Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage
Abstract
:1. Introduction
- ▪
- low reduction temperatures;
- ▪
- high re-oxidation rates;
- ▪
- high oxygen capacities (δ);
- ▪
- good stability over cycles.
2. Materials and Methods
2.1. Oxygen Carrier
2.2. Experiments under Fixed-Bed Conditions
- Temperature-Programmed Reduction (TPR) from 25 to 1000 °C at 10 °C/min with CH4
- Temperature-Programmed Oxidation (TPO) from 550 to 1000 °C at 10 °C/min with CO2
- Isothermal cycles with CO2 as oxidizer at 860, 920, and 1000 °C
- Isothermal cycles with H2O as oxidizer at 920 °C
2.3. Experiments under Fluidized-Bed Conditions
3. Results and Discussion
3.1. Fixed-Bed Experiments
3.2. Fluidized-Bed Experiments
3.3. Comparison between Fixed- and Fluidized-Bed Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gil, A.; Medrano, M.; Martorell, I.; Lazaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Valero, A.; Valero, A.; Calvo, G.; Ortego, A. Material Bottlenecks in the Future Development of Green Technologies. Renew. Sustain. Energy Rev. 2018, 93, 178–200. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- André, L.; Abanades, S.; Flamant, G. Screening of Thermochemical Systems Based on Solid-Gas Reversible Reactions for High Temperature Solar Thermal Energy Storage. Renew. Sustain. Energy Rev. 2016, 64, 703–715. [Google Scholar] [CrossRef]
- Carrillo, A.J.; González-Aguilar, J.; Romero, M.; Coronado, J.M. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem. Rev. 2019, 119, 4777–4816. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Sattler, C. A Review on Solar Thermal Syngas Production via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285. [Google Scholar] [CrossRef]
- Krenzke, P.T.; Fosheim, J.R.; Davidson, J.H. Solar Fuels via Chemical-Looping Reforming. Sol. Energy 2017, 156, 48–72. [Google Scholar] [CrossRef]
- Roeb, M.; Neises, M.; Monnerie, N.; Call, F.; Simon, H.; Sattler, C.; Schmücker, M.; Pitz-Paal, R. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review. Materials 2012, 5, 2015–2054. [Google Scholar] [CrossRef] [Green Version]
- Scheffe, J.R.; Steinfeld, A. Oxygen Exchange Materials for Solar Thermochemical Splitting of H2O and CO2: A Review. Mater. Today 2014, 17, 341–348. [Google Scholar] [CrossRef]
- Steinfeld, A. Solar Hydrogen Production via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions. Int. J. Hydrogen Energy 2002, 27, 611–619. [Google Scholar] [CrossRef]
- Alxneit, I. Assessing the Feasibility of Separating a Stoichiometric Mixture of Zinc Vapor and Oxygen by a Fast Quench—Model Calculations. Sol. Energy 2008, 82, 959–964. [Google Scholar] [CrossRef]
- Steinfeld, A.; Brack, M.; Meier, A.; Weidenkaff, A.; Wuillemin, D. A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas. Energy 1998, 23, 803–814. [Google Scholar] [CrossRef]
- Osinga, T.; Frommherz, U.; Steinfeld, A.; Wieckert, C. Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor. J. Sol. Energy Eng. 2004, 126, 633–637. [Google Scholar] [CrossRef]
- Nakamura, T. Hydrogen Production from Water Utilizing Solar Heat at High Temperatures. Sol. Energy 1977, 19, 467–475. [Google Scholar] [CrossRef]
- Ehrensberger, K.; Frei, A.; Kuhn, P.; Oswald, H.R.; Hug, P. Comparative Experimental Investigations of the Water-Splitting Reaction with Iron Oxide Fe1−YO and Iron Manganese Oxides (Fe1−XMnx)1−YO. Solid State Ionics 1995, 78, 151–160. [Google Scholar] [CrossRef]
- Tamaura, Y.; Kojima, N.; Hasegawa, N.; Inoue, M.; Uehara, R.; Gokon, N.; Kaneko, H. Stoichiometric Studies of H2 Generation Reaction for H2O/Zn/Fe3O4 System. Int. J. Hydrogen Energy 2001, 26, 917–922. [Google Scholar] [CrossRef]
- Gokon, N.; Mataga, T.; Kondo, N.; Kodama, T. Thermochemical Two-Step Water Splitting by Internally Circulating Fluidized Bed of NiFe2O4 Particles: Successive Reaction of Thermal-Reduction and Water-Decomposition Steps. Int. J. Hydrogen Energy 2011, 36, 4757–4767. [Google Scholar] [CrossRef]
- Muhich, C.L.; Ehrhart, B.D.; Witte, V.A.; Miller, S.L.; Coker, E.N.; Musgrave, C.B.; Weimer, A.W. Predicting the Solar Thermochemical Water Splitting Ability and Reaction Mechanism of Metal Oxides: A Case Study of the Hercynite Family of Water Splitting Cycles. Energy Environ. Sci. 2015, 8, 3687–3699. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Weibel, D.; Steinfeld, A. Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2. Energy Fuels 2013, 27, 4250–4257. [Google Scholar] [CrossRef]
- Panlener, R.J.; Garnier, J.E.; Blumenthal, R.N. A Thermodynamic Study of Nonstoichiometric Cerium Dioxide. J. Phys. Chem. Solids 1976, 37, 368–378. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Steinfeld, A. Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production. Energy Fuels 2012, 26, 1928–1936. [Google Scholar] [CrossRef]
- Luciani, G.; Landi, G.; Imparato, C.; Vitiello, G.; Deorsola, F.A.; Di Benedetto, A.; Aronne, A. Improvement of Splitting Performance of Ce0.75Zr0.25O2 Material: Tuning Bulk and Surface Properties by Hydrothermal Synthesis. Int. J. Hydrogen Energy 2019, 44, 17565–17577. [Google Scholar] [CrossRef]
- Luciani, G.; Landi, G.; Aronne, A.; Di Benedetto, A. Partial Substitution of B Cation in La0.6Sr0.4MnO3 Perovskites: A Promising Strategy to Improve the Redox Properties Useful for Solar Thermochemical Water and Carbon Dioxide Splitting. Sol. Energy 2018, 171, 1–7. [Google Scholar] [CrossRef]
- Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct Partial Oxidation of Methane to Synthesis Gas by Cerium Oxide. J. Catal. 1998, 175, 152–160. [Google Scholar] [CrossRef]
- Pantu, P.; Kim, K.; Gavalas, G.R. Methane Partial Oxidation on Pt/CeO2–ZrO2 in the Absence of Gaseous Oxygen. Appl. Catal. A Gen. 2000, 193, 203–214. [Google Scholar] [CrossRef]
- Nalbandian, L.; Evdou, A.; Zaspalis, V. La1−XSrxMO3 (M = Mn, Fe) Perovskites as Materials for Thermochemical Hydrogen Production in Conventional and Membrane Reactors. Int. J. Hydrogen Energy 2009, 34, 7162–7172. [Google Scholar] [CrossRef]
- Iftikhar, S.; Martin, W.; Gao, Y.; Yu, X.; Wang, I.; Wu, Z.; Li, F. LaNixFe1−xO3 as Flexible Oxygen or Carbon Carriers for Tunable Syngas Production and CO2 Utilization. Catal. Today 2022, in Press. [Google Scholar] [CrossRef]
- Evdou, A.; Zaspalis, V.; Nalbandian, L. La(1−x)SrxMnO3−δ Perovskites as Redox Materials for the Production of High Purity Hydrogen. Int. J. Hydrogen Energy 2008, 33, 5554–5562. [Google Scholar] [CrossRef]
- Evdou, A.; Zaspalis, V.; Nalbandian, L. La1−XSrxFeO3−δ Perovskites as Redox Materials for Application in a Membrane Reactor for Simultaneous Production of Pure Hydrogen and Synthesis Gas. Fuel 2010, 89, 1265–1273. [Google Scholar] [CrossRef]
- Donat, F.; Xu, Y.; Müller, C.R. Combined Partial Oxidation of Methane to Synthesis Gas and Production of Hydrogen or Carbon Monoxide in a Fluidized Bed Using Lattice Oxygen. Energy Technol. 2020, 8, 1900655. [Google Scholar] [CrossRef]
- Zsembinszki, G.; Sole, A.; Barreneche, C.; Prieto, C.; Fernández, A.I.; Cabeza, L.F. Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants. Energies 2018, 11, 2358. [Google Scholar] [CrossRef] [Green Version]
- Almendros-Ibáñez, J.A.; Fernández-Torrijos, M.; Díaz-Heras, M.; Belmonte, J.F.; Sobrino, C. A Review of Solar Thermal Energy Storage in Beds of Particles: Packed and Fluidized Beds. Sol. Energy 2019, 192, 193–237. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Scheffe, J.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A. Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2. Energy Fuels 2015, 29, 3241–3250. [Google Scholar] [CrossRef]
- Guene Lougou, B.; Shuai, Y.; Zhang, H.; Ahouannou, C.; Zhao, J.; Kounouhewa, B.B.; Tan, H. Thermochemical CO2 Reduction over NiFe2O4@alumina Filled Reactor Heated by High-Flux Solar Simulator. Energy 2020, 197, 117267. [Google Scholar] [CrossRef]
- Tescari, S.; Singh, A.; Agrafiotis, C.; de Oliveira, L.; Breuer, S.; Schlögl-Knothe, B.; Roeb, M.; Sattler, C. Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant. Appl. Energy 2017, 189, 66–75. [Google Scholar] [CrossRef]
- Tregambi, C.; Troiano, M.; Montagnaro, F.; Solimene, R.; Salatino, P. Fluidized Beds for Concentrated Solar Thermal Technologies—A Review. Front. Energy Res. 2021, 9, 618421. [Google Scholar] [CrossRef]
- Chuayboon, S.; Abanades, S.; Rodat, S. Insights into the Influence of Biomass Feedstock Type, Particle Size and Feeding Rate on Thermochemical Performances of a Continuous Solar Gasification Reactor. Renew. Energy 2019, 130, 360–370. [Google Scholar] [CrossRef]
- Gokon, N.; Kumaki, S.; Miyaguchi, Y.; Bellan, S.; Kodama, T.; Cho, H. Development of a 5kWth Internally Circulating Fluidized Bed Reactor Containing Quartz Sand for Continuously-Fed Coal-Coke Gasification and a Beam-down Solar Concentrating System. Energy 2019, 166, 1–16. [Google Scholar] [CrossRef]
- Hoskins, A.L.; Millican, S.L.; Czernik, C.E.; Alshankiti, I.; Netter, J.C.; Wendelin, T.J.; Musgrave, C.B.; Weimer, A.W. Continuous On-Sun Solar Thermochemical Hydrogen Production via an Isothermal Redox Cycle. Appl. Energy 2019, 249, 368–376. [Google Scholar] [CrossRef]
- Zhang, H.; Benoit, H.; Perez-Lopèz, I.; Flamant, G.; Tan, T.; Baeyens, J. High-Efficiency Solar Power Towers Using Particle Suspensions as Heat Carrier in the Receiver and in the Thermal Energy Storage. Renew. Energy 2017, 111, 438–446. [Google Scholar] [CrossRef]
- Miller, D.C.; Pfutzner, C.J.; Jackson, G.S. Heat Transfer in Counterflow Fluidized Bed of Oxide Particles for Thermal Energy Storage. Int. J. Heat Mass Transf. 2018, 126, 730–745. [Google Scholar] [CrossRef]
- Tregambi, C.; Bevilacqua, C.; Troiano, M.; Solimene, R.; Salatino, P. A Novel Autothermal Fluidized Bed Reactor for Concentrated Solar Thermal Applications. Chem. Eng. J. 2020, 398, 125702. [Google Scholar] [CrossRef]
- Tregambi, C.; Padula, S.; Galbusieri, M.; Coppola, G.; Montagnaro, F.; Salatino, P.; Troiano, M.; Solimene, R. Directly Irradiated Fluidized Bed Reactor for Thermochemical Energy Storage and Solar Fuels Production. Powder Technol. 2020, 366, 460–469. [Google Scholar] [CrossRef]
- Padula, S.; Tregambi, C.; Solimene, R.; Chirone, R.; Troiano, M.; Salatino, P. A Novel Fluidized Bed “ Thermochemical Battery ” for Energy Storage in Concentrated Solar Thermal Technologies. Energy Convers. Manag. 2021, 236, 113994. [Google Scholar] [CrossRef]
- Kong, W.; Wang, B.; Baeyens, J.; Li, S.; Ke, H.; Tan, T.; Zhang, H. Solids Mixing in a Shallow Cross-Flow Bubbling Fluidized Bed. Chem. Eng. Sci. 2018, 187, 213–222. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padula, S.; Tregambi, C.; Troiano, M.; Di Benedetto, A.; Salatino, P.; Landi, G.; Solimene, R. Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage. Energies 2022, 15, 8556. https://doi.org/10.3390/en15228556
Padula S, Tregambi C, Troiano M, Di Benedetto A, Salatino P, Landi G, Solimene R. Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage. Energies. 2022; 15(22):8556. https://doi.org/10.3390/en15228556
Chicago/Turabian StylePadula, Stefano, Claudio Tregambi, Maurizio Troiano, Almerinda Di Benedetto, Piero Salatino, Gianluca Landi, and Roberto Solimene. 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage" Energies 15, no. 22: 8556. https://doi.org/10.3390/en15228556
APA StylePadula, S., Tregambi, C., Troiano, M., Di Benedetto, A., Salatino, P., Landi, G., & Solimene, R. (2022). Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage. Energies, 15(22), 8556. https://doi.org/10.3390/en15228556