Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Materials
2.2. Characterizations
2.3. Electrode Preparation
3. Results and Discussion
3.1. Structural Analysis
3.2. Electrochemical Performance
3.3. Lithium-Ion Diffusion Coefficient Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Yang, M.-H.; Lin, B.-M.; Yeh, S.-F.; Tsai, J.-S. The New High Power Design of 8Ah Li-ion Battery for HEV Application. World Electr. Veh. J. 2008, 2, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Liu, Z.; Zhang, C.; Cui, G.; Chen, L. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 2015, 3, 4092–4123. [Google Scholar] [CrossRef]
- Ma, J.; Hu, P.; Cui, G.; Chen, L. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606. [Google Scholar] [CrossRef]
- Simonelli, L.; Sorrentino, A.; Marini, C.; Ramanan, N.; Heinis, D.; Olszewski, W.; Mullaliu, A.; Birrozzi, A.; Laszczynski, N.; Giorgetti, M. Role of Manganese in Lithium-and Manganese-Rich Layered Oxides Cathodes. J. Phys. Chem. Lett. 2019, 10, 3359–3368. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Hu, Z.; Cui, G.; Chen, L. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065. [Google Scholar] [CrossRef]
- Julien, C.; Mauger, A.; Zaghib, K.; Groult, H. Optimization of layered cathode materials for lithium-ion batteries. Materials 2016, 9, 595. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qiu, B.; Cao, H.; Xia, Y.; Liu, Z. Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2–0.4LiNixMnyCo1−x−yO2 cathode materials for lithium-ion batteries. J. Power Sources 2012, 218, 128–133. [Google Scholar] [CrossRef]
- Mohanty, D.; Sefat, A.S.; Kalnaus, S.; Li, J.; Meisner, R.A.; Payzant, E.A.; Abraham, D.P.; Wood, D.L.; Daniel, C. Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J. Mater. Chem. A 2013, 1, 6249. [Google Scholar] [CrossRef]
- Lu, Z.; Beaulieu, L.Y.; Donaberger, R.A.; Thomas, C.L.; Dahn, J.R. Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 2002, 149, A778. [Google Scholar] [CrossRef]
- Lee, D.K.; Park, S.H.; Amine, K.; Bang, H.J.; Parakash, J.; Sun, Y.K. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J. Power Sources 2006, 162, 1346–1350. [Google Scholar] [CrossRef]
- Lu, Z.; Dahn, J.R. Understanding the Anomalous Capacity of Li/Li[Nix Li(1/3−2x/3)Mn(2/3−x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J. Electrochem. Soc. 2002, 149, A815. [Google Scholar] [CrossRef]
- Ohzuku, T.; Nagayama, M.; Tsuji, K.; Ariyoshi, K. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA h g−1. J. Mater. Chem. 2011, 21, 10179. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ramasse, Q.M.; Ophus, C.; Kepaptsoglou, D.M.; Hage, F.S.; Gammer, C.; Bowling, C.; Gallegos, P.A.H.; Venkatachalam, S. Effect of composition on the structure of lithium-and manganese-rich transition metal oxides. Energy Environ. Sci. 2018, 11, 830–840. [Google Scholar] [CrossRef]
- Kim, J.-M.; Chung, H.-T. The first cycle characteristics of Li [Ni1/3Co1/3Mn1/3] O2 charged up to 4.7 V. Electrochim. Acta 2004, 49, 937–944. [Google Scholar] [CrossRef]
- Li, D.; Yuan, C.; Dong, J.; Peng, Z.; Zhou, Y. Synthesis and electrochemical properties of LiNi0.85−xCoxMn0.15O2 as cathode materials for lithium-ion batteries. J. Solid State Electrochem. 2008, 12, 323–327. [Google Scholar] [CrossRef]
- Croy, J.R.; Long, B.R.; Balasubramanian, M. A path toward cobalt-free lithium-ion cathodes. J. Power Sources 2019, 440, 227113. [Google Scholar] [CrossRef]
- Hwang, I.; Lee, C.W.; Kim, J.C.; Yoon, S. Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Mater. Res. Bull. 2012, 47, 73–78. [Google Scholar] [CrossRef]
- Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434–452. [Google Scholar] [CrossRef]
- Ritchie, A.; Howard, W. Recent developments and likely advances in lithium-ion batteries. J. Power Sources 2006, 162, 809–812. [Google Scholar] [CrossRef]
- Wood, M.; Li, J.; Ruther, R.E.; Du, Z.; Self, E.C.; Meyer III, H.M.; Daniel, C.; Belharouak, I.; Wood III, D.L. Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-Ion batteries. Energy Storage Mater. 2019, 24, 188–197. [Google Scholar] [CrossRef]
- Buchholz, D.; Li, J.; Passerini, S.; Aquilanti, G.; Wang, D.; Giorgetti, M. X-ray Absorption Spectroscopy Investigation of Lithium-Rich, Cobalt-Poor Layered-Oxide Cathode Material with High Capacity. ChemElectroChem 2015, 2, 85–97. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 2003, 119–121, 171–174. [Google Scholar] [CrossRef]
- Lim, J.-H.; Bang, H.; Lee, K.-S.; Amine, K.; Sun, Y.-K. Electrochemical characterization of Li2MnO3–Li [Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. J. Power Sources 2009, 189, 571–575. [Google Scholar] [CrossRef]
- Cho, T.; Park, S.; Yoshio, M.; Hirai, T.; Hideshima, Y. Effect of synthesis condition on the structural and electrochemical properties of Li [Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method. J. Power Sources 2005, 142, 306–312. [Google Scholar] [CrossRef]
- Thapa, A.; Nakamura, H.; Noguchi, H.; Yoshio, M. Novel Synthesis of LiNi~ 0~.~ 5Mn~ 0~.~ 5O~ 2 by Carbonate Co-precipitation, as an Alternative Cathode for Li-ion Batteries. ITE Lett. Batter. New Technol. Med. 2007, 8, B11. [Google Scholar]
- Thackeray, M.M.; Kang, S.-H.; Johnson, C.S.; Vaughey, J.T.; Benedek, R.; Hackney, S.A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Yoon, W.-S.; Iannopollo, S.; Grey, C.P.; Carlier, D.; Gorman, J.; Reed, J.; Ceder, G. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li [Nix Mn(2− x)/3Li(1− 2x)/3]O2 NMR studies and first principles calculations. Electrochem. Solid-State Lett. 2004, 7, A167–A171. [Google Scholar] [CrossRef]
- Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H.A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 2017, 164, A1361–A1377. [Google Scholar] [CrossRef]
- Jung, R.; Morasch, R.; Karayaylali, P.; Phillips, K.; Maglia, F.; Stinner, C.; Shao-Horn, Y.; Gasteiger, H.A. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 2018, 165, A132–A141. [Google Scholar] [CrossRef]
- Winter, M.; Besenhard, J.O.; Spahr, M.E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763. [Google Scholar] [CrossRef]
- Akram, M.Z.; Thapa, A.K.; Ajayi, B.P.; Atla, V.; Gong, J.R.; Sunkara, M.K. A New Nanowire-Based Lithium Hexaoxotungstate Anode for Lithium-Ion Battery. Nanoscale Adv. 2019, 1, 2727–2731. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.R.; Holzapfel, M.; Novák, P.; Johnson, C.S.; Kang, S.-H.; Thackeray, M.M.; Bruce, P.G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698. [Google Scholar] [CrossRef]
- Lei, J.; Li, L.; Kostecki, R.; Muller, R.; McLarnon, F. Characterization of SEI layers on LiMn2O4 cathodes with in situ spectroscopic ellipsometry. J. Electrochem. Soc. 2005, 152, A774–A777. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Tu, J.; Tang, Y.; Liu, X.; Zhang, Y.; Wang, X.; Gu, C. Enhanced cycling stability of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim. Acta 2013, 88, 671–679. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, P.; Zhang, J.; Engelhard, M.H.; Zhu, Z.; Polzin, B.J.; Trask, S.; Xiao, J.; Wang, C.; Zhang, J. Suppressed oxygen extraction and degradation of LiNixMnyCozO2 cathodes at high charge cut-off voltages. Nano Res. 2017, 10, 4221–4231. [Google Scholar] [CrossRef]
- Park, J.; Seo, J.H.; Plett, G.; Lu, W.; Sastry, A.M. Numerical simulation of the effect of the dissolution of LiMn2O4 particles on Li-ion battery performance. Electrochem. Solid-State Lett. 2010, 14, A14. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, H.; Fu, L.; Liu, H.; Wu, Y.; Rahm, E.; Holze, R.; Wu, H. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 2006, 51, 3872–3883. [Google Scholar] [CrossRef]
- Ji, Y.; Li, R.; Mu, D.; Sun, S.; Dai, C.; Ding, F. Surface Modification of Li1.2Mn0.56Ni0.16Co0.08O2 Cathode Material by Supercritical CO2 for Lithium-Ion Batteries. J. Electrochem. Soc. 2018, 165, A2880–A2888. [Google Scholar] [CrossRef]
- Johnson, C.S.; Li, N.; Lefief, C.; Vaughey, J.T.; Thackeray, M.M. Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: X Li2MnO3(1−x) LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 2008, 20, 6095–6106. [Google Scholar] [CrossRef]
- Amalraj, F.; Kovacheva, D.; Talianker, M.; Zeiri, L.; Grinblat, J.; Leifer, N.; Goobes, G.; Markovsky, B.; Aurbach, D. Synthesis of Integrated Cathode Materials xLi2MnO3(1−x) LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and Studies of Their Electrochemical Behavior. J. Electrochem. Soc. 2010, 157, A1121–A1130. [Google Scholar] [CrossRef]
- Carroll, K.J.; Qian, D.; Fell, C.; Calvin, S.; Veith, G.M.; Chi, M.; Baggetto, L.; Meng, Y.S. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Phys. Chem. Chem. Phys. 2013, 15, 11128–11138. [Google Scholar] [CrossRef]
- Liang, H.; Qiu, X.; Chen, H.; He, Z.; Zhu, W.; Chen, L. Analysis of high rate performance of nanoparticled lithium cobalt oxides prepared in molten KNO3 for rechargeable lithium-ion batteries. Electrochem. Commun. 2004, 6, 789–794. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, X.; Yang, Y. A comparison of preparation method on the electrochemical performance of cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim. Acta 2011, 56, 3071–3078. [Google Scholar] [CrossRef]
- Kumagai, N.; Kim, J.-M.; Tsuruta, S.; Kadoma, Y.; Ui, K. Structural modification of Li [Li0.27Co0.20Mn0.53]O2 by lithium extraction and its electrochemical property as the positive electrode for Li-ion batteries. Electrochim. Acta 2008, 53, 5287–5293. [Google Scholar] [CrossRef]
- Ito, A.; Li, D.; Sato, Y.; Arao, M.; Watanabe, M.; Hatano, M.; Horie, H.; Ohsawa, Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 2010, 195, 567–573. [Google Scholar] [CrossRef]
- Song, B.; Liu, Z.; Lai, M.O.; Lu, L. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 2012, 14, 12875–12883. [Google Scholar] [CrossRef]
- Lee, E.-S.; Huq, A.; Chang, H.-Y.; Manthiram, A. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem. Mater. 2012, 24, 600–612. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, P.; Gu, M.; Xiao, J.; Browning, N.D.; Yan, P.; Wang, C.; Zhang, J.-G. Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material. Chem. Mater. 2015, 27, 1381–1390. [Google Scholar] [CrossRef]
- Mohanty, D.; Kalnaus, S.; Meisner, R.A.; Rhodes, K.J.; Li, J.; Payzant, E.A.; Wood, D.L.; Daniel, C. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 2013, 229, 239–248. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, J.; Gu, M.; Zuo, P.; Wang, C.; Zhang, J.-G. Interface modifications by anion receptors for high energy lithium ion batteries. J. Power Sources 2014, 250, 313–318. [Google Scholar] [CrossRef]
- Boulineau, A.; Simonin, L.; Colin, J.F.; Bourbon, C.; Patoux, S. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 2013, 13, 3857–3863. [Google Scholar] [CrossRef]
- Xiao, P.; Lv, T.; Chen, X.; Chang, C. LiNi0.8Co0.15Al0.05O2: Enhanced Electrochemical Performance From Reduced Cationic Disordering in Li Slab. Sci. Rep. 2017, 7, 1408. [Google Scholar] [CrossRef] [Green Version]
- Capron, O.; Gopalakrishnan, R.; Jaguemont, J.; Van Den Bossche, P.; Omar, N.; Van Mierlo, J. On the Ageing of High Energy Lithium-Ion Batteries-Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes. Materials 2018, 11, 176. [Google Scholar] [CrossRef]
- Chandra, M.; Khan, T.S.; Shukla, R.; Ahamad, S.; Gupta, A.; Basu, S.; Haider, M.A.; Dhaka, R.S. Diffusion coefficient and electrochemical performance of NaVO3 anode in Li/Na batteries. Electrochim. Acta 2020, 331, 135293. [Google Scholar] [CrossRef]
- Luo, X.; Wang, X.; Liao, L.; Gamboa, S.; Sebastian, P. Synthesis and characterization of high tap-density layered Li [Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation. J. Power Sources 2006, 158, 654–658. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Banis, M.N.; Lushington, A.; Li, R.; Cai, M.; Sun, X. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 2014, 7, 768–778. [Google Scholar] [CrossRef]
Composition | Space Group | a (Å) | c (Å) | c/a | Reduced χ2 | BET (m2 g−1) |
---|---|---|---|---|---|---|
LiNi0.2Mn0.6Co0.2O2 | R-3m | 2.8521 (6) | 14.2423 (7) | 4.9936 | 1.73 | 8.0 |
LiNi0.3Mn0.5Co0.2O2 | R-3m | 2.8596 (3) | 14.263 (1) | 4.9877 | 1.49 | 2.6 |
LiNi0.4Mn0.4Co0.2O2 | Pm-3m | 2.8670 (2) | 14.253 (1) | 4.9713 | 1.25 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, A.K.; Lavery, B.W.; Hona, R.K.; Sapkota, N.; Kalutara Koralalage, M.; Adeniran, A.; Ajayi, B.P.; Zain, M.A.; Wang, H.; Druffel, T.; et al. Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation. Energies 2022, 15, 8357. https://doi.org/10.3390/en15228357
Thapa AK, Lavery BW, Hona RK, Sapkota N, Kalutara Koralalage M, Adeniran A, Ajayi BP, Zain MA, Wang H, Druffel T, et al. Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation. Energies. 2022; 15(22):8357. https://doi.org/10.3390/en15228357
Chicago/Turabian StyleThapa, Arjun Kumar, Brandon W. Lavery, Ram K. Hona, Nawraj Sapkota, Milinda Kalutara Koralalage, Ayodeji Adeniran, Babajide Patrick Ajayi, Muhammad Akram Zain, Hui Wang, Thad Druffel, and et al. 2022. "Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation" Energies 15, no. 22: 8357. https://doi.org/10.3390/en15228357
APA StyleThapa, A. K., Lavery, B. W., Hona, R. K., Sapkota, N., Kalutara Koralalage, M., Adeniran, A., Ajayi, B. P., Zain, M. A., Wang, H., Druffel, T., Jasinski, J. B., Sumanasekera, G. U., Sunkara, M. K., & Yoshio, M. (2022). Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation. Energies, 15(22), 8357. https://doi.org/10.3390/en15228357