Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review
Abstract
:1. Introduction
2. Heating for Industrial Processes and Solar Thermal Energy
3. Current Global Technologies of Solar Thermal Energy
3.1. Non Concentrating Solar Collectors
- (a)
- Flat plate collectors (FPC)
- (b)
- Evacuated tube collectors (ETC)
- (c)
- Compound parabolic collectors (CPC)
3.1.1. Flat Plate Collectors (FPC)
3.1.2. Evacuated Tube Collectors (ETC)
3.1.3. Compound Parabolic Collectors (CPC)
3.2. Concentrating Collectors
- (a)
- Parabolic trough collector (PTC)
- (b)
- Parabolic dish reflector (PDR)
- (c)
- Linear Fresnel reflector (LFR)
- (d)
- Heliostat field reflector (HFR)
3.2.1. Parabolic Trough Collectors (PTC)
3.2.2. Parabolic Dish Reflectors (PDR)
3.2.3. Linear Fresnel Reflectors (LFR)
3.2.4. Heliostat Field Reflector
3.3. Heat Exchanger
3.3.1. Plate Heat Exchangers
3.3.2. Shell and Tube Heat Exchangers
3.3.3. Double Pipe Heat Exchangers
4. Integration of Industrial Process Heat with Solar Thermal Energy
4.1. Potential Industries for Solar Thermal Integration
4.1.1. Food Industry
4.1.2. Automobile Industry
4.1.3. Paper Industry
4.1.4. Textile Industry
4.1.5. Pharmaceutical
4.1.6. Chemical Products
4.1.7. Agriculture Industry
4.1.8. Mining Industry
4.2. Solar Energy Systems
4.2.1. Solar Energy-Based Water Heating
- (a)
- Thermosiphon
- (b)
- Integrated collector storage
- (c)
- Direct circulation of water
- (d)
- Indirect water heating
- (e)
- Air systems
4.2.2. Solar-Based District Heating/Cooling
4.2.3. Solar-Based Desalination
4.2.4. Solar-Based Refrigeration System
4.2.5. Carbon Dioxide Capture and Storage
4.2.6. Solar Based Process Heating
4.3. Industrial Heat Demand
4.4. Solar Thermal Energy Storage
4.4.1. Sensible Heat Storage
4.4.2. Latent Heat Storage
4.4.3. Chemical Heat Storage
4.4.4. Performance Parameters of STES System
- (a)
- Power: It can be characterized as the rate of discharging and charging measured in kW for the STES system.
- (b)
- Size and capacity: The capacity of solar thermal storage containers is closely correlated with its container size. The capacity and size show a direct relationship.
- (c)
- Operating temperature: Systems for storing thermal energy typically operate between 40 and 600 °C [153].
- (d)
- Period of storage: Short-term storage that operates at extremely high temperatures. Sensible heat storage materials, such as molten salts and liquid metals, are appropriate alternatives. However, it takes a significant volume of storage material and significant capacity to operate for an extended period at low temperatures under 80 °C.
- (e)
- Efficiency: The division of total energy dispatched to the user by the amount of energy dispensed to recharge the thermal energy storage system.
4.4.5. Challenges and Limitations of STES System
- (a)
- PCM leakage: Utilizing phase-change materials is an efficient way to store solar thermal energy. Leakage can occasionally begin and PCM liquid will begin to flow once PCM melts [154].
- (b)
- Heat loss: Larger temperature differences between the STES system and surrounding temperature lead to higher heat losses. Additional heat loss is also caused by inadequate insulation.
- (c)
- Pressure: Water has a high vapor pressure, which necessitates the use of thick containers, which raises the cost and creates a leaking issue.
- (d)
- Super cooling: Due to the substantial change in temperature between the charging and discharging states, super cooling is not advantageous. Most thermal storage materials of the PCM type exhibit it.
- (e)
- Corrosion: The vessel is severely corroded by inorganic materials used in thermal energy storage systems.
- (f)
- Safety: Materials used in these storage systems have a significant risk and are usually inflammable. The organic oils especially tend to be exceedingly difficult to work with in terms of safety.
5. Summary and Conclusions
5.1. Summary
5.2. Conclusions
- According to research, the industrial sector uses between 32% and 35% of the world’s total energy, and fossils are substantially burned in boilers and furnaces to create process heat for industries, which results in GHG emissions. Approximately 37% of all emissions worldwide are produced by the industrial sector. Installing a system for heating processes that utilizes solar thermal collectors as primary technology to harness the energy of the sun will provide a long-term answer for enterprises moving toward a future with zero carbon production, since solar energy is widely available.
- To show readers the scope of solar thermal collectors’ applicability, typical applications are given. These include heating and cooling of space, either residential or commercial, as well as refrigeration, water desalination, CCS technology, and implementation of solar thermal energy in industrial processes. From the literature, we also saw that systems that combine air and water as working fluids are more effective than individual systems.
- Solar thermal energy has the capacity to meet the industrial demand for process heating, but given the intermittent nature of sunlight, there may be an unreliable outcome. Therefore, solar thermal energy storage systems are used to sustain the system load.
- This study will assist decision-makers in creating a framework that will serve as a blueprint for managing the incorporation of solar thermal energy in global industrial development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M.; Rosado, P. Energy. Available online: https://ourworldindata.org/energy (accessed on 18 October 2022).
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. Solar industrial process heating: A review. Renew. Sustain. Energy Rev. 2017, 78, 124–137. [Google Scholar] [CrossRef]
- Abdelaziz, E.A.; Saidur, R.; Mekhilef, S. A review on energy saving strategies in industrial sector. Renew. Sustain. Energy Rev. 2011, 15, 150–168. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Convers. Manag. 2019, 195, 885–908. [Google Scholar] [CrossRef]
- Mostakim, K.; Hasanuzzaman, M. Global prospects, challenges and progress of photovoltaic thermal system. Sustain. Energy Technol. Assess. 2022, 53, 102426. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, L.; Liang, X.; Chen, S.; Yuan, J. Evaluating fuel consumption factor for energy conservation and carbon neutral on an industrial thermal power unit. Energy 2021, 232, 120887. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev. 2011, 15, 1777–1790. [Google Scholar] [CrossRef]
- Koebrich, S.; Bowen, T.; Sharpe, A. 2018 Renewable Energy Data Book. Available online: https://www.nrel.gov/analysis/energy-data-books.html (accessed on 20 October 2022).
- EIA. Use of Energy in Industry; U.S. Energy Information Administration: Washington, DC, USA, 2021. [Google Scholar]
- Stryi-Hipp, G. (Ed.) Introduction to renewable heating and cooling. In Renewable Heating and Cooling; Woodhead Publishing: Cambridge, UK, 2016; pp. 1–5. [Google Scholar]
- Kumar, K.R.; Chaitanya, N.K.; Kumar, N.S. Solar thermal energy technologies and its applications for process heating and power generation—A review. J. Clean. Prod. 2020, 282, 125296. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Saidur, R. Solar industrial process heating systems in operation—Current SHIP plants and future prospects in Australia. Renew. Sustain. Energy Rev. 2018, 91, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Zuberi, M.J.S.; Olsen, D.; Liem, P.; Wellig, B.; Patel, M.K. Heat integration of a multi-product batch process by means of direct and indirect heat recovery using thermal energy storage. Appl. Therm. Eng. 2019, 167, 114796. [Google Scholar] [CrossRef]
- Karki, S.; Haapala, K.R.; Fronk, B.M. Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Appl. Energy 2019, 254, 113649. [Google Scholar] [CrossRef]
- Ismail, M.I.; Yunus, N.A.; Kaassim, A.Z.M.; Hashim, H. Pathways and challenges of solar thermal utilisation in the industry: ASEAN and Malaysia scenarios. Sustain. Energy Technol. Assess. 2022, 52, 102046. [Google Scholar] [CrossRef]
- Islam, M.K.; Hasanuzzaman, M.; Rahim, N.A. Modelling and analysis of the effect of different parameters on a parabolic-trough concentrating solar system. RSC Adv. 2015, 5, 36540–36546. [Google Scholar] [CrossRef]
- Farjana, S.H.; Mahmud, M.; Huda, N. Solar process heat integration in lead mining process. Case Stud. Therm. Eng. 2020, 22, 100768. [Google Scholar] [CrossRef]
- Mohammadi, K.; Khanmohammadi, S.; Immonen, J.; Powell, K. Techno-economic analysis and environmental benefits of solar industrial process heating based on parabolic trough collectors. Sustain. Energy Technol. Assess. 2021, 47, 101412. [Google Scholar] [CrossRef]
- Jia, T.; Huang, J.; Li, R.; He, P.; Dai, Y. Status and prospect of solar heat for industrial processes in China. Renew. Sustain. Energy Rev. 2018, 90, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Guillaume, M.; Bunea, M.S.; Caflisch, M.; Rittmann-Frank, M.H.; Martin, J. Solar Heat in Industrial Processes in Switzerland—Theoretical Potential and Promising Sectors. In Proceedings of the International Conference on Solar Energy for Buildings and Industry (EuroSun 2018), Rapperswil-Jona, Switzerland, 10–13 September 2018. [Google Scholar]
- Vajen, K.; Lauterbach, C.; Schmitt, B. Solar heat for industrial processes—Potential, technologies and applications. In Proceedings of the International Conference on Solar energy for MENA region (INCOSOL), Amman, Jordan, 22–23 October 2012. [Google Scholar]
- Immonen, J.; Powell, K.M. Dynamic optimization with flexible heat integration of a solar parabolic trough collector plant with thermal energy storage used for industrial process heat. Energy Convers. Manag. 2022, 267, 115921. [Google Scholar] [CrossRef]
- Lauterbach, C.; Schmitt, B.; Vajen, K. Feasibility Assessment of Solar Process Heat Applications. In Proceedings of the ISES Solar World Congress, Kassel, Germany, 28 August–2 September 2011. [Google Scholar]
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Saidur, R. Solar process heat in industrial systems—A global review. Renew. Sustain. Energy Rev. 2018, 82, 2270–2286. [Google Scholar] [CrossRef] [Green Version]
- Pietruschka, D.; Fedrizzi, R.; Orioli, F.; Söll, R.; Stauss, R. Demonstration of Three Large Scale Solar Process Heat Applications with Different Solar Thermal Collector Technologies. Energy Procedia 2012, 30, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.; Islam, M. Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat. Renew. Energy 2021, 164, 656–673. [Google Scholar] [CrossRef]
- Meyers, S.; Schmitt, B.; Vajen, K. Techno-Economic Comparison of Solar Thermal and PV for Heat Generation in Industrial Processes. In Proceedings of the ISES Solar World Congress 2015, Daegu, Korea, 8–12 November 2015; pp. 1–10. [Google Scholar]
- Mohammed, A.; El Khashab, H. Solar Energy Technology Choice Development. E3S Web Conf. 2018, 64, 02003. [Google Scholar] [CrossRef]
- Gareiou, Z.; Drimili, E.; Zervas, E. Public acceptance of renewable energy sources. In Low Carbon Energy Technologies in Sustainable Energy Systems; Kyriakopoulos, G.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 309–327. [Google Scholar]
- Habchi, A.; Hartiti, B.; Labrim, H.; Fadili, S.; Benyoussef, A.; Belouaggadia, N.; Faddouli, A.; Ertuğrul, M.; Benaissa, M.; Ntsoenzok, E. Feasibility and Thermal/Electrical performance study of two smart hybrid systems combining parabolic trough collector with tubular thermoelectric generator. Energy Rep. 2021, 7, 1539–1559. [Google Scholar] [CrossRef]
- Nahar, A.; Hasanuzzaman, M.; Rahim, N.; Parvin, S. Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems. Renew. Energy 2019, 132, 284–295. [Google Scholar] [CrossRef]
- Rahman, M.; Hasanuzzaman, M.; Rahim, N. Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Tyagi, V.; Kaushik, S.; Tyagi, S. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew. Sustain. Energy Rev. 2012, 16, 1383–1398. [Google Scholar] [CrossRef]
- Fortuin, S.; Stryi-Hipp, G. Solar Collectorssolar collector, Non-concentratingsolar collectornon-concentrating. In Solar Energy; Richter, C., Lincot, D., Gueymard, C.A., Eds.; Springer: New York, NY, USA, 2013; pp. 378–398. [Google Scholar]
- Suman, S.; Khan, M.K.; Pathak, M. Performance enhancement of solar collectors—A review. Renew. Sustain. Energy Rev. 2015, 49, 192–210. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, G.N.; Tiwari, A.; Shyam (Eds.) Flat-Plate Collectors. In Handbook of Solar Energy: Theory, Analysis and Applications; Springer: Singapore, 2016; pp. 171–246. [Google Scholar]
- Ghazi, S.; Sayigh, A.; Ip, K. Dust effect on flat surfaces—A review paper. Renew. Sustain. Energy Rev. 2014, 33, 742–751. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kutscher, C.F.; Kreider, J.F. Design Approaches for Solar Industrial Process Heat Systems. J. Sol. Energy Eng. 1985, 107, 363–364. [Google Scholar] [CrossRef] [Green Version]
- Kalogirou, S. Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters. Sol. Energy 2009, 83, 39–48. [Google Scholar] [CrossRef]
- Sakhaei, S.A.; Valipour, M.S. Thermal performance analysis of a flat plate solar collector by utilizing helically corrugated risers: An experimental study. Sol. Energy 2020, 207, 235–246. [Google Scholar] [CrossRef]
- Hussein, A.K.; Li, D.; Kolsi, L.; Kata, S.; Sahoo, B. A Review of Nano Fluid Role to Improve the Performance of the Heat Pipe Solar Collectors. Energy Procedia 2017, 109, 417–424. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, K.M. Design of Evacuated Tube Solar Collector with Heat Pipe. Mater. Today: Proc. 2017, 4, 12641–12646. [Google Scholar] [CrossRef]
- Mishra, D.; Saikhedkar, N.K. A study and theoretical analysis of evacuated tube collectors as solar energy conversion device for water heating. Adv. Phys. Lett. 2014, 1, 26–35. [Google Scholar]
- Chandraprabu, V.; Solomon, G. Evacuated Tube Solar Collectors: A Review. Int. J. Sci. Eng. Res. 2018, 6, 138–141. [Google Scholar]
- Ghoneim, A.A.; Shabana, H.M.; Shaaban, M.S.; Mohammedein, A.M. Performance analysis of evacuated tube collector in hot climate. Eur. Int. J. Sci. Technol. 2016, 5, 8–20. [Google Scholar]
- Tiantian Zhang, H.Y. High Efficiency Plants and Building Integrated Renewable Energy Systems. In Handbook of Energy Efficiency in Buildings; Asdrubali, F., Desideri, U., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 441–595. [Google Scholar]
- Orosz, M.; Dickes, R. Solar thermal powered Organic Rankine Cycles. In Organic Rankine Cycle (ORC) Power Systems; Macchi, E., Astolfi, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 569–612. [Google Scholar]
- Kalogirou, S.A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- O’Gallagher, J.; Snail, K.; Winston, R.; Peek, C.; Garrison, J. A new evacuated CPC collector tube. Sol. Energy 1982, 29, 575–577. [Google Scholar] [CrossRef]
- Mills, D.R.; Giutronich, J.E. Asymmetrical non-imaging cylindrical solar concentrators. Sol. Energy 1978, 20, 45–55. [Google Scholar] [CrossRef]
- Garg, H.P. Solar Energy: Fundamentals and Applications; Tata McGraw-Hill Education: New York, NY, USA, 2000. [Google Scholar]
- Kalogirou, S.A. (Ed.) Solar Energy Collectors. In Solar Energy Engineering, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 125–220. [Google Scholar]
- Bellos, E.; Tzivanidis, C. A review of concentrating solar thermal collectors with and without nanofluids. J. Therm. Anal. 2018, 135, 763–786. [Google Scholar] [CrossRef]
- Guiqiang, L.; Gang, P.; Yuehong, S.; Yunyun, W.; Jie, J. Design and investigation of a novel lens-walled compound parabolic concentrator with air gap. Appl. Energy 2014, 125, 21–27. [Google Scholar] [CrossRef]
- Häberle, A. Concentrating solar technologies for industrial process heat and cooling. In Concentrating Solar Power Technology; Lovegrove, K., Stein, W., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 602–619. [Google Scholar]
- Di Fraia, S.; Figaj, R.D.; Filipowiczh, M.; Vanoli, L. Solar-Based Systems. In Polygeneration Systems; Calise, F., Dentice D’Accadia, M., Vanoli, L., Vicidomini, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 193–237. [Google Scholar]
- Kalogirou, S.; Lloyd, S.; Ward, J.; Eleftheriou, P. Design and performance characteristics of a parabolic-trough solar-collector system. Appl. Energy 1994, 47, 341–354. [Google Scholar] [CrossRef]
- Fernández-García, A.; Zarza, E.; Valenzuela, L.; Pérez, M. Parabolic-trough solar collectors and their applications. Renew. Sustain. Energy Rev. 2010, 14, 1695–1721. [Google Scholar] [CrossRef]
- Price, H.; Lupfert, E.; Kearney, D.; Zarza, E.; Cohen, G.; Gee, R.; Mahoney, R. Advances in Parabolic Trough Solar Power Technology. J. Sol. Energy Eng. 2002, 124, 109–125. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Ranjbar, A.A. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study. J. Mol. Liq. 2016, 222, 159–166. [Google Scholar] [CrossRef]
- Hijazi, H.; Mokhiamar, O.; Elsamni, O. Mechanical design of a low cost parabolic solar dish concentrator. Alex. Eng. J. 2016, 55, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Esfanjani, P.; Jahangiri, S.; Heidarian, A.; Valipour, M.S.; Rashidi, S. A review on solar-powered cooling systems coupled with parabolic dish collector and linear Fresnel reflector. Environ. Sci. Pollut. Res. 2022, 29, 42616–42646. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, B.; Chen, J. Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency. Renew. Energy 2007, 32, 856–867. [Google Scholar] [CrossRef]
- Tavakolpour, A.R.; Zomorodian, A.; Golneshan, A.A. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renew. Energy 2008, 33, 77–87. [Google Scholar] [CrossRef]
- Kedare, S.B.; Desai, N.B. Solar Thermal Process Heat. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Oxford, UK, 2017; pp. 367–376. [Google Scholar]
- Pandey, A.K.; Kumar, R.; Samykano, M. Solar Energy: Direct and Indirect Methods to Harvest Usable Energy. In Dye-Sensitized Solar Cells; Pandey, A.K., Shahabuddin, S., Ahmad, M.S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–24. [Google Scholar]
- Ahmadpour, A.; Dejamkhooy, A.; Shayeghi, H. Optimization and modelling of linear Fresnel reflector solar concentrator using various methods based on Monte Carlo Ray–Trace. Sol. Energy 2022, 245, 67–79. [Google Scholar] [CrossRef]
- Mills, D. Advances in solar thermal electricity technology. Sol. Energy 2004, 76, 19–31. [Google Scholar] [CrossRef]
- Barlev, D.; Vidu, R.; Stroeve, P. Innovation in concentrated solar power. Sol. Energy Mater. Sol. Cells 2011, 95, 2703–2725. [Google Scholar] [CrossRef]
- Muñoz, J.; Martínez-Val, J.M.; Ramos, A. Thermal regimes in solar-thermal linear collectors. Sol. Energy 2011, 85, 857–870. [Google Scholar] [CrossRef]
- Morin, G.; Dersch, J.; Platzer, W.; Eck, M.; Häberle, A. Comparison of Linear Fresnel and Parabolic Trough Collector power plants. Sol. Energy 2012, 86, 1–12. [Google Scholar] [CrossRef]
- Jones, S.A.; Lumia, R.; Davenport, R.; Thomas, R.C.; Gorman, D.; Kolb, G.J.; Donnelly, M.W. Heliostat Cost Reduction Study; Sandia National Laboratories: Albuquerque, NM, USA, 2007. [Google Scholar]
- Yadav, D.K. Central Tower Receiver Using Heliostat Mirrors. 2022. Available online: https://www.deepakkumaryadav.in/2021/11/Central%20Tower%20Receiver%20Using%20Heliostat%20Mirrors.html (accessed on 20 October 2022).
- Romero, M.; Buck, R.; Pacheco, J.E. An Update on Solar Central Receiver Systems, Projects, and Technologies. J. Sol. Energy Eng. 2002, 124, 98–108. [Google Scholar] [CrossRef]
- Imtiaz Hussain, M.; Ménézo, C.; Kim, J.-T. Advances in solar thermal harvesting technology based on surface solar absorption collectors: A review. Sol. Energy Mater. Sol. Cells 2018, 187, 123–139. [Google Scholar] [CrossRef]
- Wei, X.; Lu, Z.; Wang, Z.; Yu, W.; Zhang, H.; Yao, Z. A new method for the design of the heliostat field layout for solar tower power plant. Renew. Energy 2010, 35, 1970–1975. [Google Scholar] [CrossRef]
- Medrano, M.; Gil, A.; Martorell, I.; Potau, X.; Cabeza, L.F. State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renew. Sustain. Energy Rev. 2010, 14, 56–72. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Da Rosa, A.V.; Ordóñez, J.C. (Eds.) Solar Radiation. In Fundamentals of Renewable Energy Processes, 4th ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 519–576. [Google Scholar]
- Sundar, L.S.; Ramana, E.V.; Said, Z.; Punnaiah, V.; Mouli, K.V.C.; Sousa, A.C. Properties, heat transfer, energy efficiency and environmental emissions analysis of flat plate solar collector using nanodiamond nanofluids. Diam. Relat. Mater. 2020, 110, 108115. [Google Scholar] [CrossRef]
- Tasmin, N.; Farjana, S.H.; Hossain, R.; Golder, S.; Mahmud, M.A.P. Integration of Solar Process Heat in Industries: A Review. Clean Technol. 2022, 4, 97–131. [Google Scholar] [CrossRef]
- Irabatti, V.; Patil, Y.; Kore, S.; Barangule, V.; Kothe, A. Comprehensive review of spiral heat exchanger for diverse applications. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- McDonald, A.G.; Magande, H.L. Introduction to Thermo-Fluids Systems Design; Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 127–211. [Google Scholar]
- Jangid, S. Plate Type Heat Exchanger—A Review Study. IOSR J. Eng. 2018, 8, 11–18. [Google Scholar]
- Prasad, A.K.; Anand, K. Design Analysis of Shell Tube Type Heat Exchanger. Int. J. Eng. Res. 2020, 9, 524–539. [Google Scholar]
- Koca, T.; Citlak, A. Design and analysis of double-pipe heat exchanger using both helical and rotating inner pipe. Therm. Sci. 2021, 25, 1545–1559. [Google Scholar] [CrossRef]
- Kalogirou, S. The potential of solar industrial process heat applications. Appl. Energy 2003, 76, 337–361. [Google Scholar] [CrossRef]
- IRENA. What is SHIP? Available online: https://www.solar-payback.com/technology/ (accessed on 20 October 2022).
- Weiss, W.; Spörk-Dür, M. Solar Heat World Wide; Federal Ministry Republic of Austria: Vienna, Austria, 2022. [Google Scholar]
- Ramos, C.; Ramírez, R.; Beltran, J. Potential Assessment in Mexico for Solar Process Heat Applications in Food and Textile Industries. Energy Procedia 2014, 49, 1879–1884. [Google Scholar] [CrossRef]
- Muller, H. Solar Process Heat in the Food Industry—Methodological Analysis and Design of a Sustainable Process Heat Supply System in a Brewery and a Dairy. Ph. D. Thesis, De Montfort University Leicester, Leicester, UK, 2016. [Google Scholar]
- Benz, N.; Gut, M.; Beikircher, T.; Ruß, W. Solar process heat with non-concentrating collectors for food industry. ISES Solar World Congress 2000, 1, 131–136. [Google Scholar]
- Zahler, C.; Iglauer, O. Solar Process Heat for Sustainable Automobile Manufacturing. Energy Procedia 2012, 30, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Aladmin. Solar Process Heat for Paintshops. Available online: https://www.automotivemanufacturingsolutions.com/solar-process-heat-for-paintshops/31633.article (accessed on 20 October 2022).
- Uppal, A.; Kesari, J.P. Solar industrial process heat in indian automobile industry. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2015, 4, 117–123. [Google Scholar]
- Szabó, L.; Soria, A.; Forsström, J.; Keränen, J.; Hytönen, E. A world model of the pulp and paper industry: Demand, energy consumption and emission scenarios to 2030. Environ. Sci. Policy 2009, 12, 257–269. [Google Scholar] [CrossRef]
- Indian Network for Climate Change Assessment. India: Greenhouse Gas Emissions 2007; Ministry of Environment and Forests: New Delhi, India, 2010. [Google Scholar]
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. Potential of solar energy utilization for process heating in paper industry in India: A preliminary assessment. Energy Procedia 2015, 79, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. Carbon mitigation potential of solar industrial process heating: Paper industry in India. J. Clean. Prod. 2016, 112, 1683–1691. [Google Scholar] [CrossRef]
- Kedare, S.B. Performance of ARUNTM 160 Concentrating Solar Collector Installed at Latur for Milk Pasteurisation. SESI J. 2008, 18, 1–9. [Google Scholar]
- Fernández-García, A.; Rojas, E.; Pérez, M.; Silva, R.; Hernández-Escobedo, Q.; Manzano-Agugliaro, F. A parabolic-trough collector for cleaner industrial process heat. J. Clean. Prod. 2015, 89, 272–285. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. Potential of solar industrial process heating in dairy industry in India and consequent carbon mitigation. J. Clean. Prod. 2017, 140, 714–724. [Google Scholar] [CrossRef]
- Kumara, P.; Bhuddi, D.; Gupta, M.K.; Sinha, K.K. Process mapping of textile sector for concentrating solar thermal technology intervention. J. Environ. Sci. Technol. 2020, 6, 10–23. [Google Scholar]
- Bullon, J.; González Arrieta, M.A.; Hernández Encinas, A.; Queiruga Dios, A. Manufacturing processes in the textile industry. Expert Systems for fabrics production. Adv. Distrib. Comput. Artif. Intell. J. 2017, 6, 15. [Google Scholar]
- Galitsky, C.; Chang, S.-C.; Worrell, E.; Masanet, E. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008; Available online: https://escholarship.org/uc/item/9zw158vm (accessed on 14 October 2022).
- Haagen, M.; Zahler, C.; Zimmermann, E.; Al-Najami, M.M. Solar Process Steam for Pharmaceutical Industry in Jordan. Energy Procedia 2015, 70, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Mehrdadi, N.; Nasrabadi, T.; Hoveydi, H.; Joshi, S. Aplication of solar energy for drying of sludge from pharmaceutical industrial waste water and probable reuse. Int. J. Environ. Res. 2007, 1, 42–48. [Google Scholar]
- Solar Thermal Plants Database. Available online: http://ship-plants.info/solar-thermal-plants (accessed on 12 October 2022).
- Norton, B. Industrial and Agricultural Applications of Solar Heat. Compr. Renew. Energy 2012, 3, 567–594. [Google Scholar]
- Myhre, G.; Shindell, D.; Pongratz, J. Anthropogenic and Natural Radiative Forcing; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 300. [Google Scholar] [CrossRef]
- Tyagi, V.; Panwar, N.; Rahim, N.; Kothari, R. Review on solar air heating system with and without thermal energy storage system. Renew. Sustain. Energy Rev. 2012, 16, 2289–2303. [Google Scholar] [CrossRef]
- Chaysaz, A.; Seyedi, S.R.M.; Motevali, A. Effects of different greenhouse coverings on energy parameters of a photovoltaic–thermal solar system. Sol. Energy 2019, 194, 519–529. [Google Scholar] [CrossRef]
- Fabrizio, E. Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy Build. 2012, 53, 57–63. [Google Scholar] [CrossRef]
- Vadiee, A. Solar Heating and Cooling Applications in agriculture and Food Processing Systems. In Solar Energy Advancements in Agriculture and Food Production Systems; Gorjian, S., Campana, P.E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 237–270. [Google Scholar]
- Baig, M.H.; Surovtseva, D.; Halawa, E. The Potential of Concentrated Solar Power for Remote Mine Sites in the Northern Territory, Australia. J. Sol. Energy 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hockaday, S.; Dinter, F.; Harms, T. Opportunities for Concentrated Solar Thermal Heat in the Minerals Processing Industry. In Proceedings of the 4th Southern African Solar Energy Conference, Stellenbosch, South Africa, 31 October–2 November 2016. [Google Scholar]
- Database for Applications of Solar Heat Integration in Industrial Processes. 2022. Available online: http://ship-plants.info (accessed on 17 October 2022).
- Farjana, S.H.; Huda, N.; Mahmud, M.P. Life cycle analysis of copper-gold-lead-silver-zinc beneficiation process. Sci. Total Environ. 2018, 659, 41–52. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Lang, C. Comparative life-cycle assessment of uranium extraction processes. J. Clean. Prod. 2018, 202, 666–683. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Lang, C. Impact analysis of goldsilver refining processes through life-cycle assessment. J. Clean. Prod. 2019, 228, 867–881. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P.; Lang, C. Towards sustainable TiO2 production: An investigation of environmental impacts of ilmenite and rutile processing routes in Australia. J. Clean. Prod. 2018, 196, 1016–1025. [Google Scholar] [CrossRef]
- Agrawal, R.; Gunopulos, D.; Leymann, F. Mining Process Models from Workflow Logs. In Advances in Database Technology—EDBT’98; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Florides, G.; Tassou, S.; Kalogirou, S.; Wrobel, L. Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 2002, 6, 557–572. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, R.; Deng, S.; Tan, Y.; Liu, Y. Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture. Int. J. Greenh. Gas Control 2014, 31, 77–86. [Google Scholar] [CrossRef]
- Tanaka, Y.; Hasanuzzaman, M. A review of global current techniques and evaluation methods of photocatalytic CO2 reduction. Inst. Eng. Technol. 2018, 42, 6–42. [Google Scholar]
- Tlili, N.; Grévillot, G.; Vallières, C. Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenh. Gas Control 2009, 3, 519–527. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, S.; Zhao, R.; He, J.; Zhao, L. Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts. Renew. Sustain. Energy Rev. 2017, 77, 652–669. [Google Scholar] [CrossRef]
- Bellevrat, E.; West, K. Clean and Efficient Heat for Industry. Available online: https://www.iea.org/commentaries/clean-and-efficient-heat-for-industry (accessed on 20 October 2022).
- Vannoni, C.; Battisti, R.; Drigo, S. Potential for solar heat in industrial processes. IEA SHC Task 2008, 33, 174. [Google Scholar]
- Santos, J.J.C.S.; Palacio, J.C.E.; Reyes, A.M.M.; Carvalho, M.; Freire, A.J.R.; Barone, M.A. Concentrating Solar Power. In Advances in Renewable Energies and Power Technologies; Yahyaoui, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 373–402. [Google Scholar]
- Elbahjaoui, R.; El Qarnia, H. Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. Int. J. Hydrogen Energy 2018, 44, 2013–2028. [Google Scholar] [CrossRef]
- Lauterbach, C.; Schmitt, B.; Jordan, U.; Vajen, K. The potential of solar heat for industrial processes in Germany. Renew. Sustain. Energy Rev. 2012, 16, 5121–5130. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, C.-Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 2012, 92, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Wu, Z. Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Sol. Energy Mater. Sol. Cells 2011, 95, 3341–3346. [Google Scholar] [CrossRef]
- Solar, P. Survey of Thermal Storage for Parabolic Trough Power Plants Period of Performance: Survey of Thermal Storage for Parabolic Trough Power Plants Period of Performance; Pilkington Solar International GmbH: Cologne, Germany, 2000. [Google Scholar]
- Kumar, A.; Shukla, S. A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application. Energy Procedia 2015, 74, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Crespo, A.; Barreneche, C.; Ibarra, M.; Platzer, W. Latent thermal energy storage for solar process heat applications at medium-high temperatures—A review. Sol. Energy 2018, 192, 3–34. [Google Scholar] [CrossRef]
- Hailu, G. Energy systems in buildings. In Energy Services Fundamentals and Financing; Borge-Diez, D., Rosales-Asensio, E., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 181–209. [Google Scholar]
- De Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Kasaeian, A.; Bahrami, L.; Pourfayaz, F.; Khodabandeh, E.; Yan, W.-M. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy Build. 2017, 154, 96–112. [Google Scholar] [CrossRef]
- Yan, T.; Wang, R.; Li, T.; Wang, L.; Fred, I.T. A review of promising candidate reactions for chemical heat storage. Renew. Sustain. Energy Rev. 2014, 43, 13–31. [Google Scholar] [CrossRef]
- Kerskes, H. Thermochemical Energy Storage. In Storing Energy; Letcher, T.M., Ed.; Elsevier: Oxford UK, 2016; pp. 345–372. [Google Scholar]
- Tian, Y.; Zhao, C. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef]
- Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. A review on high temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev. 2014, 32, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Ervin, G. Solar heat storage using chemical reactions. J. Solid State Chem. 1977, 22, 51–61. [Google Scholar] [CrossRef]
- Wentworth, W.; Chen, E. Simple thermal decomposition reactions for storage of solar thermal energy. Sol. Energy 1976, 18, 205–214. [Google Scholar] [CrossRef]
- Aydin, D.; Casey, S.P.; Riffat, S. The latest advancements on thermochemical heat storage systems. Renew. Sustain. Energy Rev. 2015, 41, 356–367. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Hussain, M.M.; Dincer, I.; Zubair, S.M. A feasibility study of using thermal energy storage in a conventional air-conditioning system. Int. J. Energy Res. 2004, 28, 955–967. [Google Scholar] [CrossRef]
- Alva, G.; Liu, L.; Huang, X.; Fang, G. Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 2017, 68, 693–706. [Google Scholar] [CrossRef]
- Ward, P.A.; Corgnale, C.; Teprovich, J.A.; Motyka, T.; Hardy, B.; Sheppard, D.; Buckley, C.; Zidan, R. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems. Appl. Phys. A 2016, 122, 462. [Google Scholar] [CrossRef]
- Drissi, S.; Ling, T.-C.; Mo, K.H. Development of leak-free phase change material aggregates. Constr. Build. Mater. 2019, 230, 117029. [Google Scholar] [CrossRef]
Collector Types | Operating Temperature (°C) | Absorber | |
---|---|---|---|
Non-Concentrating | FPC | 30–80 | Flat |
ETC | 50–200 | Flat | |
CPC | 60–240 | Tubular | |
Concentrating | PTC | 60–300 | Tubular |
PDR | 100–1500 | Point | |
LFR | 60–250 | Tubular | |
HFR | 150–2000 | Point |
Process | Temp. (°C) | Process | Temp. (°C) |
---|---|---|---|
Drying | 40–200 | washing | 30–80 |
Blanching | 60–110 | cooling | 80–100 |
Pasteurization | 60–140 | Scalding | 45–90 |
Space Heating | 30–70 | Evaporating | 40–130 |
Thickening | 110–130 | cooking | 70–120 |
cleaning | 60–90 | Sterilization | 100–140 |
smoking | 20–85 | Pre-Heating | 20–40 |
Process | Temp. (°C) |
---|---|
Cleaning | 90 |
Zinc Phosphating | 80 |
Drying | 90 |
Drying of molds | 100 |
Tempering | 200 |
Paint conditioning | 40 |
Paint curing | 200 |
Paint Drying | 100 |
Process | Temp. (°C) |
---|---|
Pulp preparation | 120–170 |
De-Inking | 60–90 |
Bleaching | 120–150 |
Paper drying | 90–200 |
Process | Temp. (°C) |
---|---|
De sizing | 60–90 |
Mercerization | 60–70 |
Dyeing | 70–90 |
Bleaching | 90–95 |
Scouring | 60–110 |
Finishing | 40–110 |
Process | Heating | Cooling |
---|---|---|
Sterilization | ✓ | |
Chemical synthesis | ✓ | ✓ |
Extraction | ✓ | ✓ |
Coating | ✓ | ✓ |
Granulation | ✓ | ✓ |
Fermentation | ✓ | ✓ |
Process | Temp. (°C) |
---|---|
Biochemical Reactions | 20–60 |
Distillation | 100–200 |
Filtration | 70–90 |
Pre-heating to boiler | 30–80 |
Ancillary processes | 120–180 |
Process | Temp. (°C) |
---|---|
Drying | 80 |
Cleaning | 60 |
Water Heating | 90 |
Process | Temp. (°C) |
---|---|
Cleaning | 60 |
Electroextraction | 50 |
Other processes | 80 |
STES | Material | Density (kg/m3) | Specific Heat | Latent Heat | Chemical Enthalpy |
---|---|---|---|---|---|
Sensible | Concrete | 2240 | 1.13 | - | |
Soil | 1300 | 0.46 | - | - | |
Brick | 1600 | 0.84 | - | - | |
Rock | 2240 | 0.9 | - | - | |
Latent | Paraffin Wax | 1802 | - | 1704 | - |
Thermochemical | Silica gel | 600 | 1.13 | - | 1380 |
Zeolite | 650 | 1.07 | - | 1107 | |
CaCl.H2O | 2100 | 3.06 | - | 433 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, L.; Ahmed, J.; El Haj Assad, M.; Hasanuzzaman, M. Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies 2022, 15, 8501. https://doi.org/10.3390/en15228501
Kumar L, Ahmed J, El Haj Assad M, Hasanuzzaman M. Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies. 2022; 15(22):8501. https://doi.org/10.3390/en15228501
Chicago/Turabian StyleKumar, Laveet, Junaid Ahmed, Mamdouh El Haj Assad, and M. Hasanuzzaman. 2022. "Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review" Energies 15, no. 22: 8501. https://doi.org/10.3390/en15228501
APA StyleKumar, L., Ahmed, J., El Haj Assad, M., & Hasanuzzaman, M. (2022). Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies, 15(22), 8501. https://doi.org/10.3390/en15228501