The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook
Abstract
:1. Introduction
2. Physical Fundamentals
3. The Main Groups of Chemical Reagents
3.1. Anionic Surfactants
3.1.1. Alkyl Aryl Sulfonates
3.1.2. Alkyl Sulfate
3.1.3. Ethoxy Sulfate
3.1.4. Alkyl Ethoxy Sulfonates
3.1.5. Alpha-Olefin Sulfonates
3.1.6. Gemini
3.2. Cationic Surfactants
Alkyl Benzyl Dimethyl Ammonium Chlorides
3.3. Nonionic Surfactants
3.3.1. Alkyl Polyglycoside (APG)
3.3.2. Neodol
3.3.3. Ethoxylate-Monylphenols
3.4. Zwitterionic Surfactants
4. Injection Facilities
- -
- They do not require the redesign of the essential surface infrastructure of a field;
- -
- They can be moved to other fields;
- -
- The do not require additional approval or permits.
- Water treatment unit;
- Polymer solution preparation unit;
- Polymer storage unit;
- Nitrogen blanket;
- Injection unit of (alkali–)surfactant–polymer solution;
- Surfactant preparation unit;
- Surfactant storage tank;
- Alkali storage and batching unit;
- Water softening and secondary water treatment unit.
5. Outcomes of SP and ASP Flooding Implementation
5.1. West Salym Field
5.2. Algyo Field
5.3. Daqing Field
5.4. Marmul Field
- (1)
- Reservoir water injection (to displace mobile oil beyond the intended study radius);
- (2)
- Injecting a tracer and pushing it through a well with water;
- (3)
- Waiting for the reaction for 1–5 days (depending on reservoir conditions). It is necessary to form a secondary tracer through the hydrolysis of the primary one;
- (4)
- Well sampling, where fluid samples are taken from the well at a certain frequency.
5.5. Warner Field
5.6. Mooney Field
6. Results and Discussion
- (1)
- Adsorption on the rock;
- (2)
- Chemical, thermal, biological, and mechanical destruction;
- (3)
- The redistribution of the surfactants to the oil;
- (4)
- Precipitation as a result of interaction with polyvalent ions (Ca, Mg) in the reservoir water.
- (1)
- The correct selection of the average molecular weight of surfactants;
- (2)
- The alteration of the composition pH;
- (3)
- The preliminary suppression of adsorption centres on the rock due to the injection of “sacrificial” reagents.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aleksandrovich, L.; Pavlovna, K.; Kimovich, T.; Sergeevich, T. Development of Smart Well Units for Multilayer Reservoirs Operated with the System of Simultaneous-Separate Exploitation. J. Appl. Eng. Sci. 2018, 16, 561–564. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, S.; Dai, X.; Wang, X.; Yapanto, L.M.; Raupov, I.R. Multi-Criteria Decision Making Approaches to Select Appropriate Enhanced Oil Recovery Techniques in Petroleum Industries. Energy Rep. 2021, 7, 2751–2758. [Google Scholar] [CrossRef]
- Rogachev, M.K.; Mukhametshin, V.V.; Kuleshova, L.S. Improving the Efficiency of Using Resource Base of Liquid Hydrocarbons in Jurassic Deposits of Western Siberia. J. Min. Inst. 2019, 240, 711–715. [Google Scholar] [CrossRef] [Green Version]
- Palyanitsina, A.; Safiullina, E.; Byazrov, R.; Podoprigora, D.; Alekseenko, A. Environmentally Safe Technology to Increase Efficiency of High-Viscosity Oil Production for the Objects with Advanced Water Cut. Energies 2022, 15, 753. [Google Scholar] [CrossRef]
- Mardashov, D.; Bondarenko, A.; Raupov, I. Technique for Calculating Technological Parameters of Non-Newtonian Liquids Injection into Oil Well during Workover. J. Min. Inst. 2022. Online first. [Google Scholar] [CrossRef]
- Mardashov, D.; Duryagin, V.; Islamov, S. Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions. Energies 2021, 14, 8254. [Google Scholar] [CrossRef]
- Nguyen, V.; Nikolaevich, A.; Konstantinovich, R. An Extensive Solution to Prevent Wax Deposition Formation in Gas-Lift Wells. J. Appl. Eng. Sci. 2022, 20, 264–275. [Google Scholar] [CrossRef]
- Raupov, I.; Burkhanov, R.; Lutfullin, A.; Maksyutin, A.; Lebedev, A.; Safiullina, E. Experience in the Application of Hydrocarbon Optical Studies in Oil Field Development. Energies 2022, 15, 3626. [Google Scholar] [CrossRef]
- Mirzaei, M.; Kumar, D.; Turner, D.; Shock, A.; Andel, D.; Hampton, D.; Knight, T.E.; Katiyar, A.; Patil, P.D.; Rozowski, P.; et al. CO2 Foam Pilot in a West Texas Field: Design, Operation and Results. In Proceedings of the SPE Improved Oil Recovery Conference, Houston, TX, USA, 30–31 August 2020. [Google Scholar]
- Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress. Energies 2017, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Foroozesh, J.; Kumar, S. Nanoparticles Behaviors in Porous Media: Application to Enhanced Oil Recovery. J. Mol. Liq. 2020, 316, 113876. [Google Scholar] [CrossRef]
- Babalyan, G.A.; Levi, B.I. Development of Oil Fields Using Surfactants; Subsoil: Moscow, Russia, 1983; Volume 216. [Google Scholar]
- Lake, L.; Johns, R.T.; Rossen, W.R.; Pope, G.A. Fundamentals of Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 2014. [Google Scholar]
- Dombrowski, H.; Brownell, L. Residual Equilibrium Saturation of Porous Media. Ind. Eng. Chem. 1954, 46, 1207–1219. [Google Scholar] [CrossRef]
- Mousavi Moghadam, A.; Baghban Salehi, M. Enhancing Hydrocarbon Productivity via Wettability Alteration: A Review on the Application of Nanoparticles. Rev. Chem. Eng. 2019, 35, 531–563. [Google Scholar] [CrossRef]
- Hirasaki, G.J.; Miller, C.A.; Puerto, M. Recent Advances in Surfactant EOR. SPE J. 2011, 16, 889–907. [Google Scholar]
- Altunina, L.K.; Kuvshinov, V.A. Increasing Oil Recovery By Surfactant Compositions; Nauka: Moscow, Russia, 1995; Volume 198. [Google Scholar]
- Negin, C.; Ali, S.; Xie, Q. Most Common Surfactants Employed in Chemical Enhanced Oil Recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Sharma, G.; Mohanty, K.K. Wettability Alteration in High-Temperature and High-Salinity Carbonate Reservoirs. SPE J. 2013, 18, 646–655. [Google Scholar] [CrossRef]
- Adkins, S.; Liyanage, P.J.; Pinnawala Arachchilage, G.W.; Mudiyanselage, T.; Weerasooriya, U.; Pope, G.A. A New Process for Manufacturing and Stabilizing High-Performance EOR Surfactants at Low Cost for High-Temperature, High-Salinity Oil Reservoirs. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- Khosravi, V. Developing Surfactant to Increase the Production in Heavy Oil Reservoirs. In Proceedings of the Trinidad and Tobago Energy Resources Conference, Port of Spain, Trinidad and Tobago, 27–30 June 2010. [Google Scholar]
- Fuseni, A.B.; Al-Zahrani, B.H.; AlSofi, A.M. Critical Micelle Concentration of Different Classes of EOR Surfactants under Representative Field Conditions. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017. [Google Scholar]
- Singh, R.; Mohanty, K.K. Foams with Wettability-Altering Capabilities for Oil-Wet Carbonates: A Synergistic Approach. SPE J. 2016, 21, 1126–1139. [Google Scholar]
- Li, R.F.; Hirasaki, G.J.; Miller, C.A.; Masalmeh, S.K. Wettability Alteration and Foam Mobility Control in a Layered, 2D Heterogeneous Sandpack. SPE J. 2012, 17, 1207–1220. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Pu, H.; Zhou, S. An Update on Full Field Implementation of Chemical Flooding in Daqing Oilfield, China, and Its Future. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar]
- Tananykhin, D.S.; Maksyutin, A.V.; Shagiakhmetov, A.M. Laboratory Study of Terrigenous Core Samples Strength after Chemical Consolidation. Life Sci. J. 2014, 11, 304–306. [Google Scholar]
- Barnes, J.R.; Smit, J.; Smit, J.; Shpakoff, G.; Raney, K.H.; Puerto, M. Development of Surfactants for Chemical Flooding at Difficult Reservoir Conditions. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008. [Google Scholar]
- Tananykhin, D.; Khusainov, R. Diffusion of Nonionic Surfactants Diffusion from Aqueous Solutions into Viscous Oil. Pet. Sci. Technol. 2016, 34, 1984–1988. [Google Scholar] [CrossRef]
- Aбpaмзoн, A.A.; Бoчapoв, B.B.; Гaeвa, Г.M. Пoвepxнoстнo-Aктивныe Beщeствa; Xимия: Moscow, Russia, 1979; Volume 376. [Google Scholar]
- Martyushev, D.A.; Vinogradov, J. Development and Application of a Double Action Acidic Emulsion for Improved Oil Well Performance: Laboratory Tests and Field Trials. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 612, 125998. [Google Scholar] [CrossRef]
- Alanazi, A.K.; Alizadeh, S.M.; Nurgalieva, K.S.; Nesic, S.; Grimaldo Guerrero, J.W.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Nazemi, E.; Narozhnyy, I.M. Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness. Appl. Sci. 2022, 12, 1336. [Google Scholar] [CrossRef]
- Santa, M.; Alvarez-Jürgenson, G.; Busch, S.; Birnbrich, P.; Spindler, C.; Brodt, G. Sustainable Surfactants in Enhanced Oil Recovery. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–20 July 2011. [Google Scholar]
- Zhang, M.; Kang, W.; Yang, H.; Zhou, B.; Li, Z.; He, Y.; Grigory Yurievich, K.; Alexander Viktorovich, L. De-Emulsification Performance and Mechanism of β-CD Reverse Demulsifier for Amphiphilic Polymer Oil in Water (O/W) Emulsion. J. Mol. Liq. 2021, 342, 117441. [Google Scholar] [CrossRef]
- di Corcia, A.; Costantino, A.; Crescenzi, C.; Marinoni, E.; Samperi, R. Characterization of Recalcitrant Intermediates from Biotransformation of the Branched Alkyl Side Chain of Nonylphenol Ethoxylate Surfactants. Environ. Sci. Technol. 1998, 32, 2401–2409. [Google Scholar] [CrossRef]
- Mardashov, D. Development of Blocking Compositions with a Bridging Agent for Oil Well Killing in Conditions of Abnormally Low Formation Pressure and Carbonate Reservoir Rocks. J. Min. Inst. 2021, 251, 617–626. [Google Scholar] [CrossRef]
- Thomas, A. Essentials of Polymer Flooding; Wiley: Hoboken, NJ, USA, 2018; Volume 292. [Google Scholar]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef] [Green Version]
- Winsor, P.A. Hydrotropy, Solubilization and Related Emulsification Processes, 1st ed.; Faraday Soc: Cambridge, UK, 1948; Volume 412. [Google Scholar]
- Syunyaev, Z.I.; Safieva, R.Z.; Syunyaev, R.Z. Oil Dispersed Systems; Chemistry: Moscow, Russia, 1990; Volume 226. [Google Scholar]
- Islam, M.R. Cosurfactant-Enhanced Alkaline/Polymer Floods for Improving Recovery in a Fractured Sandstone Reservoir. In Particle Technology and Surface Phenomena in Minerals and Petroleum; Springer: Boston, MA, USA, 1991; pp. 223–233. [Google Scholar]
- Pal, S.; Mushtaq, M.; Banat, F.; al Sumaiti, A.M. Review of Surfactant-Assisted Chemical Enhanced Oil Recovery for Carbonate Reservoirs: Challenges and Future Perspectives. Pet. Sci. 2018, 15, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Ameli, F.; Moghadam, S.; Shahmarvand, S. Polymer Flooding. In Chemical Methods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 33–94. [Google Scholar]
- Gazizov, A.A. Increase in Oil Recovery of Heterogeneous Formations at a Late Stage of Development; LLC “Nedra-Businesscenter”: Moscow, Russia, 2002; Volume 639. [Google Scholar]
- Volokitin, Y.; Shuster, M.; Karpan, V.; Koltsov, I.; Mikhaylenko, E.; Bondar, M.; Podberezhny, M.; Rakitin, A.; Batenburg, D.W.; Parker, A.R.; et al. Results of Alkaline-Surfactant-Polymer Flooding Pilot at West Salym Field. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26–28 March 2018. [Google Scholar]
- Volokitin, Y.; Shuster, M.; Karpan, V.; Mikhaylenko, E.; Koltsov, I.; Rakitin, A.; Tkachev, I.; Salym, M.P. West Salym ASP Pilot: Surveillance Results and Operational Challenges. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 16–18 October 2017. [Google Scholar]
- Toro, M.; Khisametdinov, M.; Nuriev, D.; Lutfullin, A.; Daminov, A.; Gaifullin, A.; Puskas, S.; Ordog, T. Initiation of a Surfactant-Polymer Flooding Project at PJSC Tatneft: From Laboratory Studies to Test Injection; European Association of Geoscientists & Engineers: Bunnik, Utrecht, 2021; pp. 1–15. [Google Scholar]
- Trushin, Y.; Aleshchenko, A.; Arsamakov, M.; Klimenko, A.; Molinier, V.; Jouenne, S.; Kornilov, A.; Sansiev, G. EOR Technology: Surfactant-Polymer Injection to Increase Oil Recovery from Carbonate Reservoir of Kharyaga Oilfield (Russian). In Proceedings of the SPE Russian Petroleum Technology Conference, Richardson, TX, USA, 26–29 October 2020. [Google Scholar]
- Dickson, J.L.; Leahy-Dios, A.; Wylie, P.L. Development of Improved Hydrocarbon Recovery Screening Methodologies. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- Bourdarot, G.; Ghedan, S. Modified EOR Screening Criteria as Applied to a Group of Offshore Carbonate Oil Reservoirs. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 9–11 October 2011. [Google Scholar]
- Al-Murayri, M.T.; Kamal, D.S.; Suniga, P.; Fortenberry, R.; Britton, C.; Pope, G.A.; Liyanage, P.J.; Jang, S.H.; Upamali, K.A.N. Improving ASP Performance in Carbonate Reservoir Rocks Using Hybrid-Alkali. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar]
- Abbas, A.; Ajunwa, O.; Mazhit, B.; Martyushev, D.; Bou-Hamdan, K.; Abd Alsaheb, R. Evaluation of OKRA (Abelmoschus esculentus) Macromolecular Solution for Enhanced Oil Recovery in Kazakhstan Carbonate Reservoir. Energies 2022, 15, 6827. [Google Scholar] [CrossRef]
- Puskas, S.; Vágó, Á.; Törő, M.; Ördög, T.; Kálmán, G.Y.; Tabajd, R.; Dékány, I.; Dudás, J.; Nagy, R.; Bartha, L.; et al. First Surfactant-Polymer EOR Injectivity Test in the Algyő Field, Hungary; European Association of Geoscientists & Engineers: Bunnik, Utrecht, 2017. [Google Scholar]
- Korolev, M.; Rogachev, M.; Tananykhin, D. Regulation of Filtration Characteristics of Highly Watered Terrigenous Formations Using Complex Chemical Compositions Based on Surfactants. J. Appl. Eng. Sci. 2020, 18, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Zhang, F.; Han, L.; Luo, P.; Yang, J.; Chen, H. The Effect of Temperature on the Interfacial Tension between Crude Oil and Gemini Surfactant Solution. Colloids Surf. A Phys. Eng. Asp. 2008, 322, 138–141. [Google Scholar] [CrossRef]
- Karnanda, W.; Benzagouta, M.S.; AlQuraishi, A.; Amro, M.M. Effect of Temperature, Pressure, Salinity, and Surfactant Concentration on IFT for Surfactant Flooding Optimization. Arab. J. Geosci. 2013, 6, 3535–3544. [Google Scholar] [CrossRef]
- Guo, H.; Ma, R.; Kong, D. Success and Lessons Learned from ASP Flooding Field Tests in China. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, 17–19 October 2017. [Google Scholar]
- Sun, C.; Guo, H.; Li, Y.; Song, K. Recent Advances of Surfactant-Polymer (SP) Flooding Enhanced Oil Recovery Field Tests in China. Geofluids 2020, 2020, 8286706. [Google Scholar] [CrossRef]
- Al-Shuaili, K.; Svec, Y.; Guntupalli, S.; Al-Amri, M.; Al-Hinai, G.; Al-Shidi, M.; Mohammed, S.; Al-Hadhrami, H.; Batenburg, D.W.; de Kruijf, S. Field Piloting of Alkaline Surfactant Polymer in Sultanate of Oman. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26–28 March 2018. [Google Scholar]
- Koryakin, F.A.; Tretyakov, N.Y.; Abdulla, O.B.; Filippov, V.G. Hydrocarbon Saturation Determination with the Single-Well-Chemical-Tracer-Test under Laboratory Conditions. Oil Gas Stud. 2021, 131–143. [Google Scholar] [CrossRef]
- Wang, S.; Shiau, B.; Harwell, J.H. Effect of Reservoirs Conditions on Designing Single-Well Chemical Tracer Tests Under Extreme Brine Conditions. Transp. Porous Media 2018, 121, 1–13. [Google Scholar] [CrossRef]
- Jerauld, G.R.; Mohammadi, H.; Webb, K.J. Interpreting Single Well Chemical Tracer Tests. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- McInnis, L.E.; Hunter, K.D.; Ellis-Toddington, T.T.; Grawbarger, D.J. Case Study of the Mannville B ASP Flood. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 2–4 July 2013. [Google Scholar]
- Zhang, J.; Nguyen, Q.P.; Flaaten, A.; Pope, G.A. Mechanisms of Enhanced Natural Imbibition with Novel Chemicals. SPE Res. Eval. Eng. 2009, 12, 912–920. [Google Scholar] [CrossRef]
- Flaaten, A.; Nguyen, Q.P.; Pope, G.A.; Zhang, J. A Systematic Laboratory Approach to Low-Cost, High-Performance Chemical Flooding. SPE Reserv. Eval. Eng. 2009, 12, 713–723. [Google Scholar] [CrossRef]
- Watson, A.; Trahan, G.A.; Sorensen, W. An Interim Case Study of an Alkaline-Surfactant-Polymer Flood in the Mooney Field, Alberta, Canada. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- Delamaide, E. Using Horizontal Wells for Chemical EOR: Field Cases. Georesursy 2017, 19, 166–175. [Google Scholar] [CrossRef]
- Delamaide, E. Is Chemical EOR Finally Coming of Age? European Association of Geoscientists & Engineers: Bunnik, Utrecht, 2021. [Google Scholar]
- Zhang, Y.; Wei, M.; Bai, B.; Yang, H.; Kang, W. Survey and Data Analysis of the Pilot and Field Polymer Flooding Projects in China. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Luo, X.; Zhao, C. Practices and Experiences of Seven-Year Polymer Flooding History Matching in China Offshore Oil Field: A Case Study. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 9–11 October 2011. [Google Scholar]
- Seright, R.S.; Chang, H.L.; Zhang, Z.Q.; Wang, Q.M.; Xu, Z.S.; Guo, Z.D.; Sun, H.Q.; Cao, X.L.; Qi, Q. Discussion and Reply to “Advances in Polymer Flooding and Alkaline/Surfactant/Polymer Processes as Developed and Applied in the People’s Republic of China”. J. Pet. Technol. 2006, 58, 80–81. [Google Scholar] [CrossRef]
- Koning, E.J.L.; Mentzer, E.; Heemskerk, J. Evaluation of a Pilot Polymer Flood in the Marmul Field, Oman. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 2–5 October 1988. [Google Scholar]
- Dueñas, D.; Jimenez, J.A.; Zapata, J.F.; Bertel, C.; Leon, J.M. A Multi-Well ASP Pilot in San Francisco: Design, Results and Challenges. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar]
- Trushin, Y.M.; Aleshchenko, A.S.; Zoshchenko, O.N.; Arsamakov, M.S.; Tkachev, I.V.; Kruglov, D.S.; Kornilov, A.V.; Batrshin, D.R. Planning of Pilot Injection of Surfactant-Polymer Composition to Improve Oil Recovery from Carbonate Reservoir of Kharyaga Oilfield and Evaluation of the Results; Society of Petroleum Engineers (SPE): Richardson, TX, USA, 2021. [Google Scholar]
- Haq, B. Green Enhanced Oil Recovery for Carbonate Reservoirs. Polymers 2021, 13, 3269. [Google Scholar] [CrossRef]
- Delamaide, E.; Rousseau, D.; Wartenberg, N.; Salaun, M. Surfactant Polymer SP vs. Alkali-Surfactant Polymer ASP: Do We Need the a in ASP? In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Event Canceled, 28 November–1 December 2021. [Google Scholar]
- Lebouachera, S.E.I.; Chemini, R.; Khodja, M.; Grassl, B.; Abdelfetah Ghriga, M.; Tassalit, D.; Drouiche, N. Experimental Design Methodology as a Tool to Optimize the Adsorption of New Surfactant on the Algerian Rock Reservoir: CEOR Applications. Eur. Phys. J. Plus 2019, 134, 436. [Google Scholar] [CrossRef]
- Amirianshoja, T.; Junin, R.; Kamal Idris, A.; Rahmani, O. A Comparative Study of Surfactant Adsorption by Clay Minerals. J. Pet. Sci. Eng. 2013, 101, 21–27. [Google Scholar] [CrossRef]
Surfactant Type | Name | Chemical Structure |
---|---|---|
Anionic | Alkyl aryl sulfonates | RO(RƍO)n RƎSO3–M+ |
Alkyl sulfate | ||
Ethoxy sulfonate | H(OCH2CH2)n–O–SO2–R | |
Alkyl Ethoxy sulfonates | ROH–[CH2–CHO–CH3]x–SO−3Na+ | |
Alpha-Olefin sulfonates | R–CH=CH–(CH2)n–SO3Na | |
Internal olefin sulfonate (IOS) | CH3-(CH2)6-CH-[CH2]n-CH-(CH2)6-CH3 + CH3-(CH2)5CH=CH-[CH2]m-CH-(CH2)6-CH3 | |
Cationic | Alkyl benzyl dimethyl ammonium chlorides | R-CH3CH3CH2C6H5NCl |
NG-2 oxyethylated | C10–C17, containing 6–15 groups (CH2CN2O) | |
Nonionic | Alkyl Polyglycoside (APG) | C6H11O5-O-(CH2)7-9-CH3 |
Neodol | RO(CH2CH2O)x CH2COO−M+ | |
Ethoxylate-monylphenols | RO–(CH2CH2O)n–H | |
Polyoxyethylene alcohol | CnH2n+1(OCH2CH2)m OH | |
Zwitterionic | Dodecyl betaine | C12H25N+(CH3)2CH2COO− |
Lauramidopropyl betaine | C11H25CONH(CH2)3N+(CH3)2CH2COO− |
№ | Field, Country | Technology | Reservoir Type | Temperature, °C | Oil Viscosity, mPa·s | Salinit, g/L | Permeability, mD | Porosity | Results |
---|---|---|---|---|---|---|---|---|---|
1 | West Salym Russia [45] | ASP | Sandstone | 83 | 2 | 15–19 | 10–100 | 0.18–0.22 | Increase in oil production by 16% in comparison with basic production. Decrease in water cut from 98% to 88% |
2 | Romashkino Russia [46] | SP | Sandstone | 25 | 30 | 240 | 1300 | 0.23 | Pilot is being carried out |
3 | Kharyaga Russia [47] | SP | Carbonate | 62 | 0.8–1.1 | 200 | 300 | 0.09 | Pilot preparation |
4 | Daqing China [25] | SP | Sandstone | 52 | 12 | 6 | 1400 | 0.26 | Increase in oil production from 0.2 mt/y to 4.06 mt/y |
5 | Zhongyuan China [67] | SP | Not given | 80–90 | Not given | 120 | 716 | Not given | Increase in recovery factor by 13.7% |
6 | Jilin China [68] | SP | Not given | 55 | Not given | 14 | 163 | Not given | Increase in recovery factor by 14.8% |
7 | Liaohe China [69] | SP | Not given | 55 | Not given | 3.5 | 285,9 | Not given | Increase in recovery factor by 15.4% |
8 | Daqing China [25] | ASP | Not given | 45 | Not given | 4.1 | 500–900 | Not given | Increase in recovery factor by 15.0% |
9 | Changqing China [70] | SP | Not given | 51 | Not given | 12–26 | 67 | Not given | Increase in recovery factor by 15.1% |
10 | Dagang China [37] | SP | Not given | 53 | Not given | 13.45 | 675 | Not given | Increase in recovery factor by 13.0% |
11 | Marmul Oman [71] | ASP | Sandstone | 46 | 80 | 5 | 1500 | Not given | Increase in oil production by 20% in comparison with basic production. Decrease in water cut by 25–30% |
12 | Algyo Hungary [52] | SP | Sandstone | 98 | 0.64 | 0.15 | 70 | 0.23 | Not given |
13 | Warner Canada [62] | ASP | Sandstone | 35 | 58 | 5.5 | 2100 | 0.25 | Share of oil in two-phase emulsion has risen from 2–3% to 10–13%. Increase in oil production from 60 m3/d to 200–300 m3/d |
14 | Mooney Canada [65] | ASP | Sandstone | 29 | 300–600 | 24.5 | 1500 | 0.26 | Increase in oil production from 100–200 bpd to 2000 bpd. Decrease in water cut from 75% to 55% |
15 | San Francisco Colombia [72] | ASP | Sandstone | 24 | 10–12 | 7.6 | 20 | 0.17 | Increase in oil production by 12–16% in comparison with basic production |
№ | Field, Country | Technology | Chemical Formulation |
---|---|---|---|
1 | West Salym Russia [45] | ASP | 0.7 wt.% of two surfactants of the IOS family, 2 wt.% sodium carbonate, 2 wt.% isobutyl alcohol, 0.8 wt.% sodium chloride and 0.25 wt.% of the polymer Flopaam 3230. |
2 | Romashkino Russia [46] | SP | Surfactant by MOL + Flopaam 5115 VHM |
4 | Daqing China [25] | SP | 0.2 wt.% amphoteric (HLW) surfactant + 0.25 wt.% HPAM |
5 | Zhongyuan China [67] | SP | Not given |
6 | Jilin China [68] | SP | 0.2wt.% PS surfactant + 0.2wt.% HPAM |
7 | Liaohe China [69] | SP | 0.25 wt.% amphoteric surfactant + 0.16 wt.% HPAM |
8 | Daqing China [25] | ASP | Not given |
9 | Changqing China [70] | SP | 0.12 wt.% amphoteric + anionic + non-ionic + 0.15wt.% HPAM |
10 | Dagang China [37] | SP | 0.25wt.% PS + co-surfactant + 0.15wt.% HPAM |
11 | Marmul Oman [71] | ASP | 2 wt.% sodium carbonate, 0.3 wt.% mixture of Enordet surfactants and alcohol sulphate Enordet surfactant, and also the polymer Flopaam 3630S |
12 | Algyo Hungary [52] | SP | Surfactant by MOL |
13 | Warner Canada [62] | ASP | 0.75 wt.% sodium hydroxide, 0.15 wt.% ORS-97HF, 0.12 wt.% of the polymer Flopaam 3630 by SNF |
14 | Mooney Canada [65] | ASP | 1.5 wt.% sodium carbonate, 0.15 wt.% surfactant, 0.22 wt.% of an associative polymer |
15 | San Francisco Colombia [72] | ASP | Not given |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podoprigora, D.; Byazrov, R.; Sytnik, J. The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook. Energies 2022, 15, 8300. https://doi.org/10.3390/en15218300
Podoprigora D, Byazrov R, Sytnik J. The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook. Energies. 2022; 15(21):8300. https://doi.org/10.3390/en15218300
Chicago/Turabian StylePodoprigora, Dmitriy, Roman Byazrov, and Julia Sytnik. 2022. "The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook" Energies 15, no. 21: 8300. https://doi.org/10.3390/en15218300
APA StylePodoprigora, D., Byazrov, R., & Sytnik, J. (2022). The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook. Energies, 15(21), 8300. https://doi.org/10.3390/en15218300