Comparison of the Efficiency of Cross-Flow Plate Heat Exchangers Made of Varied Materials
Abstract
:1. Introduction
2. Formulation of Equations and Conditions for Both Tested Heat Exchangers
3. Solution Method
3.1. Trefftz Functions
3.2. Objective Functionals
4. Computation Results
- °C (room or inside temperature),
- °C, 1 °C, or 31 °C (outside temperature),
- 1.2 m (plate section length),
- 0.0006 m (plate section half height),
- 0.5 m/s and 4.5 m/s,
- ,
- (257 T-functions).
4.1. Results for Copper Plate
4.2. Results for a Copper, Aluminium, and Steel Plate—Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin Symbols | |
Bi | Biot number, compare (2) |
c | for specific heat, [J/(kg K)] |
Fo | Fourier number (dimensionless time), comp (2) |
h | air duct height, [m] |
thermal conductivity coefficient, [W/(mK)] | |
plate section length, [m] | |
Reynolds number | |
temperature, [K], | |
approximation of temperature | |
time, [s] | |
dimensionless time | |
velocity of air moving between plates, [m/s] | |
, , | spatial coordinates, [m] |
dimensionless spatial coordinates | |
Greek Symbols | |
heat transfer coefficients, [W/(m2K)] | |
efficiency of the heat exchanger | |
ρ | density, [kg/m3] |
kinematic viscosity, [] | |
nabla operator, | |
Laplace operator |
References
- Shah, R.K.; Sekulic, D.P. Chapter 1, Classification of Heat Exchangers. In Fundamentals of Heat Exchanger Design; John WIley and Sons: Hoboken, NJ, USA, 2003; pp. 1–77. [Google Scholar]
- Wang, L.; Sundén, B.; Manglik, R.M. Plate Heat Exchangers, Design, Applications and Performance; WIT Press Southampton: Boston, MA, USA, 2007. [Google Scholar]
- Available online: https://www.rekuperatory.pl/rekuperator#co-to-jest-rekuperator (accessed on 31 June 2021).
- Xu, K. Design and Optimization of Plate Heat Exchanger Networks. Ph.D. Thesis, The University of Manchester, Faculty of Science and Engineering, Manchester, UK, 2019. [Google Scholar]
- Grysa, K.; Maciąg, A.; Ściana, A. Comparison of the Efficiency of Two Types of Heat Exchangers with Parallel Plates Made of Varied Materials. Energies 2021, 14, 8562. [Google Scholar] [CrossRef]
- Available online: https://wentylacja.com.pl/news/plytowe-wymienniki-krzyzowe-do-odzysku-ciepla-63582.html (accessed on 8 July 2022).
- Gao, T.; Sammakia, B.G.; Geer, J.F.; Ortega, A.; Schmidt, R. Dynamic Analysis of Cross Flow Heat Exchangers in Data Centers Using Transient Effectiveness Method. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 1925–1935. [Google Scholar] [CrossRef]
- Vali, A.; Simonson, C.J.; Besant, R.W.; Mahmood, G. Numerical model and effectiveness correlations for a run-around heat recovery system with combined counter and cross flow exchangers. Int. J. Heat Mass Transf. 2009, 52, 5827–5840. [Google Scholar] [CrossRef]
- Vali, A.; Ge, G.-M.; Besant, R.W.; Simonson, C.J. Numerical modeling of fluid flow and coupled heat and mass transfer in a counter-cross-flow parallel-plate liquid-to-air membrane Energy exchanger. Int. J. Heat Mass Transf. 2015, 89, 1258–1276. [Google Scholar] [CrossRef]
- Das, R.S.; Jain, S. Performance characteristics of cross-flow membrane contactors for liquid desiccant systems. Appl. Energy 2015, 141, 1–11. [Google Scholar] [CrossRef]
- Shen, K.; Zhang, Z.-D.; Zhang, Z.-Q.; Yang, Y.-W. Investigation of effect on cross-flow heat exchanger with air flow non-uniformity under low Reynolds number. Adv. Mech. Eng. 2017, 9, 1687814017708088. [Google Scholar] [CrossRef]
- Bai, H.-Y.; Zhu, J.; Chen, Z.-W.; Chu, J.-Z. Parametric analysis of a cross-flow membrane-based parallel-plate liquid desiccant dehumidification system: Numerical and experimental data. Energy Build. 2018, 158, 494–508. [Google Scholar] [CrossRef]
- Dvořák, V.; Vít, T. Numerical investigation of counter flow plate heat exchanger. Energy Procedia 2015, 83, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University: Oxford, UK, 1959. [Google Scholar]
- Mills, A.F. Basic Heat and Mass Transfer; Prentice-Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Mills, A.F.; Coimbra, C.F.M. Basic Heat and Mass Transfer; Temporal Publishing, LLC: San Diego, CA, USA, 2015. [Google Scholar]
- Available online: https://thermopedia.com/content/1187/ (accessed on 8 October 2022).
- Available online: https://www.engineersedge.com/thermodynamics/overall_heat_transfer-table.htm (accessed on 9 September 2021).
- Inhelder, J. Verbrauchs und Schadstoffoptimiertes Ottomotor-Aufladekonzept, ETH No. 11948. Ph.D. Thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 1996. [Google Scholar]
- Eriksson, L.; Nielsen, L. Modeling and Control of Engines and Drivelines; Wiley: New York, NY, USA, 2014; p. 530. [Google Scholar]
- Sforza, P. Commercial Airplane Design Principles; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-419953-8. [Google Scholar]
- White, F. Fluid Mechanics, 4th ed.; McGraw-Hill Higher Education: New York, NY, USA, 2002; ISBN 0-07-228192-8. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat Transfer; Wiley: New York, NY, USA, 1981; ISBN 978-0-471-42711-7. [Google Scholar]
- Trefftz, E. Ein Gegenstueck zum Ritz’schen Verfahren. In Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, Switzerland, 12–17 September 1926; pp. 131–137. [Google Scholar]
- Grysa, K.; Maciejewska, B. Trefftz functions for non-stationary problems. J. Theoret. Appl. Mech. 2013, 50, 251–264. [Google Scholar]
- Frąckowiak, A.; Wróblewska, A.; Ciałkowski, M. Trefftz numerical functions for solving inverse heat conduction problems. Int. J. Therm. Sci. 2022, 177, 107566. [Google Scholar] [CrossRef]
- Frąckowiak, A.; Ciałkowski, M.; Wróblewska, A. Iterative algorithms for solving inverse problems of heat conduction in multiply connected domains. Int. J. Heat Mass Transf. 2012, 55, 744–751. [Google Scholar] [CrossRef]
- Ciałkowski, M.J.; Frackowiak, A. Thermal and related functions used in solving certain problems of mechanics, Part, I. Solving some differential equations with the use of inverse operator. In Modern Problems of Technics; University of Zielona Góra Publishers: Zielona Góra, Poland, 2003; Volume 3, pp. 7–70. [Google Scholar]
- Maciąg, A.; Grysa, K. Trefftz Method of Solving a 1D Coupled Thermoelasticity Problem for One- and Two-Layered Media. Energies 2021, 14, 3637. [Google Scholar] [CrossRef]
- Pudlik, W. Exchange and Heat Exchangers; Gdańsk University of Technology: Gdańsk, Poland, 2012; p. 320. Available online: https://pbc.gda.pl/Content/4404/wymiana-i-wymienniki-final.pdf (accessed on 8 July 2022). (In Polish)
- Available online: https://www.engineeringtoolbox.com/heat-recovery-efficiency-d_201.html (accessed on 8 December 2021).
- Available online: https://agmetalminer.com/metal-prices/ (accessed on 8 July 2022).
- Available online: https://www.moneymetals.com/copper-prices (accessed on 8 July 2022).
Material | |||||||
---|---|---|---|---|---|---|---|
Steel | −19 | −10.88 | −5.39 | −5.21 | −5.93 | −5.99 | −5.93 |
1 | 5.06 | 7.80 | 7.89 | 7.54 | 7.50 | 7.53 | |
31 | 28.97 | 27.60 | 27.55 | 27.73 | 27.75 | 27.73 |
ρ [kg/m3] | c [J/(kg K)] | k [W/(mK)] | a 106 [m2/s] | α (W/(m2K)) | |
---|---|---|---|---|---|
Copper | 8933 | 385 | 386 | 112.2 | |
Aluminium | 2702 | 903 | 204 | 83.6 | |
Stainless steel | 7970 | 561 | 19.5 | 4.36 |
l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | l/2 | l/2 | l/2 | l/2 | |
l/2 | l/2 | l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | 0 | 0 | |
−h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | |
°C | 1.0 | 1.0 | −17.5 | −17.5 | 1.0 | 1.0 | 19.5 | 19.5 | 4.5 | 4.5 |
l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | l/2 | l/2 | l/2 | l/2 | |
l/2 | l/2 | l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | 0 | 0 | |
−h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | |
°C | 11.0 | 11.0 | 1.7 | 1.7 | 11.0 | 11.0 | 20.3 | 20.3 | 12.8 | 12.8 |
l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | l/2 | l/2 | l/2 | l/2 | |
l/2 | l/2 | l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | 0 | 0 | |
−h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | |
°C | 26.0 | 26.0 | 30.6 | 30.6 | 26.0 | 26.0 | 21.4 | 21.4 | 25.1 | 25.1 |
l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | l/2 | l/2 | l/2 | l/2 | |
l/2 | l/2 | l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | 0 | 0 | |
−h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | |
°C | 26.0 | 26.0 | 30.4 | 30.4 | 26.0 | 26.0 | 21.6 | 21.6 | 26.0 | 26.0 |
l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | l/2 | l/2 | l/2 | l/2 | |
l/2 | l/2 | l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | 0 | 0 | |
−h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | |
°C | 11.0 | 11.0 | 2.1 | 2.1 | 11.0 | 11.0 | 20.0 | 20.0 | 11.1 | 11.1 |
l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | l/2 | l/2 | l/2 | l/2 | |
l/2 | l/2 | l/2 | l/2 | −l/2 | −l/2 | −l/2 | −l/2 | 0 | 0 | |
−h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | −h/2 | h/2 | |
°C | 1.0 | 1.0 | −16.8 | −16.8 | 1.0 | 1.0 | 18.8 | 18.8 | 1.2 | 1.2 |
Copper | Aluminium | Steel | |||||
---|---|---|---|---|---|---|---|
l/2 | l/2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
−l/2 | l/2 | −17.50 | −16.80 | −17.10 | −13.00 | −7.40 | −0.80 |
−l/2 | −l/2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
l/2 | −l/2 | 19.50 | 18.80 | 19.10 | 15.00 | 9.39 | 2.80 |
l/2 | 0 | 4.50 | 1.20 | 3.30 | 0.90 | 8.00 | 2.40 |
Copper | Aluminium | Steel | |||||
---|---|---|---|---|---|---|---|
l/2 | l/2 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 |
−l/2 | l/2 | 1.70 | 2.10 | 2.00 | 4.00 | 6.81 | 10.10 |
−l/2 | −l/2 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 |
l/2 | −l/2 | 20.30 | 20.00 | 20.00 | 18.00 | 15.19 | 11.90 |
l/2 | 0 | 12.80 | 11.10 | 12.10 | 11.00 | 14.50 | 11.70 |
Copper | Aluminium | Steel | |||||
---|---|---|---|---|---|---|---|
l/2 | l/2 | 26.00 | 26.00 | 26.00 | 26.00 | 26.00 | 26.00 |
−l/2 | l/2 | 30.60 | 30.40 | 30.50 | 30.00 | 28.10 | 26.40 |
−l/2 | −l/2 | 26.00 | 26.00 | 26.00 | 26.00 | 26.00 | 26.00 |
l/2 | −l/2 | 21.40 | 21.60 | 21.50 | 22.50 | 23.90 | 25.50 |
l/2 | 0 | 25.10 | 26.00 | 25.40 | 26.00 | 24.30 | 25.60 |
T(lin) | T(const) | T(parab) | ||
---|---|---|---|---|
l/2 | l/2 | 1.01 | 1.00 | 1.00 |
−l/2 | l/2 | −17.50 | −18.30 | −17.50 |
−l/2 | −l/2 | 0.53 | 1.00 | 1.00 |
l/2 | −l/2 | 20.10 | 20.30 | 19.50 |
l/2 | 0 | 3.80 | 1.83 | 4.50 |
T [°C] | −19 | −19 | 1 | 1 | 31 | 31 | −19 | −19 | 1 | 1 | 31 | 31 | |
[m/s] | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | |
l/2 | l/2 | 1.0 | 1.0 | 11.0 | 11.0 | 26.0 | 26.0 | 1.0 | 1.0 | 11.0 | 11.0 | 26.0 | 26.0 |
−l/2 | l/2 | −15.8 | −8.9 | 2.6 | 6.0 | 30.2 | 28.5 | −17.1 | −13.0 | 2.0 | 4.0 | 30.5 | 30.0 |
−l/2 | −l/2 | 1.0 | 1.0 | 11.0 | 11.0 | 26.0 | 26.0 | 1.0 | 1.0 | 11.0 | 11.0 | 26.0 | 26.0 |
l/2 | −l/2 | 17.8 | 10.9 | 19.4 | 16.0 | 21.8 | 23.5 | 19.1 | 15.0 | 20.0 | 18.0 | 21.5 | 22.5 |
l/2 | 0 | 1.3 | 1.4 | 11.2 | 11.2 | 25.9 | 25.9 | 3.3 | 0.9 | 12.1 | 11.0 | 25.4 | 26.0 |
T [°C] | −19 | −19 | 1 | 1 | 31 | 31 | −19 | −19 | 1 | 1 | 31 | 31 | |
[m/s] | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | |
l/2 | l/2 | 1.00 | 1.00 | 11.00 | 11.00 | 26.00 | 26.00 | 1.00 | 1.00 | 11.00 | 11.00 | 26.00 | 26.00 |
−l/2 | l/2 | −3.10 | 0.10 | 8.90 | 10.60 | 27.00 | 26.20 | −7.40 | −0.80 | 6.81 | 10.10 | 28.10 | 26.40 |
−l/2 | −l/2 | 1.00 | 1.00 | 11.00 | 11.00 | 26.00 | 26.00 | 1.00 | 1.00 | 11.00 | 11.00 | 26.00 | 26.00 |
l/2 | −l/2 | 5.10 | 1.90 | 13.10 | 11.40 | 25.00 | 25.80 | 9.39 | 2.80 | 15.19 | 11.90 | 23.90 | 25.50 |
l/2 | 0 | 4.10 | 1.80 | 12.60 | 11.40 | 25.00 | 25.80 | 8.00 | 2.40 | 14.50 | 11.70 | 24.30 | 25.60 |
T [°C] | −19 | −19 | 1 | 1 | 31 | 31 | −19 | −19 | 1 | 1 | 31 | 31 |
[m/s] | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 | 0.5 | 4.5 |
Plate made of | ||||||||||||
Cu | 0.80 | 0.76 | 0.80 | 0.76 | 0.80 | 0.76 | 13.01 | 11.29 | 17.01 | 16.15 | 23.00 | 23.43 |
Al | 0.78 | 0.75 | 0.78 | 0.75 | 0.78 | 0.75 | 12.30 | 10.93 | 16.65 | 15.96 | 23.18 | 23.52 |
Steel | 0.82 | 0.77 | 0.82 | 0.77 | 0.82 | 0.77 | 13.93 | 11.61 | 17.46 | 16.31 | 22.77 | 23.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grysa, K.; Maciąg, A.; Ściana, A. Comparison of the Efficiency of Cross-Flow Plate Heat Exchangers Made of Varied Materials. Energies 2022, 15, 8425. https://doi.org/10.3390/en15228425
Grysa K, Maciąg A, Ściana A. Comparison of the Efficiency of Cross-Flow Plate Heat Exchangers Made of Varied Materials. Energies. 2022; 15(22):8425. https://doi.org/10.3390/en15228425
Chicago/Turabian StyleGrysa, Krzysztof, Artur Maciąg, and Artur Ściana. 2022. "Comparison of the Efficiency of Cross-Flow Plate Heat Exchangers Made of Varied Materials" Energies 15, no. 22: 8425. https://doi.org/10.3390/en15228425
APA StyleGrysa, K., Maciąg, A., & Ściana, A. (2022). Comparison of the Efficiency of Cross-Flow Plate Heat Exchangers Made of Varied Materials. Energies, 15(22), 8425. https://doi.org/10.3390/en15228425