Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region
Abstract
:1. Introduction
- many weather parameters such as solar irradiance, temperature, wind, etc.;
- the PV cells nonlinear model;
- the DC-DC converter model;
- outages of the grid and possible islanding conditions of the PV parks;
- other operation conditions.
2. Proposed System Configuration
2.1. Global Structure Design
2.2. Solar PV Generator
2.3. DC-DC Boost Converter
3. Solar Forecasting and Control of the Proposed System
3.1. Forecasting Model and Preprocessing of Datasets
3.1.1. Study Context and Experimental Datasets
3.1.2. Definition of the Forecasting Model: Spatio-Temporal Autoregressive Model—STVAR
3.2. Fuzzy MPPT Algorithm
- Fuzzification and defuzzification transforms real input variables into fuzzy ones and the reverse. E and CE are inputs of the FL controller, and dD is the output. It represents the variable step of the duty cycle to control the DC-DC converter. The Figure 7 shows the membership functions for E, CE, and dD.
- 2.
- Inference is performed using the Mamdani method. Seven linguistic variables are expressed as (NB: negative big), (NM: negative medium), (NS: negative small), (Z: zero), (PS: positive small), (PM: positive medium), (PB: positive big). Table 1 shows the applied rules that ensure the relationship between the inputs and the output of the FL controller. The symmetric rule base is usually used for constant growth systems.
4. Results and Discussion
4.1. Solar Forecasting Results: Datasets Used for the Simulation
4.2. MPPT Fuzzy Logic Controller Performance
- The dynamic response of the P&O controller exhibits unwanted ripples, which are a dangerous drawback for PV systems. In addition, this dynamic response is a pseudo-oscillatory time response with an overshoot equal to 11.87%.
- Compared to P&O, the fuzzy controller converges and reaches the steady state faster with a response time ten times shorter (0.008 s against 0.08 s). We can clearly observe the superiority of the fuzzy controller response in terms of stability and accuracy with respect to the P&O one, which is less stable with ripples and oscillation, and less accurate with a slight permanent steady-state error.
4.3. Output PV Power Prediction
- Output PV power variability calculated from predicted data in the cases of the four days is close to that calculated from the measured one, which demonstrates the efficiency of the proposed method.
- The influence of intraday variability on the predictive performance of the model is also observed. The highest errors are obtained for day 4 corresponding to the day presenting the highest intraday variability (rRMSE = 22.60%, rMAE = 13.70%), whereas the lowest errors are obtained for day 3 presenting the lowest intraday variability and with less pronounced variation (rRMSE = 14.65%, rMAE = 6.99%). Consequently, the results are an illustration of the predictive performance model as a function of the irradiance conditions as seen in the results in the literature [7,9,66].
- According to the rMBE results, the model tends to underestimate the observed values (negative values of rMBE).
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Maximal power | ||
Voltage for maximal power | ||
Current for maximal power | ||
Current of short circuit | ||
Voltage of open circuit | ||
- These data represent the typical performance of the panel SPR-300E, which is measured with output, and no additional equipment effect is included such as the diodes and the cables. The data are based on the measures under the standard conditions SRC (Standard Reporting Conditions, knowledge also: STC or Standard Test Conditions), which set:
- an Irradiance of to a spectrum ;
- a temperature of the cell of
References
- Gioutsos, D.M.; Blok, K.; van Velzen, L.; Moorman, S. Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe. Appl. Energy 2018, 226, 437–449. [Google Scholar] [CrossRef]
- Silsirivanich, N. Fluctuation Characteristics effect analysis of Solar Irradiance Data by Wavelet transform. Energy Procedia 2017, 138, 301–306. [Google Scholar] [CrossRef]
- Zafeiropoulou, M.; Mentis, I.; Sijakovic, N.; Terzic, A.; Fotis, G.; Maris, T.I.; Vita, V.; Zoulias, E.; Ristic, V.; Ekonomou, L. Forecasting Transmission and Distribution System Flexibility Needs for Severe Weather Condition Resilience and Outage Management. Appl. Sci. 2022, 12, 7334. [Google Scholar] [CrossRef]
- Sijakovic, N.; Terzic, A.; Fotis, G.; Mentis, I.; Zafeiropoulou, M.; Maris, T.I.; Zoulias, E.; Elias, C.; Ristic, V.; Vita, V. Active System Management Approach for Flexibility Services to the Greek Transmission and Distribution System. Energies 2022, 15, 6134. [Google Scholar] [CrossRef]
- Calif, R.; Schmitt, F.G.; Huang, Y.; Soubdhan, T. Intermittency study of high frequency global solar radiation sequences under a tropical climate. Sol. Energy 2013, 98, 349–365. [Google Scholar] [CrossRef]
- André, M.; Dabo-Niang, S.; Soubdhan, T.; Ould-Baba, H. Predictive spatio-temporal model for spatially sparse global solar radiation data. Energy 2016, 111, 599–608. [Google Scholar] [CrossRef]
- Lauret, P.; Voyant, C.; Soubdhan, T.; David, M.; Poggi, P. A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Sol. Energy 2015, 112, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Cécé, R.; Bernard, D.; Brioude, J.; Zahibo, N. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields. Atmos. Environ. 2016, 139, 98–112. [Google Scholar] [CrossRef]
- André, M.; Perez, R.; Soubdhan, T.; Schlemmer, J.; Calif, R.; Monjoly, S. Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context. Sol. Energy 2019, 177, 703–712. [Google Scholar] [CrossRef]
- Soubdhan, T.; Emilion, R.; Calif, R. Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Sol. Energy 2009, 83, 1056–1063. [Google Scholar] [CrossRef]
- Monjoly, S.; André, M.; Calif, R.; Soubdhan, T. Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model. Energies 2019, 12, 2264. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.S.; Hansen, C.W.; Reno, M.J. The variability index: A new and novel metric for quantifying irradiance and PV output variability. In Proceedings of the World Renewable Energy Forum, Denver, CO, USA, 13–17 May 2012; pp. 13–17. [Google Scholar]
- Lenox, C.; Nelson, L. Variability comparison of large-scale photovoltaic systems across diverse geographic climates. In Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6–10 September 2010. [Google Scholar]
- Van Haaren, R.; Morjaria, M.; Fthenakis, V. Empirical assessment of short-term variability from utility-scale solar PV plants. Prog. Photovolt. Res. Appl. 2012, 22, 548–559. [Google Scholar] [CrossRef]
- Lave, M.; Reno, M.J.; Broderick, R.J. Characterizing local high-frequency solar variability and its impact to distribution studies. Sol. Energy 2015, 118, 327–337. [Google Scholar] [CrossRef]
- Perez, R.; David, M.; Hoff, T.E.; Jamaly, M.; Kivalov, S.; Kleissl, J.; Lauret, P.; Perez, M. Spatial and Temporal Variability of Solar Energy. Found. TrendsR Renew. Energy 2016, 1, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Kleissl, J. Solar Energy Forecasting and Resource Assessment; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Finkenstadt, B.; Held, L.; Isham, V. Statistical Methods for Spatio-Temporal Systems; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Cressie, N.; Johannesson, G. Fixed rank Kriging for very large data sets. J. R. Stat. Soc. Ser. B 2008, 70, 209–226. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cellura, M.; Cirrincione, G.; Marvuglia, A.; Miraoui, A. Wind speed spatial estimation for energy planning in Sicily: A neural kriging application. Renew. Energy 2008, 33, 1251–1266. [Google Scholar] [CrossRef]
- De Luna, X.; Genton, M.G. Predictive spatio-temporal models for spatially sparse enviromental data. Stat. Sin. 2005, 15, 547–568. [Google Scholar]
- Liu, H.; Shi, J.; Erdem, E. Prediction of wind speed time series using modified Taylor Kriging method. The 3rd International Conference on Sustainable Energy and Environmental Protection, SEEP. Energy 2010, 35, 4870–4879. [Google Scholar] [CrossRef]
- Porcu, E.; Mateu, J.; Saura, F. New classes of covariance and spectral density functions for spatio-temporal modelling. Stoch. Environ. Res. Risk Assess. 2008, 22, 65–79. [Google Scholar] [CrossRef]
- Inoue, T.; Sasaki, T.; Washio, T. Spatio-Temporal Kriging of Solar Radiation Incorporating Direction and Speed of Cloud Movement. 2012. Available online: https://www.jstage.jst.go.jp/article/pjsai/JSAI2012/0/JSAI2012_1K2IOS1b3/_article/-char/ja/ (accessed on 25 August 2022).
- Yang, D.; Gu, C.; Dong, Z.; Jirutitijaroen, P.; Chen, N.; Walsh, W.M. Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging. Renew. Energy 2013, 60, 235–245. [Google Scholar] [CrossRef]
- Yang, D.; Dong, Z.; Reindl, T.; Jirutitijaroen, P.; Walsh, W.M. Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage. Sol. Energy 2014, 103, 550–562. [Google Scholar] [CrossRef]
- Aryaputera, A.W.; Yang, D.; Zhao, L.; Walsh, W.M. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. Sol. Energy 2015, 122, 1266–1278. [Google Scholar] [CrossRef]
- Yang, D.; Ye, Z.; Lim, L.H.I.; Dong, Z. Very short term irradiance forecasting using the lasso. Sol. Energy 2015, 114, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Glasbey, A.; Allcroft, C.D. A spatiotemporal autoregressive moving average model for solar radiation. J. R. Stat. Soc. Ser. C 2008, 57, 343–355. [Google Scholar] [CrossRef]
- Dambreville, R.; Blanc, P.; Chanussot, J.; Boldo, D. Very short-term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model. Renew. Energy 2014, 72, 291–300. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.-J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Lappalainen, K.; Wang, G.C.; Kleissl, J. Estimation of the largest expected photovoltaic power ramp rates. Appl. Energy 2020, 278, 115636. [Google Scholar] [CrossRef]
- Husein, M.; Chung, I.-Y. Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach. Energies 2019, 12, 1856. [Google Scholar] [CrossRef] [Green Version]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Raza, M.Q.; Nadarajah, M.; Ekanayake, C. On recent advances in PV output power forecast. Sol. Energy 2016, 136, 125–144. [Google Scholar] [CrossRef]
- Radicioni, M.; Lucaferri, V.; De Lia, F.; Laudani, A.; Lo Presti, R.; Lozito, G.M.; Riganti Fulginei, F.; Schioppo, R.; Tucci, M. Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center. Energies 2021, 14, 707. [Google Scholar] [CrossRef]
- Yu, D.; Choi, W.; Kim, M.; Liu, L. Forecasting Day-Ahead Hourly Photovoltaic Power Generation Using Convolutional Self-Attention Based Long Short-Term Memory. Energies 2020, 13, 4017. [Google Scholar] [CrossRef]
- Niccolai, A.; Dolara, A.; Ogliari, E. Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches. Energies 2021, 14, 451. [Google Scholar] [CrossRef]
- Marcos, J.; Marroyo, L.; Lorenzo, E.; Alvira, D.; Izco, E. Power output fluctuations in large scale PV plants: One year observations with one second resolution and a derived analytic model. Prog. Photovolt. Res. Appl. 2011, 19, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.; Ahlstrom, M.; Brower, M.; Ellis, A.; George, R.; Hoff, T.; Kroposki, B.; Lenox, C.; Nicholas, M.; Stein, J.; et al. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System; Lawrence Berkeley National Lab.(LBNL): Berkeley, CA, USA, 2009; Volume 9. [CrossRef] [Green Version]
- Nasir, M.; Khan, H.A.; Khan, I.; Hassan, N.U.; Zaffar, N.A.; Mehmood, A.; Sauter, T.; Muyeen, S.M. Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform. Energies 2019, 12, 1764. [Google Scholar] [CrossRef] [Green Version]
- Andrean, V.; Chang, P.C.; Lian, K.L. A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation. Energies 2018, 11, 2966. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Almutairi, K.; Malik, M.Z.; Irshad, K.; Tirth, V.; Algarni, S.; Zahir, M.H.; Islam, S.; Shafiullah, M.; Shukla, N.K. Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions. Energies 2020, 13, 3256. [Google Scholar] [CrossRef]
- Karami, N.; Moubayed, N.; Outbib, R. General review and classification of different MPPT Techniques. Renew. Sustain. Energy Rev. 2017, 68, 1–18. [Google Scholar] [CrossRef]
- Motahhir, S.; El Hammoumi, A.; El Ghzizal, A. The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J. Clean. Prod. 2020, 246, 118983. [Google Scholar] [CrossRef]
- Zhu, Y.; Kim, M.K.; Wen, H. Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics. Energies 2019, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, Y.; Zhou, D.; Liu, J.; Zeng, J. A High-Performance Adaptive Incremental Conductance MPPT Algorithm for Photovoltaic Systems. Energies 2016, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Chalh, A.; El Hammoumi, A.; Motahhir, S.; El Ghzizal, A.; Subramaniam, U.; Derouich, A. Trusted Simulation Using Proteus Model for a PV System: Test Case of an Improved HC MPPT Algorithm. Energies 2020, 13, 1943. [Google Scholar] [CrossRef] [Green Version]
- Alshareef, M.; Lin, Z.; Ma, M.; Cao, W. Accelerated Particle Swarm Optimization for Photovoltaic Maximum Power Point Tracking under Partial Shading Conditions. Energies 2019, 12, 623. [Google Scholar] [CrossRef] [Green Version]
- Hadji, S.; Gaubert, J.-P.; Krim, F. Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods. Energies 2018, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Robles Algarín, C.; Taborda Giraldo, J.; Rodríguez Álvarez, O. Fuzzy Logic Based MPPT Controller for a PV System. Energies 2017, 10, 2036. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Wang, Q.; Hu, H.; Ding, Z.; Guo, H. An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study. Energies 2019, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Muhammad Adil, H.M.; Ahmad, I.; Azeem, M.K.; e Huma, Z.; Abbas Khan, S. Supertwisting Sliding Mode Algorithm Based Nonlinear MPPT Control for a Solar PV System with Artificial Neural Networks Based Reference Generation. Energies 2020, 13, 3695. [Google Scholar] [CrossRef]
- Ali, K.; Khan, L.; Khan, Q.; Ullah, S.; Ahmad, S.; Mumtaz, S.; Karam, F.W.; Naghmash. Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System. Energies 2019, 12, 3180. [Google Scholar] [CrossRef]
- Kececioglu, O.F.; Gani, A.; Sekkeli, M. Design and Hardware Implementation Based on Hybrid Structure for MPPT of PV System Using an Interval Type-2 TSK Fuzzy Logic Controller. Energies 2020, 13, 1842. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Tchoketch Kebir, G.F.; Larbes, C.; Ilinca, A.; Obeidi, T.; Tchoketch Kebir, S. Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller. Energies 2018, 11, 3263. [Google Scholar] [CrossRef] [Green Version]
- Hassan, T.-U.; Abbassi, R.; Jerbi, H.; Mehmood, K.; Tahir, M.F.; Cheema, K.M.; Elavarasan, R.M.; Ali, F.; Khan, I.A. A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller. Energies 2020, 13, 4007. [Google Scholar] [CrossRef]
- Badosa, J.; Haeffelin, M.; Chepfer, H. Scales of spatial and temporal variation of solar irradiance on Reunion tropical island. Sol. Energy 2013, 88, 42–56. [Google Scholar] [CrossRef]
- Voyant, C.; Soubdhan, T.; Lauret, P.; David, M.; Muselli, M. Statistical parameters as a means to a priori assess the accuracy of solar forecasting models. Energy 2015, 90, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Pena, D.; Tiao, G.C.; Tsay, R.S. A Course in Time Series Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Soubdhan, T.; Abadi, M.; Emilion, R. Time dependent classification of solar radiation sequences using best information criterion. Energy Procedia 2014, 57, 1309–1316. [Google Scholar] [CrossRef] [Green Version]
- Monjoly, S.; André, M.; Calif, R.; Soubdhan, T. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach. Energy 2017, 119, 288–298. [Google Scholar] [CrossRef]
- Coimbra, C.F.M.; Kleissl, J.; Marquez, R. Overview of solar forecasting method and a metric for accuracy evaluation. In Solar Energy Forecasting and Resource Assessment; Kleissl, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 171–194. [Google Scholar]
ΔE | NB | NM | NS | Z | PS | PM | PB | |
---|---|---|---|---|---|---|---|---|
E | ||||||||
NB | NB | NB | NB | NB | NM | NS | Z | |
NM | NB | NB | NB | NM | NS | Z | PS | |
NS | NB | NB | NM | NS | Z | PS | PM | |
Z | NB | NM | NS | Z | PS | PM | PB | |
PS | NM | NS | Z | PS | PM | PB | PB | |
PM | NS | Z | PS | PM | PB | PB | PB | |
PB | Z | PS | PM | PB | PB | PB | PB |
Day1 (5 March) | Day2 (11 May) | Day3 (29 August) | Day4 (16 December) | |
---|---|---|---|---|
rMAE (%) | 11.32 | 10.82 | 6.86 | 13.13 |
rMBE (%) | −1.65 | 0.19 | −0.03 | −2.99 |
rRMSE (%) | 19.99 | 19.01 | 14.36 | 21.80 |
Day 1 | Day 2 | Day 3 | Day 4 | |
---|---|---|---|---|
rMAE (%) | 11.58 | 11.09 | 6.99 | 13.70 |
rMBE (%) | −1.60 | 0.19 | −0.03 | −3.14 |
rRMSE (%) | 20.43 | 19.46 | 14.65 | 22.60 |
Day1 (5 March) | Day2 (11 May) | Day3 (29 August) | Day4 (16 December) | |
---|---|---|---|---|
rRMSE (%) Persistence model | 21.33 | 20.24 | 15.50 | 22.87 |
Skill-score (%) | 4.22 | 3.85 | 6.71 | 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehazzem, F.; André, M.; Calif, R. Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region. Energies 2022, 15, 8671. https://doi.org/10.3390/en15228671
Mehazzem F, André M, Calif R. Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region. Energies. 2022; 15(22):8671. https://doi.org/10.3390/en15228671
Chicago/Turabian StyleMehazzem, Fateh, Maina André, and Rudy Calif. 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region" Energies 15, no. 22: 8671. https://doi.org/10.3390/en15228671
APA StyleMehazzem, F., André, M., & Calif, R. (2022). Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region. Energies, 15(22), 8671. https://doi.org/10.3390/en15228671