Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm
Abstract
:1. Introduction
2. Literature Review
3. Method
3.1. Support Vector Machine
3.2. Seagull Optimization Algorithm
- Behavior of migration
- b.
- Behavior of Attack
3.3. Improved Seagull Optimization Algorithm
3.4. Test of Algorithm Performance
4. Establishment of Load Forecasting Model and Analysis of Results
4.1. Establishment of Load Forecasting Model
4.2. Selection of Evaluation Indicators
5. Model Forecasting and Result Analysis
5.1. Case 1
5.2. Case 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [Google Scholar] [CrossRef]
- Liu, K.; Ashwin, T.R.; Hu, X.; Lucu, M.; Widanage, W.D. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries. Renew. Sustain. Energy Rev. 2020, 131, 110017. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Xiang, Y.; Li, J.; Peng, D. Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model. Sustainability 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Al-Dahidi, S.; Baraldi, P.; Zio, E.; Montelatici, L. Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production. Sustainability 2021, 13, 6417. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Butt, F.M.; Hussain, L.; Jafri, S.H.M.; Alshahrani, H.M.; Al-Wesabi, F.N.; Lone, K.J.; El Din, E.M.T.; Al Duhayyim, M. Intelligence based Accurate Medium and Long Term Load Forecasting System. Appl. Artif. Intell. 2022, 36, 2088452. [Google Scholar] [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-L.; Zhao, X.; Tseng, M.-L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [Google Scholar] [CrossRef]
- Lai, C.S.; Locatelli, G.; Pimm, A.; Wu, X.; Lai, L.L. A review on long-term electrical power system modeling with energy storage. J. Clean. Prod. 2021, 280, 124298. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 2020, 55, 102052. [Google Scholar] [CrossRef]
- Niu, D.X.; Yu, M.; Sun, L.J.; Gao, T.; Wang, K.K. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. Appl. Energy 2022, 313, 118801. [Google Scholar] [CrossRef]
- Agüero, J.; Rodríguez, F.; Giménez, A. Energy management based on productiveness concept. Renew. Sustain. Energy Rev. 2013, 22, 92–100. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, W.; Gong, X. Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning. Energies 2019, 12, 3308. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L. Enhanced Deep Networks for Short-Term and Medium-Term Load Forecasting. IEEE Access 2018, 7, 4045–4055. [Google Scholar] [CrossRef]
- Haben, S.; Arora, S.; Giasemidis, G.; Voss, M.; Greetham, D.V. Review of low voltage load forecasting: Methods, applications, and recommendations. Appl. Energy 2021, 304, 117798. [Google Scholar] [CrossRef]
- Chitalia, G.; Pipattanasomporn, M.; Garg, V.; Rahman, S. Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Appl. Energy 2020, 278, 115410. [Google Scholar] [CrossRef]
- Dunea, D.; Iordache, S. Time Series Analysis of the Heavy Metals Loaded Wastewaters Resulted from Chromium Electroplating Process. Environ. Eng. Manag. J. 2011, 10, 421–434. [Google Scholar] [CrossRef]
- Farahat, M.A.; Talaat, M. Short-Term Load Forecasting Using Curve Fitting Prediction Optimized by Genetic Algorithms. Int. J. Energy Eng. 2012, 2, 23–28. [Google Scholar] [CrossRef]
- Dudek, G. Artificial Immune Clustering Algorithm to Forecasting Seasonal Time Series. Lect. Notes Comput. Sci. 2011, 6922, 468–477. [Google Scholar] [CrossRef]
- García-Ascanio, C.; Maté, C. Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy 2010, 38, 715–725. [Google Scholar] [CrossRef]
- Khatoon, S.; Singh, A.K. ANN based Electric Load Forecasting Applied to Real Time Data. In Proceedings of the Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015. [Google Scholar]
- Xu, X.; Niu, D.; Fu, M.; Xia, H.; Wu, H. A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search. Energies 2015, 8, 12388–12408. [Google Scholar] [CrossRef]
- Aneiros, G.; Vilar, J.; Raña, P. Short-term forecast of daily curves of electricity demand and price. Int. J. Electr. Power Energy Syst. 2016, 80, 96–108. [Google Scholar] [CrossRef]
- Cho, H.; Goude, Y.; Brossat, X.; Yao, Q. Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach. J. Am. Stat. Assoc. 2013, 108, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, X.; Wang, S.; Wang, D. Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2019, 109, 470–479. [Google Scholar] [CrossRef]
- Bo, H.; Nie, Y.; Wang, J. Electric Load Forecasting Use a Novelty Hybrid Model on the Basic of Data Preprocessing Technique and Multi-Objective Optimization Algorithm. IEEE Access 2020, 8, 13858–13874. [Google Scholar] [CrossRef]
- Li, C. A fuzzy theory-based machine learning method for workdays and weekends short-term load forecasting. Energy Build. 2021, 245, 111072. [Google Scholar] [CrossRef]
- Ge, Q.; Jiang, H.; He, M.; Zhu, Y.; Zhang, J. Power Load Forecast Based on Fuzzy BP Neural Networks with Dynamical Estimation of Weights. Int. J. Fuzzy Syst. 2020, 22, 956–969. [Google Scholar] [CrossRef]
- Yuan, C.H.; Niu, D.X.; Li, C.Z.; Sun, L.J.; Xu, L.X. Electricity Consumption Prediction Model Based on Bayesian Regularized BP Neural Network. Cyber Secur. Intell. Anal. 2020, 928, 528–535. [Google Scholar]
- Wang, Z.; Wang, X.; Ma, C.; Song, Z. A Power Load Forecasting Model Based on FA-CSSA-ELM. Math. Probl. Eng. 2021, 2021, 9965932. [Google Scholar] [CrossRef]
- Li, W.; Quan, C.; Wang, X.; Zhang, S. Short-Term Power Load Forecasting Based on a Combination of VMD and ELM. Pol. J. Environ. Stud. 2018, 27, 2143–2154. [Google Scholar] [CrossRef]
- Zhang, A.A.; Zhang, P.X.; Feng, Y.T. Short-term load forecasting for microgrids based on DA-SVM. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 68–80. [Google Scholar] [CrossRef]
- Dong, X.; Deng, S.; Wang, D. A short-term power load forecasting method based on k-means and SVM. J. Ambient Intell. Humaniz. Comput. 2021, 13, 5253–5267. [Google Scholar] [CrossRef]
- Yang, A.; Li, W.; Yang, X. Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines. Knowledge-Based Syst. 2019, 163, 159–173. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X.; Xin, Y.; Li, S. Study on short-term network forecasting based on SVM-MFA algorithm. J. Vis. Commun. Image Represent. 2019, 65, 102646. [Google Scholar] [CrossRef]
- Hsndl, J.; Knowles, J. An evolutionary approach to multi-objective clustering. IEEE Trans. Evol. Comput. 2006, 11, 56–76. [Google Scholar]
- Yue, C.T.; Qu, B.Y.; Yu, K.J.; Liang, J.; Li, X.D. A novel scalable test problem suite for multimodal multi objective optimization. Swarm Evol. Comput. 2019, 48, 62–71. [Google Scholar] [CrossRef]
- Available online: https://www.iteye.com/resource/huan_chen-10191360 (accessed on 20 March 2021).
- Chen, B.J.; Chang, M.W.; Lin, C.J. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001. IEEE Trans. Power Syst. 2004, 19, 1821–1830. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.L.; Dai, Y.Y.; Wang, T.; Chen, Y.J. Short-term power load forecasting based on multi-layer bidirectional recurrent neural network. IET Gener. Transm. Distrib. 2019, 13, 3847–3854. [Google Scholar] [CrossRef]
Function | Range | Dim | Opt |
---|---|---|---|
[−100, 100] | 30 | 0 | |
[−100, 100] | 30 | 0 | |
[−5.12, 5.12] | 30 | 0 | |
[−32, 32] | 30 | 0 |
Function | Algorithm | BEST | WORST | AVE | STD |
---|---|---|---|---|---|
F1 | MFO | 3.19 × 10−6 | 1.00 × 104 | 6.67 × 102 | 2.49 × 103 |
MVO | 8.04 × 10−2 | 2.55 × 10−1 | 1.67 × 10−1 | 4.35 × 10−2 | |
PSO | 1.62 × 10−14 | 1.38 × 10−11 | 2.30 × 10−12 | 3.38 × 10−12 | |
SOA | 2.24 × 10−30 | 1.51 × 10−18 | 5.22 × 10−20 | 2.71 × 10−19 | |
ISOA | 1.25 × 10−250 | 2.55 × 10−242 | 9.18 × 10−244 | 0 | |
F2 | MFO | 2.78 × 102 | 4.33 × 104 | 1.45 × 104 | 1.27 × 104 |
MVO | 7.77 | 45.2 | 22.5 | 9.78 | |
PSO | 1.18 | 13.2 | 6.45 | 2.77 | |
SOA | 1.27 × 10−12 | 1.35 × 10−3 | 4.64 × 10−5 | 2.43 × 10−4 | |
ISOA | 2.5 × 10−232 | 3.33 × 10−223 | 1.13 × 10−224 | 0 |
Function | Algorithm | BEST | WORST | AVE | STD |
---|---|---|---|---|---|
F3 | MFO | 82.7 | 2.29 × 102 | 1.37 × 102 | 3.97 × 101 |
MVO | 718. | 1.67 × 102 | 1.07 × 102 | 2.47 × 101 | |
PSO | 21.9 | 7.16 × 101 | 4.12 × 101 | 1.17 × 101 | |
SOA | 0 | 2.84 × 10−13 | 1.52 × 10−14 | 5.28 × 10−14 | |
ISOA | 0 | 0 | 0 | 0 | |
F4 | MFO | 9.09 × 10−4 | 20.0 | 10.2 | 8.87 |
MVO | 1.06 × 10−1 | 1.94 | 6.63 × 10−1 | 5.73 × 10−1 | |
PSO | 1.18 × 10−7 | 6.69 × 10−6 | 1.78 × 10−6 | 1.54 × 10−6 | |
SOA | 19.95641 | 19.96252 | 19.96057 | 1.38 × 10−3 | |
ISOA | 8.88 × 10−16 | 8.88 × 10−16 | 8.88 × 10−16 | 0 |
Simulation pseudocode of ISOA-SVM |
Begin 1: Prepare the training data and testing data 2: Set the relevant parameters of SVM 3: Set root mean square error (RMSE) between predictive and actual value as the fitness function 4: Initialize the ISOA population 5: Calculate the fitness of each search agent 6: X* = the best search agent 7: while (t < maximum number of iterations) 8: for each search agent 9: Update A, B, and fc 10: if (rand < 0.5) 11: Update the position by 12: else if 13: Update the position by 14: end if 15: end for 16: Calculate the fitness of each search agent 17: Update X* if there is a better one 18: t = t + 1 19: end while 20: Obtain the optimal penalty parameter and kernel function parameter of SVM by X* 21: SVM train and test 22: End |
Model | MAE (MW) | MAPE (%) | RMSE (MW) | R2 (%) |
---|---|---|---|---|
ISOA-SVM | 7.0776 | 1.0958 | 8.6227 | 98.124 |
SOA-SVM | 13.662 | 2.1095 | 16.501 | 96.513 |
SVM | 16.563 | 2.5656 | 20.489 | 92.960 |
BP | 19.479 | 3.1734 | 24.978 | 94.879 |
Model | MAE (MW) | MAPE (%) | RMSE (MW) | R2 (%) |
---|---|---|---|---|
ISOA-SVM | 6.6434 | 1.1179 | 9.2442 | 97.499 |
SOA-SVM | 8.7967 | 1.4482 | 10.491 | 95.253 |
SVM | 11.773 | 1.9601 | 15.115 | 94.5821 |
BP | 12.576 | 2.034 | 14.707 | 89.7325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, N.; Zhang, Z.; Chen, Y. Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm. Energies 2022, 15, 9197. https://doi.org/10.3390/en15239197
Zhang S, Zhang N, Zhang Z, Chen Y. Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm. Energies. 2022; 15(23):9197. https://doi.org/10.3390/en15239197
Chicago/Turabian StyleZhang, Suqi, Ningjing Zhang, Ziqi Zhang, and Ying Chen. 2022. "Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm" Energies 15, no. 23: 9197. https://doi.org/10.3390/en15239197
APA StyleZhang, S., Zhang, N., Zhang, Z., & Chen, Y. (2022). Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm. Energies, 15(23), 9197. https://doi.org/10.3390/en15239197