Pendulum Energy Harvesters: A Review
Abstract
:1. Introduction
2. Energy Harvesters with a Single Pendulum
2.1. Characteristics of the Single Pendulum
2.2. Electromagnetic Energy Harvesting
2.3. Piezoelectric Energy Harvesting
2.4. Triboelectric Energy Harvesting
2.5. Hybrid Energy Harvesting
3. Energy Harvesters with Double Pendulum
3.1. Theoretical Analysis of Double Pendulums
3.2. Application of Double Pendulums in Energy Harvesting
4. Discussion
5. Conclusions
- (1)
- From comparative experimental results, double-pendulum systems perform better than single-pendulum systems in terms of energy harvesting. However, studies on double-pendulum energy harvesters are relatively few, and research on energy harvesters based on double pendulums may be further advanced.
- (2)
- The combination of a nonlinear structure with a pendulum system energy harvester has been considerably optimized. The introduction of a nonlinear structure can improve the adaptive ability of energy harvesters. From the current studies, the energy harvesting performance can be effectively improved with the reasonable application of nonlinear systems.
- (3)
- Multi-physics coupling energy harvesting is another research topic. The coupling of different types of energy conversion mechanisms can broaden the operation bandwidth and improve output power.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bull, S.R. Renewable energy today and tomorrow. Proc. IEEE 2001, 89, 1216–1226. [Google Scholar] [CrossRef]
- Fu, X.P.; Bu, T.Z.; Li, C.L.; Liu, G.X.; Zhang, C. Overview of micro/nano-wind energy harvesters and sensors. Nanoscale 2020, 12, 23929–23944. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.J.; Cai, F.H.; Zhang, J.H.; Chu, Z.Y. Overview of environmental airflow energy harvesting technology based on piezoelectric effect. J. Vibroeng. 2022, 24, 91–103. [Google Scholar] [CrossRef]
- Huang, B.; Wang, P.Z.; Wang, L.; Yang, S.; Wu, D.Z. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. Nanotechnol. Rev. 2020, 9, 716–735. [Google Scholar] [CrossRef]
- Truitt, A.; Mahmoodi, S.N. A Review On Active Wind Energy Harvesting Designs. Int. J. Precis. Eng. Manuf. 2013, 14, 1667–1675. [Google Scholar] [CrossRef]
- Zhu, H.J.; Tang, T.; Yang, H.H.; Wang, J.L.; Song, J.Z.; Peng, G. The State-of-the-Art Brief Review on Piezoelectric Energy Harvesting from Flow-Induced Vibration. Shock Vib. 2021, 2021, 8861821. [Google Scholar] [CrossRef]
- Bao, B.; Chen, W.; Wang, Q. A piezoelectric hydro-energy harvester featuring a special container structure. Energy 2019, 189, 116261. [Google Scholar] [CrossRef]
- Moss, S.D.; Payne, O.R.; Hart, G.A.; Ung, C. Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Mater. Struct. 2015, 24, 023001. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.S.; Kim, S.W.; Kar-Narayan, S. Materials-Related Strategies for Highly Efficient Triboelectric Energy Generators. Adv. Energy Mater. 2021, 11, 2003802. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Gaudenzi, P. A Review on Mechanisms for Piezoelectric-Based Energy Harvesters. Energies 2018, 11, 1850. [Google Scholar] [CrossRef] [Green Version]
- Vidal, J.V.; Slabov, V.; Kholkin, A.L.; dos Santos, M.P.S. Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review. Nano-Micro Lett. 2021, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Babayo, A.A.; Anisi, M.H.; Ali, I. A Review on energy management schemes in energy harvesting wireless sensor networks. Renew. Sustain. Energ. Rev. 2017, 76, 1176–1184. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM Trans. Sens. Netw. 2018, 14, 10. [Google Scholar] [CrossRef]
- Ma, K.; Li, Z.X.; Liu, P.; Yang, J.; Geng, Y.F.; Yang, B.; Guan, X.P. Reliability-Constrained Throughput Optimization of Industrial Wireless Sensor Networks With Energy Harvesting Relay. IEEE Internet Things J. 2021, 8, 13343–13354. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Q. A rain energy harvester using a self-release tank. Mech. Syst. Signal Process. 2021, 147, 107099. [Google Scholar] [CrossRef]
- Pavelkova, R.; Vala, D.; Gecova, K. Energy harvesting systems using human body motion. In Proceedings of the 15th IFAC/IEEE Conference on Programmable Devices and Embedded Systems (PDeS), Ostrawa, Czech Republic, 23–25 May 2018. [Google Scholar] [CrossRef]
- Khalid, S.; Raouf, I.; Khan, A.; Kim, N.; Kim, H.S. A Review of Human-Powered Energy Harvesting for Smart Electronics: Recent Progress and Challenges. Int. J. Precis. Eng. Manuf-Green Technol. 2019, 6, 821–851. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 2008, 96, 1457–1486. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, J.; Lee, C.; Lee, S.-W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhou, S.X.; Fang, S.T.; Qin, W.Y.; Inman, D.J. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Appl. Phys. Rev. 2021, 8, 031317. [Google Scholar] [CrossRef]
- Carneiro, P.; dos Santos, M.P.S.; Rodrigues, A.; Ferreira, J.A.F.; Simoes, J.A.O.; Marques, A.T.; Kholkin, A.L. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Appl. Energy 2020, 260, 114191. [Google Scholar] [CrossRef] [Green Version]
- Giri, A.M.; Ali, S.F.; Arockiarajan, A. Dynamics of symmetric and asymmetric potential well-based piezoelectric harvesters: A comprehensive review. J. Intell. Mater. Syst. Struct. 2021, 32, 1881–1947. [Google Scholar] [CrossRef]
- Shin, Y.H.; Choi, J.; Kim, S.J.; Kim, S.; Maurya, D.; Sung, T.H.; Priya, S.; Kang, C.Y.; Song, H.C. Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting. Nano Energy 2020, 77, 104986. [Google Scholar] [CrossRef]
- Maamer, B.; Boughamoura, A.; El-Bab, A.; Francis, L.A.; Tounsi, F. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers. Manag. 2019, 199, 111973. [Google Scholar] [CrossRef]
- Yang, Z.B.; Zhou, S.X.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.B.; Zu, J. Toward Harvesting Vibration Energy from Multiple Directions by a Nonlinear Compressive-Mode Piezoelectric Transducer. IEEE-ASME Trans. Mechatron. 2016, 21, 1787–1791. [Google Scholar] [CrossRef]
- Yang, Z.B.; Wang, Y.Q.; Zuo, L.; Zu, J. Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Convers. Manag. 2017, 148, 260–266. [Google Scholar] [CrossRef]
- Wang, B.; Long, Z.H.; Hong, Y.; Pan, Q.Q.; Lin, W.K.; Yang, Z.B. Woodpecker-mimic two-layer band energy harvester with a piezoelectric array for powering wrist-worn wearables. Nano Energy 2021, 89, 106385. [Google Scholar] [CrossRef]
- Harne, R.L.; Wang, K.W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 2013, 22, 023001. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, S.Q. Analysis and Experiments of a Pendulum Vibration Energy Harvester With a Magnetic Multi-Stable Mechanism. IEEE Trans. Magn. 2022, 58, 8002507. [Google Scholar] [CrossRef]
- Kumar, K.A.; Ali, S.F.; Arockiarajan, A. Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization. Eur. Phys. J.-Spec. Top. 2015, 224, 2803–2822. [Google Scholar] [CrossRef]
- Pellegrini, S.P.; Tolou, N.; Schenk, M.; Herder, J.L. Bistable vibration energy harvesters: A review. J. Intell. Mater. Syst. Struct. 2013, 24, 1303–1312. [Google Scholar] [CrossRef]
- Yang, X.; Lai, S.K.; Wang, C.; Wang, J.M.; Ding, H. On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations. Energy 2022, 252, 124028. [Google Scholar] [CrossRef]
- Miller, L.M.; Pillatsch, P.; Halvorsen, E.; Wright, P.K.; Yeatman, E.M.; Holmes, A.S. Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. J. Sound Vib. 2013, 332, 7142–7152. [Google Scholar] [CrossRef]
- Staaf, L.G.H.; Kohler, E.; Folkow, P.D.; Enoksson, P. Smart design piezoelectric energy harvester with self-tuning. In Proceedings of the 28th Micromechanics and Microsystems Europe Workshop (MME), Uppsala, Sweden, 23–25 August 2017. [Google Scholar] [CrossRef]
- Talib, N.; Salleh, H.; Youn, B.D.; Resali, M.S.M. Comprehensive Review on Effective Strategies and Key Factors for High Performance Piezoelectric Energy Harvester at Low Frequency. Int. J. Automot. Mech. Eng. 2019, 16, 7181–7210. [Google Scholar] [CrossRef] [Green Version]
- Bowers, B.J.; Arnold, D.P. Spherical, rolling magnet generators for passive energy harvesting from human motion. J. Micromech. Microeng. 2009, 19, 094008. [Google Scholar] [CrossRef]
- Butikov, E.I. Parametric resonance in a linear oscillator at square-wave modulation. Eur. J. Phys. 2005, 26, 157–174. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, J.Z.; Soga, K.; Seshia, A.A. Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater. Struct. 2014, 23, 065011. [Google Scholar] [CrossRef]
- Wu, Y.P.; Qiu, J.H.; Zhou, S.P.; Ji, H.L.; Chen, Y.; Li, S. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 2018, 231, 600–614. [Google Scholar] [CrossRef]
- Dai, X. An vibration energy harvester with broadband and frequency-doubling characteristics based on rotary pendulums. Sens. Actuator A-Phys. 2016, 241, 161–168. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, W.; Han, C.B.; Fan, F.R.; Wang, Z.L. Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy. Adv. Mater. 2014, 26, 3580–3591. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Wang, Q. Small-scale experimental study on the optimisation of a rooftop rainwater energy harvester using electromagnetic generators in light rains. Int. J. Energy Res. 2020, 44, 10778–10796. [Google Scholar] [CrossRef]
- Bhuyan, G.S. World-wide status for harnessing ocean renewable resources. In Proceedings of the Power and Energy Society General Meeting, Minneapolis, MI, USA, 25–29 July 2010. [Google Scholar] [CrossRef]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Ding, W.J.; Song, B.W.; Mao, Z.Y.; Wang, K.Y. Experimental investigations on a low frequency horizontal pendulum ocean kinetic energy harvester for underwater mooring platforms. J. Mar. Sci. Technol. 2016, 21, 359–367. [Google Scholar] [CrossRef]
- Yurchenko, D.; Alevras, P. Parametric pendulum based wave energy converter. Mech. Syst. Signal Process. 2018, 99, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.L.; Zhu, S.Y. Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters. Appl. Energy 2021, 298, 117228. [Google Scholar] [CrossRef]
- Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzetti, G.; Mustarelli, P. Energy harvesting from human motion: Materials and techniques. Chem. Soc. Rev. 2016, 45, 5455–5473. [Google Scholar] [CrossRef]
- Starner, T. Human-powered wearable computing. IBM Syst. J. 1996, 35, 618–629. [Google Scholar] [CrossRef]
- Xie, L.H.; Du, R.X. Harvest human kinetic energy to power portable electronics. J. Mech. Sci. Technol. 2012, 26, 2005–2008. [Google Scholar] [CrossRef]
- Xie, L.H.; Du, R.X. Harvesting Human Biomechanical Energy to Power Portable Electronics. In Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012. [Google Scholar] [CrossRef]
- Li, M.X.; Deng, H.C.; Zhang, Y.F.; Li, K.X.; Huang, S.J.; Liu, X.W. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester. Micromachines 2020, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Hou, Z.; Zhang, Y.; Cao, J.; Bowen, C.R. Enhanced swing electromagnetic energy harvesting from human motion. Energy 2021, 228, 120591. [Google Scholar] [CrossRef]
- Huang, N.T.; Chen, Q.Z.; Cai, G.W.; Xu, D.G.; Zhang, L.; Zhao, W.G. Fault Diagnosis of Bearing in Wind Turbine Gearbox Under Actual Operating Conditions Driven by Limited Data With Noise Labels. IEEE Trans. Instrum. Meas. 2021, 70, 3502510. [Google Scholar] [CrossRef]
- Shi, C.Z.; Shaw, S.W.; Parker, R.G. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers. J. Sound Vib. 2016, 385, 55–68. [Google Scholar] [CrossRef]
- Kecik, K.; Mitura, A. Energy recovery from a pendulum tuned mass damper with two independent harvesting sources. Int. J. Mech. Sci. 2020, 174, 105568. [Google Scholar] [CrossRef]
- Jahani, K.; Langlois, R.G.; Afagh, F.F. Structural dynamics of offshore Wind Turbines: A review. Ocean Eng. 2022, 251, 111136. [Google Scholar] [CrossRef]
- Jahangiri, V.; Sun, C. Integrated bi-directional vibration control and energy harvesting of monopile offshore wind turbines. Ocean Eng. 2019, 178, 260–269. [Google Scholar] [CrossRef]
- Shen, W.A.; Zhu, S.Y.; Xu, Y.L. An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors. Sens. Actuator A-Phys. 2012, 180, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Q.; Chen, P.H.; Liu, Q. A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel. Appl. Energy 2021, 302, 117528. [Google Scholar] [CrossRef]
- Liang, C.W.; Wu, Y.; Zuo, L. Broadband pendulum energy harvester. Smart Mater. Struct. 2016, 25, 095042. [Google Scholar] [CrossRef]
- Graves, J.; Kuang, Y.; Zhu, M.L. Counterweight-pendulum energy harvester with reduced resonance frequency for unmanned surface vehicles. Sens. Actuator A-Phys. 2021, 321, 112577. [Google Scholar] [CrossRef]
- Graves, J.; Zhu, M.L. Design and experimental validation of a pendulum energy harvester with string-driven single clutch mechanical motion rectifier. Sens. Actuator A-Phys. 2022, 333, 113237. [Google Scholar] [CrossRef]
- Fan, K.Q.; Wang, C.Y.; Chen, C.G.; Zhang, Y.; Wang, P.H.; Wang, F. A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy. Renew. Energy 2021, 179, 339–350. [Google Scholar] [CrossRef]
- Siddique, A.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 2015, 106, 728–747. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.H.; Kim, J. A Review of Piezoelectric Energy Harvesting Based on Vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Prajwal, K.T.; Manickavasagam, K.; Suresh, R. A review on vibration energy harvesting technologies: Analysis and technologies. Eur. Phys. J.-Spec. Top. 2022, 231, 1359–1371. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Q. Bladeless rotational piezoelectric energy harvester for hydroelectric applications of ultra-low and wide-range flow rates. Energy Convers. Manag. 2021, 227, 113619. [Google Scholar] [CrossRef]
- Akin-Ponnle, A.E.; Carvalho, N.B. Energy Harvesting Mechanisms in a Smart City—A Review. Smart Cities 2021, 4, 476–498. [Google Scholar] [CrossRef]
- Khan, M.Z.A.; Khan, H.A.; Aziz, M. Harvesting Energy from Ocean: Technologies and Perspectives. Energies 2022, 15, 3456. [Google Scholar] [CrossRef]
- Khaligh, A.; Zeng, P.; Zheng, C. Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art. IEEE Trans. Ind. Electron. 2010, 57, 850–860. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Wu, N.; Bao, B.; Wang, Q. Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Eng. Struct. 2021, 235, 112068. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X.D. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Q.; Wu, Y.F.; Li, P.D. Experimental Study on Hydroelectric Energy Harvester Based on a Hybrid Qiqi and Turbine Structure. Energies 2021, 14, 7601. [Google Scholar] [CrossRef]
- Toma, D.M.; del Rio, J.; Carbonell-Ventura, M.; Masalles, J.M. Underwater energy harvesting system based on plucked-driven piezoelectrics. In Proceedings of the Oceans 2015 Genova, Ctr Congressi, Genova, Genova, Italy, 18–21 May 2015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.S.; Tang, M.F.; Li, H.; Li, J.B.; Zou, Y.Q.; Pan, Y.J.; Zhang, Z.T. A Multidirectional Pendulum Kinetic Energy Harvester Based on Homopolar Repulsion for Low-Power Sensors in New Energy Driverless Buses. Int. J. Precis. Eng. Manuf-Green Technol. 2022, 9, 603–618. [Google Scholar] [CrossRef]
- Cho, J.Y.; Jeong, S.; Jabbar, H.; Song, Y.; Ahn, J.H.; Kim, J.H.; Jung, H.J.; Yoo, H.H.; Song, T.H. Piezoelectric energy harvesting system with magnetic pendulum movement for self-powered safety sensor of trains. Sens. Actuator A-Phys. 2016, 250, 210–218. [Google Scholar] [CrossRef]
- Shukla, R.; Bell, A.J. PENDEXE: A novel energy harvesting concept for low frequency human waistline. Sens. Actuator A-Phys. 2015, 222, 39–47. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Q.; Wu, N.; Zhou, S. Hand-held piezoelectric energy harvesting structure: Design, dynamic analysis, and experimental validation. Measurement 2021, 174, 109011. [Google Scholar] [CrossRef]
- Wu, Y.P.; Li, S.; Fan, K.Q.; Ji, H.L.; Qiu, J.H. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mech. Syst. Signal Process. 2022, 162, 108038. [Google Scholar] [CrossRef]
- Fan, G.F.; Wang, Y.J.; Tian, F.; Hao, M.M.; Wen, Y.; Xu, Y.Z.; Zeng, F.F.; Lu, W.Z. Impact-driven piezoelectric energy harvester using a pendulum structure for low-frequency vibration. J. Intell. Mater. Syst. Struct. 2021, 32, 1997–2005. [Google Scholar] [CrossRef]
- Pan, J.A.; Qin, W.Y.; Deng, W.Z.; Zhang, P.T.; Zhou, Z.Y. Harvesting weak vibration energy by integrating piezoelectric inverted beam and pendulum. Energy 2021, 227, 120374. [Google Scholar] [CrossRef]
- Li, H.T.; Qin, W.Y. Nonlinear dynamics of a pendulum-beam coupling piezoelectric energy harvesting system. Eur. Phys. J. Plus 2019, 134, 595. [Google Scholar] [CrossRef]
- Bao, B.; Zhou, S.Y.; Wang, Q. Interplay between internal resonance and nonlinear magnetic interaction for multi-directional energy harvesting. Energy Convers. Manag. 2021, 244, 114465. [Google Scholar] [CrossRef]
- Xu, J.; Tang, J. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Appl. Phys. Lett. 2015, 107, 213902. [Google Scholar] [CrossRef]
- Mo, S.T.; Liu, Y.; Shang, S.Y.; Wang, H.; Yang, K.Y. Tri-directional piezoelectric energy harvester based on U-shaped beam-pendulum structure. Rev. Sci. Instrum. 2021, 92, 015002. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Liu, W.L.; Wang, Z.; Wang, G.; Liu, G.L.; Chen, J.; Pu, X.J.; Xi, Y.; Wang, X.; Guo, H.Y.; Hu, C.G.; et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426. [Google Scholar] [CrossRef] [Green Version]
- Siang, J.; Lim, M.H.; Leong, M.S. Review of vibration-based energy harvesting technology: Mechanism and architectural approach. Int. J. Energy Res. 2018, 42, 1866–1893. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Kim, D.; Yang, Y.; Lin, L.; Lin, Z.H.; Hwang, W.; Wang, Z.L. Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy 2013, 2, 1113–1120. [Google Scholar] [CrossRef]
- He, C.; Chen, B.D.; Jiang, T.; Xu, L.; Han, C.B.; Gu, G.Q.; Wang, Z.L. Radial-Grating Pendulum-Structured Triboelectric Nanogenerator for Energy Harvesting and Tilting-Angle Sensing. Adv. Mater. Technol. 2018, 3, 1700251. [Google Scholar] [CrossRef]
- Lin, Z.M.; Zhang, B.B.; Guo, H.Y.; Wu, Z.Y.; Zou, H.Y.; Yang, J.; Wang, Z.L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Rui, P.S.; Zhang, W.; Zhong, Y.M.; Wei, X.X.; Guo, Y.C.; Shi, S.W.; Liao, Y.L.; Cheng, J.; Wang, P.H. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 2020, 74, 104937. [Google Scholar] [CrossRef]
- Zhang, C.G.; He, L.X.; Zhou, L.L.; Yang, O.; Yuan, W.; Wei, X.L.; Liu, Y.B.; Lu, L.; Wang, J.; Wang, Z.L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yang, Q.X.; Ji, P.Y.; Wu, Z.F.; Li, Q.Y.; Yang, H.K.; Li, X.C.; Zheng, G.C.; Xi, Y.; Wang, Z.L. Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Hybrid, Multi-Source, and Integrated Energy Harvesters. Front. Mater. 2018, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.; Chen, T.; Li, Y.F.; Huang, M.J.; Shi, Q.F.; Liu, H.C.; Sun, L.N.; Lee, C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019, 63, 103871. [Google Scholar] [CrossRef]
- Ren, Z.W.; Liang, X.; Liu, D.; Li, X.J.; Ping, J.F.; Wang, Z.M.; Wang, Z.L. Water-Wave Driven Route Avoidance Warning System for Wireless Ocean Navigation. Adv. Energy Mater. 2021, 11, 2101116. [Google Scholar] [CrossRef]
- Xie, W.B.; Gao, L.X.; Wu, L.K.; Chen, X.; Wang, F.Y.; Tong, D.Q.; Zhang, J.; Lan, J.Y.; He, X.B.; Mu, X.J.; et al. A Nonresonant Hybridized Electromagnetic-Triboelectric Nanogenerator for Irregular and Ultralow Frequency Blue Energy Harvesting. Research 2021, 2021, 5963293. [Google Scholar] [CrossRef]
- Zhang, C.G.; Yuan, W.; Zhang, B.F.; Yang, O.; Liu, Y.B.; He, L.X.; Wang, J.; Wang, Z.L. High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting. Adv. Funct. Mater. 2022, 32, 2111775. [Google Scholar] [CrossRef]
- Fang, L.; Zheng, Q.W.; Hou, W.C.; Zheng, L.; Li, H.X. A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator. Nano Energy 2022, 97, 107164. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Whiteman, C. Motions of a double pendulum. Nonlinear Anal.-Theory Methods Appl. 1996, 26, 1177–1191. [Google Scholar] [CrossRef]
- Lee, S.M. DOUBLE-SIMPLE PENDULUM PROBLEM. Am. J. Phys. 1970, 38, 536–537. [Google Scholar] [CrossRef]
- Stachowiak, T.; Okada, T. A numerical analysis of chaos in the double pendulum. Chaos Solitons Fractals 2006, 29, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Nikolai, B.; Gabin, A.M.; Jimenez, R.Z. Double Pendulum Induced Stability. Int. J. Appl. Mech. 2015, 7, 1550088. [Google Scholar] [CrossRef]
- Oiwa, S.; Yajima, T. Jacobi stability analysis and chaotic behavior of nonlinear double pendulum. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750176. [Google Scholar] [CrossRef]
- Wojna, M.; Wijata, A.; Wasilewski, G.; Awrejcewicz, J. Numerical and experimental study of a double physical pendulum with magnetic interaction. J. Sound Vib. 2018, 430, 214–230. [Google Scholar] [CrossRef]
- Avanco, R.H.; Balthazar, J.M.; Tusset, A.M.; Ribeiro, M.A. Short comments on chaotic behavior of a double pendulum with two subharmonic frequencies and in the main resonance zone. ZAMM-Z. Angew. Math. Mech. 2021, 101, e202000197. [Google Scholar] [CrossRef]
- Basheer, F.; Mehaisi, E.; Elsergany, A.; ElSheikh, A.; Ghommem, M.; Najar, F. Energy harvesters for rotating systems: Modeling and performance analysis. tm-Tech. Mess. 2021, 88, 164–177. [Google Scholar] [CrossRef]
- Zaouali, E.; Najar, F.; Kacem, N.; Foltete, E. Pendulum-based embedded energy harvester for rotating systems. Mech. Syst. Signal Process. 2022, 180, 109415. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, S.; Ali, S.F. Energy harvesting from chaos in base excited double pendulum. Mech. Syst. Signal Process. 2019, 124, 49–64. [Google Scholar] [CrossRef]
- Carandell, M.; Toma, D.M.; Carbonell, M.; del Rio, J.; Gasulla, M. Design and Testing of a Kinetic Energy Harvester Embedded Into an Oceanic Drifter. IEEE Sens. J. 2020, 20, 13930–13939. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.X.; Chen, J.F.; Lu, S.; Zhou, H.; Wang, T.T.; Wang, A.B.; Zhang, Z.F.; Guo, S.F.; Mu, X.J.; et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440. [Google Scholar] [CrossRef]
- Chen, J.T.; Bao, B.; Liu, J.L.; Wu, Y.F.; Wang, Q. Piezoelectric energy harvester featuring a magnetic chaotic pendulum. Energy Convers. Manag. 2022, 269, 116155. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Tang, L.H.; Padilla, R.V.; Tang, Z.S.; Sedighi, M. Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Convers. Manag. 2019, 184, 559–570. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, Y.; Wang, Y.; Zhang, X. Investigation of internal resonance on widening the bandwidth of energy harvester based on a cantilevered double pendulum structure. AIP Adv. 2022, 12, 095108. [Google Scholar] [CrossRef]
- Selyutskiy, Y.D.; Holub, A.P.; Lin, C.H. Piezoaeroelastic system on the basis of a double aerodynamic pendulum. ZAMM-Z. Angew. Math. Mech. 2021, 101, e202000092. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Q.J. Dynamics and high-efficiency of a novel multi-stable energy harvesting system. Chaos Solitons Fractals 2020, 131, 109516. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Ma, L.; Wu, Y. Piezoelectric generator with nonlinear structure. Proc. Inst. Mech. Eng. Pt. L-J. Mater.-Design Appl. 2021, 236, 2221–2229. [Google Scholar] [CrossRef]
- Liu, C.C.; Jing, X.J. Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn. 2016, 84, 2079–2098. [Google Scholar] [CrossRef]
- Wang, Y.R.; Yu, Y.; Cao, S.Y.; Zhang, X.Y.; Gao, S.C. A review of applications of artificial intelligent algorithms in wind farms. Artif. Intell. Rev. 2020, 53, 3447–3500. [Google Scholar] [CrossRef]
- Ye, Z.H.; Chen, Z. Self-sensing of dielectric elastomer actuator enhanced by artificial neural network. Smart Mater. Struct. 2017, 26, 095056. [Google Scholar] [CrossRef]
Investigators | Mechanism | Application | Structure | Working Condition | Average Output Power | Power Density | NPD |
---|---|---|---|---|---|---|---|
Ding et al. [48] | Electromagnetic | Ocean kinetic energy harvesting | Single pendulum | 0.2 Hz and 0.24 m/s2 | 300 mW | - | 3453.8 kg/m3 |
Cai et al. [50] | Electromagnetic | Ultra-low frequency wave energy harvesting | Single pendulum | 0.12 m (wave height) and 0.7 s (wave period) | 111 mW | - | - |
Fan et al. [67] | Electromagnetic | Ultra-low frequency mechanical energy harvesting | Single pendulum | 4 Hz and 40° (amplitude of swing) | 7.6 mW | - | - |
Zhou et al. [56] | Electromagnetic | Human motion energy harvesting | Single pendulum | 8 km/h (running speed) | 0.38 mW | 23 μW/g | - |
Zhang et al. [80] | Piezoelectric | Kinetic energy harvesting in driverless buses | Single pendulum | - | 1.233 mW | - | - |
Bao et al. [88] | Piezoelectric | Multi-directional energy harvesting | Single pendulum | 7.5 Hz and 0.3 g | 0.64 mW | - | - |
Wu et al. [84] | Piezoelectric | Ultra-low frequency mechanical energy harvesting | Single pendulum | 2 Hz and 0.37 g | 2 mW | - | - |
Rui et al. [98] | Triboelectric | Ocean wave energy harvesting | Single pendulum | 0.8 Hz | 0.87 mW | 1.1 W/m3 | - |
Zhang et al. [99] | Triboelectric | Ocean wave energy harvesting | Single pendulum | - | 12.3 mW | - | - |
Xie et al. [104] | Triboelectric and electromagnetic | Ultra-low frequency water wave energy harvesting | Single pendulum | - | 0.47 mW (Triboelectric) and 523 mW (electromagnetic) | - | - |
Chen et al. [119] | Piezoelectric | Wind energy harvesting | Double pendulum | 557.31 rpm | 1.25 mW | - | - |
Izadgoshasb et al. [120] | Piezoelectric | Human motion energy harvesting | Double pendulum | 2 Hz | 86.12 μW | - | - |
Carandell et al. [117] | Electromagnetic | Ocean wave energy harvesting | Double pendulum | 1.43 m (wave height) and 0.7 s (wave frequency) | 179 μW | - | - |
Chen et al. [118] | Triboelectric and electromagnetic | Ocean wave energy harvesting | Double pendulum | 2.5 Hz | 15.21 μW (Triboelectric) and 1.23 mW (Electromagnetic) | - | - |
Zaouali et al. [115] | Electromagnetic | Energy harvesting for rotating system | Double pendulum | 89 rpm | 9.5 mW | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Bao, B.; Liu, J.; Wu, Y.; Wang, Q. Pendulum Energy Harvesters: A Review. Energies 2022, 15, 8674. https://doi.org/10.3390/en15228674
Chen J, Bao B, Liu J, Wu Y, Wang Q. Pendulum Energy Harvesters: A Review. Energies. 2022; 15(22):8674. https://doi.org/10.3390/en15228674
Chicago/Turabian StyleChen, Jiatong, Bin Bao, Jinlong Liu, Yufei Wu, and Quan Wang. 2022. "Pendulum Energy Harvesters: A Review" Energies 15, no. 22: 8674. https://doi.org/10.3390/en15228674
APA StyleChen, J., Bao, B., Liu, J., Wu, Y., & Wang, Q. (2022). Pendulum Energy Harvesters: A Review. Energies, 15(22), 8674. https://doi.org/10.3390/en15228674