Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement
Abstract
:1. Introduction
2. Mathematical and Physical Modeling
2.1. The Establishment of the Physical Model
2.1.1. Physical Model
2.1.2. Mesh Independence Test
2.1.3. Setting of Boundary Conditions
2.2. The Establishment of the Mathematical Model
2.2.1. The Motion Equation of Airflows
2.2.2. The Motion Equation of Dust Particles
2.2.3. Dynamic Mesh Model
3. Analysis of the Airflow and Dust Simulation Results
3.1. Distribution Characteristics of the Wind Flow Field
3.2. Dust Transport and Dispersion Law
3.2.1. Dust Transport and Dispersion Characteristics of the Heaving Face
3.2.2. Respiratory Zone Dust Concentration Distribution
4. Field Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, X.; Xiao, B.; Song, L. Emission Reduction and Energy-Intensity Enhancement: The Expected and Unexpected Consequences of China’s Coal Consumption Constraint Policy. J. Clean. Prod. 2020, 271, 122691. [Google Scholar] [CrossRef]
- Chen, X.; Gao, J.; Deng, C.; Ge, S.; Fan, C.; Zhang, W. Experimental Study on Chemical Structure and Wetting Influence of Imidazole Ionic Liquids on Coal. Fuel 2022, 330, 125545. [Google Scholar] [CrossRef]
- Geng, F.; Luo, G.; Zhou, F.; Zhao, P.; Ma, L.; Chai, H.; Zhang, T. Numerical Investigation of Dust Dispersion in a Coal Roadway with Hybrid Ventilation System. Powder Technol. 2017, 313, 260–271. [Google Scholar] [CrossRef]
- Guo, L.; Nie, W.; Yin, S.; Liu, Q.; Hua, Y.; Cheng, L.; Cai, X.; Xiu, Z.; Du, T. The Dust Diffusion Modeling and Determination of Optimal Airflow Rate for Removing the Dust Generated during Mine Tunneling. Build. Environ. 2020, 178, 106846. [Google Scholar] [CrossRef]
- Fan, C.; Qi, Q.; Chen, X.; Ge, S. Study on Induced Airflow Characteristic and Dust Particle Diffusion Law at Transshipment Point. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–13. [Google Scholar] [CrossRef]
- Chen, X.; Mao, Y.; Fan, C.; Wu, Y.; Ge, S.; Ren, Y. Experimental Investigation on Filtration Characteristic with Different Filter Material of Bag Dust Collector for Dust Removal. Int. J. Coal Prep. Util. 2021, 1–16. [Google Scholar] [CrossRef]
- Nie, W.; Guo, C.; Zhang, S.; Peng, H.; Xu, C.; Ma, Q.; Yuan, M.; Zhou, W.; Guo, L.; Cheng, L. Optimization of Spraying Dust Reduction Technology of Continuous Miner Machine and the Dust Environment in a Tunnel, Based on Computational Fluid Dynamics (CFD) Technology. Powder Technol. 2022, 398, 117044. [Google Scholar] [CrossRef]
- Qi, X.-M.; Luo, Y.; Song, M.-Y.; Liu, Y.; Shu, T.; Liu, Y.; Pang, J.-L.; Wang, J.; Wang, C. Pneumoconiosis: Current Status and Future Prospects. Chin. Med. J. 2021, 134, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, G.; Fan, C.; Ge, S. Research Progress of Coal Damage under Unsteady Load in China. Geofluids 2021, 2021, 5610391. [Google Scholar] [CrossRef]
- Yu, H.; Jin, Y.C.; Cheng, W.; Yang, X.; Peng, X.; Xie, Y. Multiscale Simulation of Atomization Process and Droplet Particles Diffusion of Pressure-Swirl Nozzle. Powder Technol. 2021, 379, 127–143. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Shen, C.; Wang, M.; Xing, Y. Verisimilar Research on the Dust Movement in the Underground Tunneling at the Roadheader Cutterhead Dynamic Rotation. Energy 2022, 238, 121978. [Google Scholar] [CrossRef]
- Xie, Z.; Xiao, Y.; Jiang, C.; Ren, Z.; Li, X.; Yu, K. Numerical Research on Airflow-Dust Migration Behavior and Optimal Forced Air Duct Installation Position in a Subway Tunnel during Drilling Operation. Powder Technol. 2021, 388, 176–191. [Google Scholar] [CrossRef]
- Wang, H.; Sa, Z.; Cheng, W.; Zhang, R.; Yang, S. Effects of Forced-Air Volume and Suction Region on the Migration and Dust Suppression of Air Curtain during Fully Mechanized Tunneling Process. Process Saf. Environ. Prot. 2021, 145, 222–235. [Google Scholar] [CrossRef]
- Cai, X.; Nie, W.; Yin, S.; Liu, Q.; Hua, Y.; Guo, L.; Cheng, L.; Ma, Q. An Assessment of the Dust Suppression Performance of a Hybrid Ventilation System during the Tunnel Excavation Process: Numerical Simulation. Process Saf. Environ. Prot. 2021, 152, 304–317. [Google Scholar] [CrossRef]
- Cheng, W.; Yu, H.; Zhou, G.; Nie, W. The Diffusion and Pollution Mechanisms of Airborne Dusts in Fully-Mechanized Excavation Face at Mesoscopic Scale Based on CFD-DEM. Process Saf. Environ. Prot. 2016, 104, 240–253. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, W.; Wu, L.; Wang, H.; Xie, Y. Mechanisms of Dust Diffuse Pollution under Forced-Exhaust Ventilation in Fully-Mechanized Excavation Faces by CFD-DEM. Powder Technol. 2017, 317, 31–47. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Zhang, F.; Lu, Y.; Bao, Y. Study on Dust Diffusion Characteristics of Continuous Dust Sources and Spray Dust Control Technology in Fully Mechanized Working Face. Powder Technol. 2022, 396, 718–730. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Wen, Z.; Wei, L. Applying the Similarity Theory to Model Dust Dispersion during Coal-Mine Tunneling. Process Saf. Environ. Prot. 2021, 148, 415–427. [Google Scholar] [CrossRef]
- Jiang, Z.A.; Yang, B.; Zhang, G.L.; Zeng, F.B.; Wang, Y.P. Analysis of Dust Pollution Effect of Cutting Dust and Ventilation Control Parameters at the Digging Face in Plateau Mines. J. China Coal Soc. 2021, 46, 2146–2157. [Google Scholar]
- Li, Y.; Wang, P.; Liu, R.; Jiang, Y.; Han, H. Determination of the Optimal Axial-to-Radial Flow Ratio of the Wall-Mounted Swirling Ventilation in Fully Mechanized Excavation Face. Powder Technol. 2020, 360, 890–910. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, W.; Liu, Q.; Yin, S.; Peng, H. Effect of Wind Curtain on Dust Extraction in Rock Tunnel Working Face: CFD and Field Measurement Analysis. Energy 2020, 197, 117214. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, W.; Cai, P.; Liu, Y.; Peng, H.; Liu, Q. Pattern Characterization Concerning Spatial and Temporal Evolution of Dust Pollution Associated with Two Typical Ventilation Methods at Fully Mechanized Excavation Faces in Rock Tunnels. Powder Technol. 2018, 334, 117–131. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, W.; Liu, Q.; Peng, H.; Wei, W.; Cai, P. The Development and Application of a Novel Multi-Radial-Vortex-Based Ventilation System for Dust Removal in a Fully Mechanized Tunnelling Face. Tunn. Undergr. Space Technol. 2020, 98, 103253. [Google Scholar] [CrossRef]
- Yin, S.; Nie, W.; Guo, L.; Liu, Q.; Hua, Y.; Cai, X.; Cheng, L.; Yang, B.; Zhou, W. CFfD Simulations of Air Curtain Dust Removal Effect by Ventilation Parameters during Tunneling. Adv. Powder Technol. 2020, 31, 2456–2468. [Google Scholar] [CrossRef]
- Yang, X.; Yu, H.; Wang, Y.; Cheng, W.; Hou, C.; Ye, Y. Study on the Modularized Airflow-Diverging System and Dust-Control Technology in the Fully Mechanized Heading Face. Powder Technol. 2022, 402, 117325. [Google Scholar] [CrossRef]
- Chang, P.; Xu, G.; Huang, J. Numerical Study on DPM Dispersion and Distribution in an Underground Development Face Based on Dynamic Mesh. Int. J. Min. Sci. Technol. 2020, 30, 471–475. [Google Scholar] [CrossRef]
- Zhou, H.; Zhong, K.; Jia, H.; Kang, Y. Analysis of the Effects of Dynamic Mesh Update Method on Simulating Indoor Airflow Induced by Moving Objects. Build. Environ. 2022, 212, 108782. [Google Scholar] [CrossRef]
- Nazif, H.R.; Tabrizi, H.B. Development of Boundary Transfer Method in Simulation of Gas–Solid Turbulent Flow of a Riser. Appl. Math. Model. 2013, 37, 2445–2459. [Google Scholar] [CrossRef]
- Barman, P.C. Introduction to Computational Fluid Dynamics. Int. J. Inf. Sci. Comput. 2016, 3, 117–120. [Google Scholar] [CrossRef]
- Wang, F.-J. Computational Fluid Dynamics Analysis–CFD Software Principle and Application; Tsinghua University Press: Beijing, China, 2004. [Google Scholar]
- Launder, B.E. DB Spalding Mathematical Models of Turbulence; Academy Press: London, UK, 1972. [Google Scholar]
- Fan, C.; Qi, Q.; Chen, X.; Ge, S. Study on the Characteristics of Induced Airflow and Particle Dispersion Based on the Multivariate Two-Factor Model. PLoS ONE 2022, 17, e0263740. [Google Scholar] [CrossRef]
- Xu, G.; Luxbacher, K.D.; Ragab, S.; Xu, J.; Ding, X. Computational Fluid Dynamics Applied to Mining Engineering: A Review. Int. J. Min. Reclam. Environ. 2017, 31, 251–275. [Google Scholar] [CrossRef]
- Stewart, H.B.; Wendroff, B. Two-Phase Flow: Models and Methods. J. Comput. Phys. 1984, 56, 363–409. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Ma, Y.; Jing, B.; Sun, B.; Han, F.; He, M.; Chen, X. Numerical Analysis on Spatial Distribution for Concentration and Particle Size of Particulate Pollutants in Dust Environment at Fully Mechanized Coal Mining Face. Powder Technol. 2021, 383, 143–158. [Google Scholar] [CrossRef]
- Hu, S.; Liao, Q.; Feng, G.; Huang, Y.; Shao, H.; Fan, Y.; Ye, Y. Numerical Study of Gas-Solid Two-Phase Flow around Road-Header Drivers in a Fully Mechanized Excavation Face. Powder Technol. 2019, 344, 959–969. [Google Scholar] [CrossRef]
- Matsson, J.E. An Introduction to ANSYS Fluent 2021; SDC Publications: Mission, KS, USA, 2021; ISBN 1630574627. [Google Scholar]
- Liu, X.; Qian, J.; Wang, E.; Zhang, Z. Study of Integrated Vortex Ventilation and Dust Removal System in Mechanized Excavation Face. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 42–51. [Google Scholar] [CrossRef]
- UDF Manual. Ansys Fluent 12.0. In Theory Guid; Researchgate: Berlin, Germany, 2009. [Google Scholar]
- Duan, J.; Zhou, G.; Yang, Y.; Jing, B.; Hu, S. CFD Numerical Simulation on Diffusion and Distribution of Diesel Exhaust Particulates in Coal Mine Heading Face. Adv. Powder Technol. 2021, 32, 3660–3671. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, Y. Preparation, Properties and Application of Gel Materials for Coal Gangue Control. Energies 2022, 15, 557. [Google Scholar] [CrossRef]
- Cao, J.; Xie, C.; Hou, Z. Ecological Evaluation of Heavy Metal Pollution in the Soil of Pb-Zn Mines. Ecotoxicology 2022, 31, 259–270. [Google Scholar] [CrossRef]
Circumference Equivalent Particle Size (μm) | Cumulative Percentage/% |
---|---|
1.380 | 1.060 |
5.500 | 74.900 |
10.030 | 89.250 |
15.110 | 92.830 |
21.900 | 94.080 |
48.250 | 98.710 |
97.645 | 100.000 |
Projects | Solving Parameters | Parameter Setting |
---|---|---|
Model | Solver Type | Pressure based |
Viscous Model | Standard model | |
Pressure-Velocity Coupling | SIMPLEC | |
Convergence Criterion | 10−3 | |
Inlet Boundary Type | velocity-inlet | |
Velocity Type | Absolute | |
Near-wall Treatment | Standard Wall Functions | |
Velocity Magnitude | 10 m/s | |
Gradient Discretization | Least Square Cell Based | |
Formulation | Implicit | |
Outlet Boundary Type | Pressure outlet | |
Spatial Discretization | Second Order Upwind | |
Boundary conditions | Velocity Magnitude | 10 m/s |
Density | 1.225 kg/m3 | |
Hydraulic Diameter | 10 m/s | |
Turbulent Intensity | 3.07% | |
Wall Shear Condition | No Slip | |
Viscosity | 1.81 × 10−5 kg/m·s | |
Stochastic Tracking | Discrete random walk model |
Projects | Solving Parameters | Parameter Setting |
---|---|---|
Discrete phase parameter setting | Diameter distribution | Rosin-rammler |
Min. Diameter | 1 × 10−6 m | |
Max. Diameter | 1 × 10−4 m | |
Mean Diameter | 5 × 10−6 m | |
flow rate | 0.01 kg/s | |
Injection Type | Surface | |
Material | Coal-hv | |
Time Scale Constant | 0.15 | |
Velocity magnitude | 1.2 m/s | |
Stochastic Tracking | Discrete random walk model |
Projects | Solving Parameters | Parameter Setting |
---|---|---|
Dynamic grid parameter setting | Body grid regeneration method | Layering |
Control parameters for the paving method Separation factor | Constant Height | |
Separation factor | 0.6 | |
Collapse factor | 0.4 | |
Velocity magnitude of the dynamic grid | 0.1 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, H.; Ge, S.; Deng, C.; Fan, C.; Ma, G.; Li, W. Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement. Energies 2022, 15, 8945. https://doi.org/10.3390/en15238945
Chen X, Zhang H, Ge S, Deng C, Fan C, Ma G, Li W. Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement. Energies. 2022; 15(23):8945. https://doi.org/10.3390/en15238945
Chicago/Turabian StyleChen, Xi, Hao Zhang, Shaocheng Ge, Cunbao Deng, Chaonan Fan, Guoliang Ma, and Weichao Li. 2022. "Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement" Energies 15, no. 23: 8945. https://doi.org/10.3390/en15238945
APA StyleChen, X., Zhang, H., Ge, S., Deng, C., Fan, C., Ma, G., & Li, W. (2022). Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement. Energies, 15(23), 8945. https://doi.org/10.3390/en15238945