucl. Eng. Des. 2020, 359, 110479. [Google Scholar] [CrossRef]
- Mcmurray, J.W.; Besmann, T.M.; Ard, J.; FItzpatrick, B.; Piro, M.; Jerden, J.; Williamson, M.; Collins, B.S.; Betzler, B.R.; Qualls, A.L. Multi-Physics Simulations for Molten Salt Reactor Evaluation: Chemistry Modeling and Database Development; Technical Report No. ORNL/SPR-2018/864; Oak Ridge National Lab: Oak Ridge, TN, USA, 2018. [Google Scholar]
- Poschmann, M.; Bajpai, P.; Fitzpatrick, B.W.; Piro, M.H. Recent developments for molten salt systems in Thermochimica. Calphad 2021, 75, 102341. [Google Scholar] [CrossRef]
- Feng, B.; Shahbazi, S.; Fang, J.; Fei, T.; Shaver, D. Application of NEAMS Codes to Capture MSR Phenomena; Technical Report No. ANL/NSE-21/48; Argonne National Lab.: Lemont, IL, USA, 2021. [Google Scholar]
Dim. | Codes/Developers/Platforms, Year | Neutronics Model | Thermal Hydraulics Model | Coupling Techniques | Application |
---|---|---|---|---|---|
0D | MURGATROYD, 1962 [17]; Sides, 1971 [53]; Lapenta et al., 2001 [20]; Dulla et al., 2004 [16] | Point kinetics | Lumped parameters | External | Thermal/fast MSRs |
Auwerda, 2007 [54]; Suzuki et al., 2008 [55]; Guo et al., 2013 [56]; Cai et al., 2014 [57] | Point kinetics | Single-channel | External | Thermal MSRs | |
Improved RELAP5, 2016 [58] | Point kinetics | Multi-channel | External | Thermal MSRs | |
1D | Cinsf1D, 2003 [59]; DYN1D-MSR, 2005 [60] | 1D neutron diffusion | Single-channel | External | Thermal MSRs |
2D | Zhang et al., 2009 [61] | 2D cylindrical neutron diffusion | Modeling heat transfer between the fuel salt and boundary graphite | External | Fast MSRs |
Improved SIMMER-III, 2006 [62]; Nicolino et al., 2008 [63] | 2D cylindrical neutron diffusion | 2D CFD | Internal | Fast MSRs | |
Cammi et al., 2011 [64] | 2D cylindrical neutron diffusion | 2D CFD | External | Fast MSRs | |
Yamamoto et al., 2006 [65] | 2D cylindrical neutron diffusion | Porous medium | External | Thermal MSRs | |
3D | DYN3D-MSR, 2007 [66]; MOREL, 2015 [67]; TMSR-3D, 2022 [68] | 3D neutron diffusion | Multi-channel | External | Thermal MSRs |
DALTON and THERM, 2009 [69] | 3D neutron diffusion | Multi-channel and 3D heat transfer in graphite | External | Fast MSRs | |
Nagy et al., 2014 [70] | 3D neutron diffusion | Porous medial | External | Fast MSRs | |
DALTON and HEAT, 2012 [23]; PHANTON-SN and DGFlows, 2020 [24] | 3D neutron diffusion | 3D-CFD | External | Fast MSRs | |
OpenFOAM, 2014 [21] | 3D neutron diffusion | 3D-CFD | Internal | Fast MSRs | |
COMSOL, 2020 [71] | 3D neutron diffusion | 3D two-phase flow | Internal | Fast MSRs | |
Moltres under MOOSE framework, 2017 [25] | 3D neutron diffusion | 3D-CFD | Internal | Thermal MSRs | |
PROTEUS-NODAL and SAM under MOOSE framework, 2022 [72] | 3D neutron transport | Multi-channel for core and 1D for external components | External | Fast/Thermal MSRs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Chen, J.; Cai, X.; Zou, C.; Yu, C.; Cui, Y.; Zhang, A.; Zhao, H. A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects. Energies 2022, 15, 8296. https://doi.org/10.3390/en15218296
Wu J, Chen J, Cai X, Zou C, Yu C, Cui Y, Zhang A, Zhao H. A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects. Energies. 2022; 15(21):8296. https://doi.org/10.3390/en15218296
Chicago/Turabian StyleWu, Jianhui, Jingen Chen, Xiangzhou Cai, Chunyan Zou, Chenggang Yu, Yong Cui, Ao Zhang, and Hongkai Zhao. 2022. "A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects" Energies 15, no. 21: 8296. https://doi.org/10.3390/en15218296
APA StyleWu, J., Chen, J., Cai, X., Zou, C., Yu, C., Cui, Y., Zhang, A., & Zhao, H. (2022). A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects. Energies, 15(21), 8296. https://doi.org/10.3390/en15218296