Shale Formation Damage during Fracturing Fluid Imbibition and Flowback Process Considering Adsorbed Methane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Shale Samples
2.2. Experimental Method for Imbibition and Flowback of Shale Fracturing Fluid
3. Experimental Results
3.1. Influence of Confining Pressure on Imbibition of Shale Fracturing Fluid
3.2. Fracturing Fluid Imbibition
3.3. Changes in Shale Permeability during Fracturing Fluid Flowback
4. Influence of Shale Multiscale Structure on the Fracturing Fluid Flowback Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Chen, M.; Liu, J.; Kang, Y.; Li, Y.; Bai, J.; Tao, L. Evaluation of Multi-Gas Transport Behavior in Shales Through a Universal Model. In Proceedings of the Unconventional Resources Technology Conference, Brisbane, Australia, 18–19 November 2019. [Google Scholar]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Gu, X.; Cole, D.R.; Rother, G.; Mildner, D.F.R.; Brantley, S.L. Pores in Marcellus Shale:a neutron scattering and FIB-SEM Study. Energy Fuels 2015, 29, 1295–1308. [Google Scholar] [CrossRef]
- Lu, J.; Mickler, P.J.; Nicot, J.-P.; Choi, W.; Esch, W.L.; Darvari, R. Geochemical interactions of shale and brine in autoclave experiments—understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales. AAPG (Am. Assoc. Pet. Geol.) Bull. 2017, 101, 1567–1597. [Google Scholar] [CrossRef]
- Yang, H.; Mao, G.; Song, Q.; Ji, Z.; Liu, F. Large-scale fracturing technology for shale gas reservoir in Pengye HF-1 well. J. Southwest Pet. Univ. (Sci. Technol. Ed.) 2014, 36, 117–122. [Google Scholar]
- Zhang, J.; Xiong, W.; Zhao, Y. Large-scale fracturing technology for bridge plug sections in Well Longye 1HF. Reserv. Eval. Dev. 2018, 8, 76–80. [Google Scholar]
- King, G.E. Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. [Google Scholar]
- Taherdangkoo, R.; Tatomir, A.; Anighoro, T.; Sauter, M. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells. J. Contam. Hydrol. 2019, 221, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Javadpour, F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 2009, 48, 16–21. [Google Scholar] [CrossRef]
- Ozkan, E.; Raghavan, R.; Apaydin, O.G. Modeling of fluid transfer from shalematrix to fracture network. In Proceedings of the SPE Annual TechnicalConference and Exhibition, Society of Petroleum Engineers, Florence, Italy, 19 September 2010; Volume 9, pp. 19–22. [Google Scholar]
- Wu, K.; Chen, Z.; Li, X.; Xu, J.; Li, J.; Wang, K.; Wang, H.; Wang, S.; Dong, X. Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect. Fuel 2017, 205, 173–183. [Google Scholar] [CrossRef]
- Kuila, U.; Prasad, M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 2013, 61, 341–362. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Li, Y.; Liu, R.; Wang, Q. Microscopic pore structure characteristics and controlling factors of Longmaxi shale in Jiaoshiba area, Sichuan Basin. Nat. Gas Ind. B 2014, 34, 9–16. [Google Scholar]
- Chen, M.; Bai, J.; Kang, Y.; Chen, Z.; You, L.; Li, X.; Liu, J.; Zhang, Y. Redistribution of fracturing fluid in shales and its impact on gas transport capacity. J. Nat. Gas Sci. Eng. 2020, 86, 103747. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, Q.; Ning, Z.; Li, M.; Lyu, C.; Huang, L.; Wu, X. Experimental Investigation of Countercurrent Spontaneous Imbibition in Tight Sandstone Using Nuclear Magnetic Resonance. Energy Fuels 2018, 32, 6507–6517. [Google Scholar] [CrossRef]
- Lai, F.; Li, Z.; Wei, Q.; Zhang, T.; Zhao, Q. Experimental Investigation of Spontaneous Imbibition in a Tight Reservoir with Nuclear Magnetic Resonance Testing. Energy Fuels 2016, 30, 8932–8940. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, S.; Wang, F.; Pan, Z.; Mou, J.; Zhou, T.; Ren, Z. Experimental Investigation on Imbibition-Front Progression in Shale Based on Nuclear Magnetic Resonance. Energy Fuels 2016, 30, 9097–9105. [Google Scholar]
- Peng, S.; Xiao, X. Investigation of multiphase fluid imbibition in shale through synchrotron-based dynamic micro-CT imaging. J. Geophys. Res. Solid Earth 2017, 122, 4475–4491. [Google Scholar] [CrossRef]
- Siddiqui, M.A.Q.; Chen, X.; Iglauer, S.; Roshan, H. A multiscale study on shale wettability: Spontaneous imbibition vs contact angle. Water Resour. Res. 2019, 55, 1–21. [Google Scholar] [CrossRef]
- Yang, R.; Hu, Q.; He, S.; Hao, F.; Guo, X.; Yi, J.; He, X. Pore structure, wettability and tracer migration in four leading shale formations in the Middle Yangtze Platform, China. Mar. Pet. Geol. 2018, 89, 415–427. [Google Scholar] [CrossRef]
- Cambre, E.; Abedini, A.; Zhang, X.; Boyle, K.; Hughes, E. Novel Oil Flow Enhancement Chemistry for Unconventional Formations Evaluated and Optimized by Cutting-Edge Methodology. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 22 July 2019. [Google Scholar]
- Ferrari, A.; Jimenez-Martinez, J.; Le Borgne, T.; Méheust, Y.; Lunati, I. Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resour. Res. 2015, 51, 1381–1400. [Google Scholar] [CrossRef] [Green Version]
- Watson, F.; Maes, J.; Geiger, S.; Mackay, E.; Singleton, M.; McGravie, T.; Anouilh, T.; Jobe, T.D.; Zhang, S.; Agar, S.; et al. Comparison of Flow and Transport Experiments on 3D Printed Micromodels with Direct Numerical Simulations. Transp. Porous Media 2018, 129, 449–466. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liang, T.; Zhu, P.; Qi, P.; Lu, J.; Huh, C.; Balhoff, M. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media. Lab Chip 2017, 17, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Hu, Z.; Gu, Z. Low-Field NMR Investigation of the Dynamic Adsorption–Desorption Process of Shale Gas. Energy Fuels 2021, 35, 4762–4774. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Ji, W.; Wang, X. Research on the auto-removal mechanism of shale aqueous phase trapping using low field nuclear magnetic resonance technique. J. Pet. Sci. Eng. 2016, 137, 63–73. [Google Scholar] [CrossRef]
- Shen, Y.; Li, C.; Ge, H.; Yang, X.; Zeng, X. Spontaneous imbibition in asymmetric branch-like throat structures in unconventional reservoirs. J. Nat. Gas Sci. Eng. 2017, 44, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Bazin, B.; Bekri, S.; Vizika, O.; Herzhaft, B.; Aubry, E. Fracturing in tight gas reservoirs: Application of special-core-analysis methods to investigate formation- damage mechanisms. SPE J. 2010, 15, 969–976. [Google Scholar] [CrossRef]
- Chakraborty, N.; Karpyn, Z.; Liu, S.; Yoon, H. Permeability evolution of shale during spontaneous imbibition. J. Nat. Gas Sci. Eng. 2017, 38, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Kang, Y.; Selvadurai, A.; You, L.; Tian, J. The role of phase trapping on permeability reduction in an ultra-deep tight sandstone gas reservoirs. J. Pet. Sci. Eng. 2019, 178, 311–323. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, S.; Yang, L.; Ma, X.; Zou, Y.; Lin, H. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs. J. Nat. Gas Sci. Eng. 2016, 36, 893–905. [Google Scholar] [CrossRef]
- Singh, H. A critical review of water uptake by shales. J. Nat. Gas Sci. Eng. 2016, 34, 751–766. [Google Scholar] [CrossRef] [Green Version]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 4, 603–616. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, X.; You, L.; Chen, Q.; Zhang, S.; Cui, Z. Experimental study on natural flowback of shale gas reservoirs to alleviate water trap damage. Nat. Gas Geosci. 2017, 28, 819–827. [Google Scholar]
- Chen, Y.; Cao, P.; Mao, D.; Pu, C.; Fan, X. Morphological analysis of sheared rock with water–rock interaction effect. Int. J. Rock Mech. Min. Sci. 2014, 70, 264–272. [Google Scholar] [CrossRef]
- Ju, J.; Li, Q.; Xu, J.; Wang, X.; Lou, J. Self-healing effect of water- conducting fractures due to water-rock interactions in undermined rock strata and its mechanisms. Bull. Eng. Geol. Environ. 2020, 79, 287–297. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, H.; Guan, B.; Liu, P.; Guo, L.; Wu, J.; Yi, X. Causes of low flowback efficiency of marine shale fracturing fluids. Nat. Gas Ind. 2017, 37, 46–51. [Google Scholar]
Mineralogy, wt.% | TOC, wt.% | Ro, % | ||||||
---|---|---|---|---|---|---|---|---|
Clay | Quartz | K-Feldspar | Plagioclase | Calcite | Dolomite | Pyrite | ||
33.69 | 45.55 | 1.98 | 6.13 | 3.22 | 5.92 | 3.51 | 2.98 | 2.94 |
Sample No. | Length (mm) | Diameter (mm) | Weight of Dry Sample (g) | Porosity (%) | Permeability (mD) |
---|---|---|---|---|---|
N-8 | 48.38 | 24.84 | 62.7118 | 3.36 | 0.0012 |
N-16 | 49.22 | 24.90 | 64.3564 | 2.73 | 0.0024 |
N-25 | 47.94 | 25.00 | 63.5663 | 2.56 | 0.0011 |
N-29 | 49.56 | 24.82 | 65.2861 | 3.41 | 0.0021 |
N-38 | 49.64 | 25.10 | 63.6002 | 4.03 | 0.0166 |
N-52 | 47.46 | 25.08 | 60.5159 | 4.53 | 0.0361 |
N-67 | 48.24 | 24.98 | 64.7051 | 1.18 | 0.0009 |
Sample No. | Mass before Imbibition (g) | Mass after Imbibition (g) | Pore Pressure (MPa) | Imbibition Pressure Difference (MPa) | Mass of Imbibed Fluid Per Unit Mass of Shale (g/g) |
---|---|---|---|---|---|
N-8 | 62.7118 | 62.9873 | 3.743 | 0.682 | 0.00439 |
N-16 | 64.3564 | 64.3918 | 2.652 | 0.134 | 0.00055 |
N-25 | 63.5663 | 63.6580 | 2.719 | 0.600 | 0.00144 |
N-29 | 65.2861 | 65.3660 | 2.662 | 0.238 | 0.00122 |
N-38 | 63.6002 | 63.7890 | 2.596 | 0.284 | 0.00297 |
N-52 | 60.5159 | 60.5287 | 2.675 | 0.120 | 0.00021 |
N-67 | 64.7051 | 64.7431 | 2.780 | 0.250 | 0.00059 |
Sample No. | Ba2+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | Sr2+ (mg/L) | CO32− (mg/L) | HCO3− (mg/L) | SO42− (mg/L) |
---|---|---|---|---|---|---|---|
1 (shale sample) | 9.28 | 7.20 | 1.40 | 0.60 | / | 149.33 | 73.35 |
2 (shale sample) | 11.42 | 8.56 | 3.50 | 0.61 | / | 134.25 | 14.81 |
3 (shale sample) | 12.37 | 6.41 | 1.60 | 0.54 | / | 135.75 | 32.78 |
4 (shale sample) | 13.07 | 4.73 | 0.20 | 0.54 | / | 179.50 | 85.56 |
5 (shale sample) | 13.38 | 24.89 | 6.50 | 0.82 | / | 99.55 | 85.24 |
6 (shale sample) | 13.92 | 17.92 | 8.25 | 0.92 | / | 83.71 | 79.33 |
7 (shale sample) | 17.10 | 6.00 | 2.00 | 0.56 | / | 118.66 | 20.33 |
8 (flowback fluid) | 83.95 | 183.00 | 45.00 | 55.65 | 76.93 | 574.70 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yan, M.; Kang, Y.; Fang, S.; Liu, H.; Wang, W.; Shen, J.; Chen, Z. Shale Formation Damage during Fracturing Fluid Imbibition and Flowback Process Considering Adsorbed Methane. Energies 2022, 15, 9176. https://doi.org/10.3390/en15239176
Chen M, Yan M, Kang Y, Fang S, Liu H, Wang W, Shen J, Chen Z. Shale Formation Damage during Fracturing Fluid Imbibition and Flowback Process Considering Adsorbed Methane. Energies. 2022; 15(23):9176. https://doi.org/10.3390/en15239176
Chicago/Turabian StyleChen, Mingjun, Maoling Yan, Yili Kang, Sidong Fang, Hua Liu, Weihong Wang, Jikun Shen, and Zhiqiang Chen. 2022. "Shale Formation Damage during Fracturing Fluid Imbibition and Flowback Process Considering Adsorbed Methane" Energies 15, no. 23: 9176. https://doi.org/10.3390/en15239176
APA StyleChen, M., Yan, M., Kang, Y., Fang, S., Liu, H., Wang, W., Shen, J., & Chen, Z. (2022). Shale Formation Damage during Fracturing Fluid Imbibition and Flowback Process Considering Adsorbed Methane. Energies, 15(23), 9176. https://doi.org/10.3390/en15239176