Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation
Abstract
:1. Introduction
2. Mathematical Model
2.1. Photovoltaic System (PV)
2.2. Wind Generation (WG)
2.3. Load Frequency Control (LFC)
2.4. Automatic Voltage Regulator with Power System Stabilization
3. Problem Formulation
4. Optimization Algorithm
5. Case Study
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Gallegos, C.D.; Gandhi, O.; Yang, D.; Alvarez-Alvarado, M.S.; Zhang, W.; Reindl, T.; Panda, S.K. A siting and sizing optimization approach for PV–battery–diesel hybrid systems. IEEE Trans. Ind. Appl. 2017, 54, 2637–2645. [Google Scholar] [CrossRef]
- Recalde, A.A.; Alvarez-Alvarado, M.S. Design optimization for reliability improvement in microgrids with wind–tidal–photovoltaic generation. Electr. Power Syst. Res. 2020, 188, 106540. [Google Scholar] [CrossRef]
- Enslin, J.H.R. Network impacts of high penetration of photovoltaic solar power systems. In Proceedings of the IEEE Power and Energy Society General Meeting, Minneapolis, MI, USA, 25–29 July 2010; pp. 1–5. [Google Scholar]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Lannoye, E.; Flynn, D.; O’Malley, M. Evaluation of power system flexibility. IEEE Trans. Power Syst. 2012, 27, 922–931. [Google Scholar] [CrossRef]
- Alvarez-Alvarado, M.S.; Donaldson, D.L.; Recalde, A.A.; Noriega, H.H.; Khan, Z.A.; Velasquez, W.; Rodriguez-Gallegos, C.D. Power System Reliability and Maintenance Evolution: A Critical Review and Future Perspectives. IEEE Access 2022, 10, 51922–51950. [Google Scholar] [CrossRef]
- Gandhi, O.; Kumar, D.S.; Rodríguez-Gallegos, C.D.; Srinivasan, D. Review of power system impacts at high PV penetration Part I: Factors limiting PV penetration. Sol. Energy 2020, 210, 181–201. [Google Scholar] [CrossRef]
- Kumar, D.S.; Gandhi, O.; Rodríguez-Gallegos, C.D.; Srinivasan, D. Review of power system impacts at high PV penetration Part II: Potential solutions and the way forward. Sol. Energy 2020, 210, 202–221. [Google Scholar]
- Prasad Reddy, P.D.; Veera Reddy, V.C.; Manohar, T.G. Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms. J. Electr. Syst. Inf. Technol. 2018, 5, 175–191. [Google Scholar]
- Hamida, I.B.; Salah, S.B.; Msahli, F.; Mimouni, M.F. Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs. Renew. Energy 2018, 121, 66–80. [Google Scholar] [CrossRef]
- Min, D.; Ryu, J.; Choi, D.G. Effects of the move towards renewables on the power system reliability and flexibility in South Korea. Energy Rep. 2020, 6, 406–417. [Google Scholar] [CrossRef]
- Rai, A.; Nunn, O. On the impact of increasing penetration of variable renewables on electricity spot price extremes in Australia. Econ. Anal. Policy 2020, 67, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59. [Google Scholar] [CrossRef]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strateg. Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Mohandes, B.; El Moursi, M.S.; Hatziargyriou, N.; El Khatib, S. A review of power system flexibility with high penetration of renewables. IEEE Trans. Power Syst. 2019, 34, 3140–3155. [Google Scholar] [CrossRef]
- Sajadi, A.; Strezoski, L.; Strezoski, V.; Prica, M.; Loparo, K.A. Integration of renewable energy systems and challenges for dynamics, control, and automation of electrical power systems. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e321. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A.; Abdelaziz, A.Y. Equilibrium optimization algorithm for network reconfiguration and distributed generation allocation in power systems. Appl. Soft Comput. 2021, 98, 106867. [Google Scholar] [CrossRef]
- Aman, M.M.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A. Optimal placement and sizing of a DG based on a new power stability index and line losses. Int. J. Electr. Power Energy Syst. 2012, 43, 1296–1304. [Google Scholar] [CrossRef]
- Kamel, S.; Awad, A.; Abdel-Mawgoud, H.; Jurado, F. Optimal DG allocation for enhancing voltage stability and minimizing power loss using hybrid gray Wolf optimizer. Turkish J. Electr. Eng. Comput. Sci. 2019, 27, 2947–2961. [Google Scholar] [CrossRef]
- Cipriano, D.; Rengifo, J.; Aller, J.M. Transient stability evaluation of high penetration of DFIG controlled by DTC and DPC into power systems. In Proceedings of the 2018 IEEE 3rd Ecuador Technical Chapters Meeting ETCM, Cuenca, Ecuador, 15–19 October 2018; pp. 1–6. [Google Scholar]
- Maleki, A.; Askarzadeh, A. Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept. Sol. Energy 2014, 107, 227–235. [Google Scholar] [CrossRef]
- Maleki, A.; Askarzadeh, A. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustain. Energy Technol. Assess. 2014, 7, 147–153. [Google Scholar] [CrossRef]
- Tungadio, D.H.; Sun, Y. Load frequency controllers considering renewable energy integration in power system. Energy Rep. 2019, 5, 436–453. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control—Prabha Kundur; McGraw-Hill Education: New York, NY, USA, 1994; p. 1176. [Google Scholar]
- IEEE Std 421.5-2016; (Revision of IEEE Std 421.5-2005): IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE: Piscataway, NJ, USA, 2016; Volume 2016.
- Eriksson, R.; Modig, N.; Elkington, K. Synthetic inertia versus fast frequency response: A definition. IET Renew. Power Gener. 2018, 12, 507–514. [Google Scholar] [CrossRef]
- Sun, M.; Liu, G.; Popov, M.; Terzija, V.; Azizi, S. Underfrequency load shedding using locally estimated RoCoF of the center of inertia. IEEE Trans. Power Syst. 2021, 36, 4212–4222. [Google Scholar] [CrossRef]
- Barboza, A.B.V.; Mohan, S.; Dinesha, P. On reducing the emissions of CO, HC, and NOx from gasoline blended with hydrogen peroxide and ethanol: Optimization study aided with ANN-PSO. Environ. Pollut. 2022, 310, 119866. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A. Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 2018, 23, 718–731. [Google Scholar] [CrossRef]
- Shaukat, N.; Ahmad, A.; Mohsin, B.; Khan, R.; Khan, S.U.-D.; Khan, S.U.-D. Multiobjective Core Reloading Pattern Optimization of PARR-1 Using Modified Genetic Algorithm Coupled with Monte Carlo Methods. Sci. Technol. Nucl. Install. 2021, 2021, 1802492. [Google Scholar] [CrossRef]
- Bai, Q. Analysis of Particle Swarm Optimization Algorithm. Comput. Inf. Sci. 2010, 3, 180. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Alvarado, M.S.; Alban-Chacón, F.E.; Lamilla-Rubio, E.A.; Rodríguez-Gallegos, C.D.; Velásquez, W. Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields. Sci. Rep. 2022, 11, 11655. [Google Scholar] [CrossRef]
- Alvarez-Alvarado, M.S.; Rodríguez-Gallegos, C.D.; Jayaweera, D. Optimal planning and operation of static VAR compensators in a distribution system with non-linear loads. IET Gener. Transm. Distrib. 2018, 12, 3726–3735. [Google Scholar] [CrossRef]
- Athay, T.; Podmore, R. A practical method for the direct analysis of transient stability. IEEE Trans. Power Appar. Syst. 1979, 2, 573–584. [Google Scholar] [CrossRef]
- Pai, M.A. Energy Function Analysis for Power System Stability; Kluwer Academic Publishers: Boston, MA, USA, 2012. [Google Scholar]
- Elkhidir, L.; Khan, K.; Al-Muhaini, M.; Khalid, M. Enhancing Transient Response and Voltage Stability of Renewable Integrated Microgrids. Sustainbility 2022, 14, 3710. [Google Scholar] [CrossRef]
- Dudurych, I.M. The impact of renewables on operational security: Operating power systems that have extremely high penetrations of nonsynchronous renewable sources. IEEE Power Energy Mag. 2021, 19, 37–45. [Google Scholar] [CrossRef]
- Sperstad, I.B.; Degefa, M.Z.; Kjølle, G. The impact of flexible resources in distribution systems on the security of electricity supply: A literature review. Electr. Power Syst. Res. 2020, 188, 106532. [Google Scholar] [CrossRef]
- Ríos-Ocampo, J.P.; Arango-Aramburo, S.; Larsen, E.R. Renewable energy penetration and energy security in electricity markets. Int. J. Energy Res. 2021, 45, 17767–17783. [Google Scholar] [CrossRef]
- Ding, T.; Zeng, Z.; Qu, M.; Catalão, J.P.S.; Shahidehpour, M. Two-stage chance-constrained stochastic thermal unit commitment for optimal provision of virtual inertia in wind-storage systems. IEEE Trans. Power Syst. 2021, 36, 3520–3530. [Google Scholar] [CrossRef]
- Yang, D.; Jin, E.; You, J.; Hua, L. Dynamic frequency support from a dfig-based wind turbine generator via virtual inertia control. Appl. Sci. 2020, 10, 3376. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Fu, Y.; Li, L. Optimized virtual inertia of wind turbine for rotor angle stability in interconnected power systems. Electr. Power Syst. Res. 2020, 180, 106157. [Google Scholar] [CrossRef]
- Rosso, R.; Wang, X.; Liserre, M.; Lu, X.; Engelken, S. Grid-forming converters: An overview of control approaches and future trends. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Virtual, 11–15 October 2020; pp. 4292–4299. [Google Scholar]
- Liu, Y.; Gracia, J.R.; King, T.J.; Liu, Y. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI). IEEE Trans. Sustain. Energy 2015, 6, 951–958. [Google Scholar] [CrossRef]
- Wu, W.; Skye, H.M.; Domanski, P.A. Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings. Appl. Energy 2018, 212, 577–591. [Google Scholar] [CrossRef]
- Alam, M.S.; Al-Ismail, F.S.; Salem, A.; Abido, M.A. High-level penetration of renewable energy sources into grid utility: Challenges and solutions. IEEE Access 2020, 8, 190277–190299. [Google Scholar] [CrossRef]
- Carrión, D.; García, E.; Jaramillo, M.; González, J.W. A novel methodology for optimal svc location considering n-1 contingencies and reactive power flows reconfiguration. Energies 2021, 14, 6652. [Google Scholar] [CrossRef]
Scenario | SDF | ROCOF | Steady-State Frequency after Perturbance Expressed in Hz |
---|---|---|---|
1 | 1.0034 | 0.3502 | 60.3008 |
2 | 1.1048 | 0.3702 | 60.4445 |
3 | 1.0609 | 0.3562 | 60.3875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Alvarado, M.S.; Rengifo, J.; Gallegos-Núñez, R.M.; Rivera-Mora, J.G.; Noriega, H.H.; Velasquez, W.; Donaldson, D.L.; Rodríguez-Gallegos, C.D. Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation. Energies 2022, 15, 8565. https://doi.org/10.3390/en15228565
Alvarez-Alvarado MS, Rengifo J, Gallegos-Núñez RM, Rivera-Mora JG, Noriega HH, Velasquez W, Donaldson DL, Rodríguez-Gallegos CD. Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation. Energies. 2022; 15(22):8565. https://doi.org/10.3390/en15228565
Chicago/Turabian StyleAlvarez-Alvarado, Manuel S., Johnny Rengifo, Rommel M. Gallegos-Núñez, José G. Rivera-Mora, Holguer H. Noriega, Washington Velasquez, Daniel L. Donaldson, and Carlos D. Rodríguez-Gallegos. 2022. "Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation" Energies 15, no. 22: 8565. https://doi.org/10.3390/en15228565
APA StyleAlvarez-Alvarado, M. S., Rengifo, J., Gallegos-Núñez, R. M., Rivera-Mora, J. G., Noriega, H. H., Velasquez, W., Donaldson, D. L., & Rodríguez-Gallegos, C. D. (2022). Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation. Energies, 15(22), 8565. https://doi.org/10.3390/en15228565