Design and Analysis of a Series-Type Permanent Magnet Axial Flux-Switching Memory Machine
Abstract
:1. Introduction
2. Topology and Flux Control Principle
2.1. Machine Topology
2.2. Description of the Flux Control Principle Based on the Hysteresis Model
3. Design of the SPM-AFSM Machine
3.1. Dimensioning Key Parameters
3.2. Design of the SPM
3.3. Saturation Current Determination
4. Electromagnetic Performance Analysis
4.1. Air-Gap Flux Density and EMF
4.2. Torque
4.3. Flux Regulating Characteristic and Torque-Speed Curves
5. Experimental Validation
6. Conclusions
- The ratio of the LCF PM is a key factor in determining the flux regulation capability. A higher LCF PM ratio is preferable for a wider flux regulation range. However, the air-gap flux density will be compromised if the total amount of PMs remains unchanged.
- By varying the magnetization state of the LCF PM, the total magnetic flux produced by the SPM can be regulated. However, due to the forward magnetization of the HCF PM, the LCF PM can only change its magnetization state in the same magnetization direction as the adjacent HCF PM.
- Both the simulated and experimentally measured back-EMFs showed the hysteresis characteristic due to the inherent hysteretic property of LCF PMs.
- The magnetic flux can be controlled dynamically using current pulses at a small energy expense to achieve high efficiency in the high-speed region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Athavale, A.; Reigosa, D.; Akatsu, K.; Sakai, K.; Lorenz, R.D. Scalability and Key Tradeoffs of Variable Flux PM Machines for EV Traction Motor Systems. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 2292–2299. [Google Scholar]
- Sakai, K.; Misu, D.; Yuki, K.; Yasui, K.; Hashiba, Y.; Takahashi, N. New generation motor for energy saving. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 1354–1358. [Google Scholar]
- Han, M.; Besson, C.; Savary, A.; Becher, Y. Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor. Int. J. Electr. Comput. Eng. 2019, 13, 296–303. [Google Scholar]
- Ibrahim, M.; Pillay, P. Design of high torque density variable flux permanent magnet machine using Alnico magnets. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3535–3540. [Google Scholar]
- Ostovic, V. Memory motors-a new class of controllable flux PM machines for a true wide speed operation. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference 36th IAS Annual Meeting, Chicago, IL, USA, 30 September–4 October 2001; Volume 4, pp. 2577–2584. [Google Scholar]
- Yang, H.; Liu, W.; Zheng, H.; Lin, H.; Zhu, Z.Q.; Peng, F.; Li, Y.; Lyu, S.; Huang, X.A. Novel Delta-Type Hybrid-Magnetic-Circuit Variable Flux Memory Machine for Electrified Vehicle Applications. IEEE Trans. Transp. Electrif. 2022, 8, 3512–3523. [Google Scholar] [CrossRef]
- Yu, C.; Chau, K.T.; Liu, X.; Jiang, J.Z. A flux-mnemonic permanent magnet brushless motor for electric vehicles. J. Appl. Phys. 2008, 103, 07F103. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhu, Z.Q.; Liu, X.; Pride, A.; Deodhar, R.; Sasaki, T. Cross coupling effect in hybrid magnet memory motor. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014; pp. 1–6. [Google Scholar]
- Li, Y.; Yang, H.; Lin, H. A Novel Stator Flux-Concentrated Hybrid Permanent Magnet Memory Machine. IEEE Trans. Magn. 2021, 57, 1–6. [Google Scholar] [CrossRef]
- Zhu, X.; Quan, L.; Chen, D.; Cheng, M.; Hua, W.; Sun, X. Electromagnetic Performance Analysis of a New Stator-Permanent-Magnet Doubly Salient Flux Memory Motor Using a Piecewise-Linear Hysteresis Model. IEEE Trans. Magn. 2011, 47, 1106–1109. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, H.; Lin, H.; Zhu, Z.-Q.; Fu, W.; Liu, W.; Lei, J.; Lyu, S. Investigation of Hybrid-Magnet-Circuit Variable Flux Memory Machines with Different Hybrid Magnet Configurations. IEEE Trans. Ind. Appl. 2021, 57, 340–351. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Lin, H. A Hybrid Field Analytical Method of Hybrid-Magnetic-Circuit Variable Flux Memory Machine Considering Magnet Hysteresis Nonlinearity. IEEE Trans. Transp. Electrif. 2021, 7, 2763–2774. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Y.; Xiang, Z.; Yang, L.; Xu, L. Electromagnetic Performance Analysis of a New Stator-Partitioned Flux Memory Machine Capable of Online Flux Control. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Maekawa, S.; Yuki, K.; Matsushita, M.; Nitta, I.; Hasegawa, Y.; Shiga, T.; Hosoito, T.; Nagai, K.; Kubota, H. Study of the Magnetization Method Suitable for Fractional-Slot Concentrated-Winding Variable Magnetomotive-Force Memory Motor. IEEE Trans. Power Electron. 2014, 29, 4877–4887. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, S.; Fu, W. Electromagnetic Performance Analysis of Novel Flux-Regulatable Permanent Magnet Machines for Wide Constant-Power Speed Range Operation. Energies 2015, 8, 13971–13984. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-M.; Choi, J.-Y.; Lee, S.-H.; Jang, S.-M. Characteristic Analysis and Experiment of Surface-Mounted Type Variable-Flux Machines Considering Magnetization/Demagnetization Based on Electromagnetic Transfer Relations. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.; Pride, A.; Deodhar, R.; Sasaki, T. A Novel Variable Flux Memory Machine with Series Hybrid Magnets. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar]
- Limsuwan, N.; Kato, T.; Akatsu, K.; Lorenz, R.D. Design and evaluation of a variable-flux flux-intensifying interior permanent magnet machine. IEEE Trans. Ind. Appl. 2012, 50, 3670–3677. [Google Scholar]
- Tsunata, R.; Takemoto, M.; Ogasawara, S.; Orikawa, K. Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications. IEEE Trans. Ind. Appl. 2021, 57, 3545–3561. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z.Q.; Lin, H.; Zhan, H.L.; Hua, H.; Zhuang, E.; Fang, S.; Huang, Y. Hybrid-Excited Switched-Flux Hybrid Magnet Memory Machines. IEEE Trans. Magn. 2016, 52, 1–15. [Google Scholar] [CrossRef]
- Hao, L.; Lin, M.; Li, W.; Luo, H.; Fu, X.; Jin, P. Novel Dual-Rotor Axial Field Flux-Switching Permanent Magnet Machine. IEEE Trans. Magn. 2012, 48, 4232–4235. [Google Scholar] [CrossRef]
- Mayergoyz, I.D. Mathematical Models of Hysteresis and Their Applications; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Zhang, W.; Liang, X.; Lin, M.; Hao, L.; Li, N. Design and Analysis of Novel Hybrid-Excited Axial Field Flux-Switching Permanent Magnet Machines. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Gagas, B.S.; Sasaki, K.; Athavale, A.; Kato, T.; Lorenz, R.D. Magnet Temperature Effects on the Useful Properties of Variable Flux PM Synchronous Machines and a Mitigating Method for Magnetization Changes. IEEE Trans. Ind. Appl. 2017, 53, 2189–2199. [Google Scholar] [CrossRef]
Residual Flux Density Br (T) | Coercive Force Hc (KA/m) | Operating Temperature °C | |
---|---|---|---|
Alnico 9 | 1.05 | 119 | 20 |
NdFeB 35 | 1.2 | 889 | 20 |
Parameter | Value |
---|---|
Stator pole number | 12 |
Rotor pole number | 10 |
Stator outer diameter | 160 mm |
Stator inner diameter | 97 mm |
Axial length | 84 mm |
Air-gap length | 2 mm |
LCF magnet thickness | 4 mm |
HCF magnet thickness | 2 mm |
Magnet length | 15 mm |
Turns of excitation coil | 60 |
Output power | 250 W |
Rated voltage | 32 V |
Rated speed | 750 rpm |
Rated frequency | 125 Hz |
Rated phase current | 4 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Xu, D.; Hao, X.; Li, J. Design and Analysis of a Series-Type Permanent Magnet Axial Flux-Switching Memory Machine. Energies 2022, 15, 8954. https://doi.org/10.3390/en15238954
Li N, Xu D, Hao X, Li J. Design and Analysis of a Series-Type Permanent Magnet Axial Flux-Switching Memory Machine. Energies. 2022; 15(23):8954. https://doi.org/10.3390/en15238954
Chicago/Turabian StyleLi, Nian, Da Xu, Xiangjun Hao, and Jianhui Li. 2022. "Design and Analysis of a Series-Type Permanent Magnet Axial Flux-Switching Memory Machine" Energies 15, no. 23: 8954. https://doi.org/10.3390/en15238954
APA StyleLi, N., Xu, D., Hao, X., & Li, J. (2022). Design and Analysis of a Series-Type Permanent Magnet Axial Flux-Switching Memory Machine. Energies, 15(23), 8954. https://doi.org/10.3390/en15238954