Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea
Abstract
:1. Introduction
1.1. Background
1.2. Goal and Scope
1.3. Research Steps
2. Literature Review
2.1. Louver
2.2. Building Energy Load
2.3. Results
3. Planning and Calculation for Thermal Load Balance Simulations
3.1. Outline
3.2. Set Conditions
3.2.1. Spatial and Material Conditions
3.2.2. Temporal Conditions
3.2.3. Building Program, Schedule, and Load
3.2.4. Variables
3.3. Results
4. Simulation Data Analysis and Louver Angle Optimization
4.1. Optimized Louver Angle in Different Seasons
4.2. Optimized Louver Angle Considering Annual Energy Consumption
4.3. Optimization of the Louver Installation and Operation Angle
4.3.1. Fixed Louver
4.3.2. Kinetic Louver
4.4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Cuce, E.; Riffat, S.B. A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev. 2015, 41, 695–714. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, X.; Setunge, S.; Tu, J.; Liu, J.; Shia, L. Naturally ventilated double-skin façade with adjustable louvers. Sol. Energy 2021, 225, 33–43. [Google Scholar] [CrossRef]
- Năstase, G.; Doboși, I.S.; Brezeanu, A.I.; Taus, D.; Tăbăcaru, M.B.; Vuțoiu, B.G.; Rusu, D.; Bulmez, A.M.; Iordan, N.F. Experimental Heat Transfer, Sound Insulation and Interior Comfort Parameters Assessment on a Box Double-Skin Façade. Buildings 2022, 12, 730. [Google Scholar] [CrossRef]
- Srisamranrungruang, T.; Hiyam, K.a. Balancing of natural ventilation, daylight, thermal effect for a building with double-skin perforated facade (DSPF). Energy Build. 2020, 210, 109765. [Google Scholar] [CrossRef]
- Jakubowsky, M.; de Boer, J. Façade elements for room illumination with integrated microstructures for daylight redirection and LED lighting. Energy Build. 2022, 266, 112106. [Google Scholar] [CrossRef]
- Mesloub, A.; Ghosh, A. Daylighting Performance of Light Shelf Photovoltaics (LSPV) for Office Buildings in Hot Desert-Like Regions. Appl. Sci. 2020, 10, 7959. [Google Scholar] [CrossRef]
- Bao, S.; Zou, S.; Zhao, M.; Chen, Q.; Li, B. Experimental Study on the Modular Vertical Greening Shading in Summer. Int. J. Environ. Res. Public Health 2022, 19, 11648. [Google Scholar] [CrossRef]
- Alsukkar, M.; Hu, M.; Gadi, M.; Su, Y. A Study on Daylighting Performance of Split Louver with Simplified Parametric Control. Buildings 2022, 12, 594. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y.; Mandour, M.A.; Omar, O.E. A novel automated louver with parametrically-angled reflective slats: Design evaluation for better practicality and daylighting uniformity. J. Build. Eng. 2021, 42, 102438. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Shao, L.; Riffat, S. Interactions between louvers and ceiling geometry for maximum daylighting performance. Renew. Energy 2009, 34, 223–232. [Google Scholar]
- Sakamoto, S.; Aoki, A. Numerical and experimental study on noise shielding effect of eaves/louvers attached on building façade. Build. Environ. 2015, 94, 773–784. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Wongpanyathaworn, K. Optimising Louver Location to Improve Indoor Thermal Comfort based on Natural Ventilation. Procedia Eng. 2012, 49, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Yim, H.L.; Kim, J.H. An Evaluation of Interior Illuminance in the Indoor Room to Different Louver type and Distance. KIEAE J. 2012, 2, 141–146. [Google Scholar]
- Cho, K.J.; Cho, D.W. Evaluation of Power Generation Performance for Architectural Applications of Louver-integrated Bifacial Solar Modules—Focus on clear day’s data. KIEAE J. 2020, 20, 129–134. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, C.K. A Study on The Architectural Plan Access Method for The Integrated Design of The Environmentally Friendly Architecture. J. Korean Digit. Archit. Inter. Assoc. 2010, 10, 79–86. [Google Scholar]
- The Free Dictionary. Available online: https://www.thefreedictionary.com/louver (accessed on 11 November 2022).
- Kim, S.J.; Cho, T.Y. A Study on Preferred Visual Structure of Louver in Three-Dimensional Space-Focusing on Haptic Visuality and Pattern Preference Studies. J. Korean Soc. Des. Cult. 2021, 27, 67–80. [Google Scholar]
- Ko, S.H. A Louver Design Method Using Parametric Design Tool and Consideration for Parameters. KIEAE J. 2020, 20, 93–101. [Google Scholar] [CrossRef]
- Lim, J.H.; Jung, J.J.; Lee, J.Y. A Study on the Characteristics of Daylighting Environment in Classroom of an School Building Due to the External Shading Devices. J. Korean Inst. Educ. Facil. 2008, 15, 4–15. [Google Scholar]
- Chen, H.; Cai, B.; Yang, H.; Wang, Y.; Yang, J. Study on natural lighting and electrical performance of louvered photovoltaic windows in hot summer and cold winter areas. Energy Build. 2022, 271, 112313. [Google Scholar] [CrossRef]
- Autodesk Building Performance Analysis Certificate Guideline 2.3 Building Energy Loads. Available online: https://sites.google.com/site/twbpac/ch3-energy-literacy-building-loads/23buildingenergyloads (accessed on 22 August 2022).
- BASIX Certificate Help Notes. Available online: https://basix.nsw.gov.au/iframe/thermal-help/heating-and-cooling-loads.html (accessed on 22 August 2022).
- Autodesk Building Performance Analysis Certificate Guideline 2.4 Thermal Loads. Available online: https://sites.google.com/site/twbpac/ch3-energy-literacy-building-loads/2-4-thermal-loads (accessed on 22 August 2022).
- Ana, I.P.; Armando, C.O. Effect of louver shading devices on building energy requirements. Appl. Energy 2010, 87, 2040–2049. [Google Scholar]
- Lin, Z.; Song, Y.; Chu, Y. Summer performance of a naturally ventilated double-skin facade with adjustable glazed louvers for building energy retrofitting. Energy Build. 2022, 267, 112163. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Ma, L.; Arıcıb, M.; Li, D.; Yıldız, Ç.; Zhu, Y. Effect of sunspace and PCM louver combination on the energy saving of rural residences: Case study in a severe cold region of China. Sustain. Energy Technol. Assess. 2021, 45, 101126. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.S.; Kim, K.W.; Cho, Y.H. A study on the proposes of energy analysis indicator by the window elements of office buildings in Korea. Energy Build. 2014, 73, 153–165. [Google Scholar] [CrossRef]
- Datta, G. Effect of fixed horizontal louver shading devices on thermal performance of building by TRNSYS simulation. Renew. Energy 2001, 23, 497–507. [Google Scholar] [CrossRef]
- Jang, J.; Chen, C.-C. Optimization of louvered-fin heat exchanger with variable louver angles. Appl. Therm. Eng. 2015, 91, 138–150. [Google Scholar] [CrossRef]
- Fang, J.; Zhao, Y.; Tian, Z.; Lin, P. Analysis of dynamic louver control with prism redirecting fenestrations for office daylighting optimization. Energy Build. 2022, 262, 112019. [Google Scholar] [CrossRef]
Step | Content |
---|---|
01 | space definition with universal specifications |
02 | setting of fixed and independent variables |
03 | introduction of EnergyPlus energy simulation function |
04 | calculation of cooling and heating energy consumption |
05 | processing and recording of hourly thermal load balance data |
Component | Construction | Material |
---|---|---|
Wall | ASHRAE 189.1-2009 Extwall Climate Zone 4 | 1 in. Stucco |
8 in. Concrete HW | ||
U-Factor 0.0432 Insulation | ||
½ in. Gypsum | ||
Floor | ASHRAE 90.1-2004 Floor Climate Zone 1–5 | ½ in. Gypsum |
AtticFloor NonRes Insulation-5.18 | ||
½ in. Gypsum | ||
Roof | ASHRAE 189.1-2009 ExtRoof Climate Zone 2–5 | Roof Membrane |
Roof Insulation [21] | ||
Metal Decking | ||
Window | Clear Glass | 3 mm Clear Glass |
Louver | Wood Louver | G05 25 mm Wood |
G05 25 mm Wood |
Code | Name | Latitude | Longitude | Code | Name | Latitude | Longitude |
---|---|---|---|---|---|---|---|
A | Seoul | 37.56 | 126.95 | F | Busan | 35.1 | 129.01 |
B | Incheon | 37.46 | 126.61 | G | Daegu | 35.88 | 128.61 |
C | Suwon | 37.26 | 126.98 | H | Pohang | 36.01 | 129.36 |
D | Daejeon | 36.36 | 127.36 | I | Andong | 36.56 | 128.7 |
E | Gwangju | 35.16 | 126.88 | J | Gangneung | 37.75 | 128.88 |
Load Type | Description | Value |
---|---|---|
equipment load per area | office filled with computers and appliances | 15 W/m2 |
infiltration rate per area | tight Building | 0.14 cfm/sf facade @ 75 Pa |
lighting density per area | LED lamps | 3 W/m2 |
number of people per area | lightly occupied | 0.02 ppl/m2 |
ventilation per area | laboratory level | 0.0025 m3/s |
ventilation per person | minimum level | 0.001 m3/s |
Category | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
Value Without the Louver | 165.82 | 231.5 | 209.74 | 290.81 | 138.56 | 211.19 | 190.55 | 190.55 | 241.92 | 289.76 |
Minimum Angle | 30° | 30° | 60° | 45° | 60° | 30° | 45° | 45° | 30° | 45° |
Minimum Value | 116.20 | 72.74 | 71.97 | 70.46 | 85.78 | 46.09 | 80.32 | 62.89 | 121.59 | 148.00 |
Maximum Angle | 165° | 165° | 30° | 165° | 30° | 165° | 165° | 165° | 165° | 165° |
Maximum Value | 169.98 | 178.29 | 107.29 | 118.96 | 140.84 | 86.87 | 101.36 | 106.60 | 191.03 | 179.35 |
Category | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
Value Without the Louver | 557.88 | 495.85 | 909.01 | 741.68 | 878.8 | 844.16 | 827.24 | 812.92 | 822.12 | 710.18 |
Minimum Angle | 165° | 165° | 165° | 165° | 165° | 165° | 165° | 165° | 165° | 165° |
Minimum Value | 318.82 | 309.51 | 676.68 | 483.16 | 633.35 | 579.04 | 587.32 | 590.71 | 554.68 | 464.31 |
Maximum Angle Type | 75° | 90° | 75° | 75° | 75° | 90° | 75° | 75° | 75° | 75° |
Maximum Value | 427.59 | 395.28 | 803.36 | 616.44 | 777.48 | 702.15 | 716.72 | 697.09 | 685.70 | 567.74 |
Category | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
Value Without the Louver | 129.89 | 215.57 | 186.11 | 216.2 | 309.97 | 378.85 | 221.32 | 213.65 | 153.42 | 315.56 |
Minimum Angle | 90° | 90° | 90° | 90° | 165° | 165° | 165° | 165° | 75° | 165° |
Minimum Value | 41.81 | 45.40 | 57.50 | 70.16 | 46.16 | 64.84 | 56.00 | 43.29 | 52.68 | 72.24 |
Maximum Angle | 45° | 45° | 45° | 45° | 45° | 45° | 45° | 45° | 45° | 45° |
Maximum Value | 105.63 | 143.74 | 142.43 | 155.63 | 208.73 | 280.85 | 158.28 | 158.43 | 102.13 | 261.92 |
Category | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
Value Without the Louver | 542.47 | 382.71 | 502.3 | 488.06 | 395.09 | 297.89 | 355.58 | 290.96 | 406.82 | 476.15 |
Minimum Angle | 60° | 60° | 60° | 60° | 60° | 60° | 60° | 60° | 60° | 60° |
Minimum Value | 367.50 | 252.03 | 331.31 | 337.78 | 287.02 | 186.46 | 226.55 | 172.01 | 260.31 | 342.48 |
Maximum Angle | 165° | 165° | 165° | 165° | 165° | 165° | 165° | 165° | 165° | 165° |
Maximum Value | 769.05 | 712.01 | 754.38 | 762.82 | 603.97 | 536.52 | 608.43 | 537.06 | 679.85 | 642.28 |
Category | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
Value Without the Louver | 1396.1 | 1325.6 | 1807.2 | 1736.8 | 1722.4 | 1732.1 | 1594.7 | 1508.1 | 1624.3 | 1791.7 |
Minimum Angle | 60° | 60° | 60° | 60° | 75° | 75° | 75° | 75° | 60° | 75° |
Minimum Value | 975.6 | 822.1 | 1286.0 | 1136.3 | 1259.1 | 1080.5 | 1110.7 | 1024.5 | 1144.7 | 1214.4 |
Maximum Angle | 150° | 150° | 135° | 135° | 30° | 135° | 135° | 135° | 135° | 15° |
Maximum Value | 1325.6 | 1234.9 | 1612.5 | 1451.8 | 1458.3 | 1305.8 | 1372.7 | 1296.1 | 1497.8 | 1393.9 |
Type | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
15° | 7 | 7 | 9 | 9 | 10 | 8 | 8 | 7 | 7 | 11 |
30° | 5 | 5 | 5 | 5 | 11 | 6 | 5 | 5 | 5 | 8 |
45° | 3 | 3 | 3 | 3 | 5 | 4 | 4 | 4 | 3 | 5 |
60° | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 1 | 3 |
75° | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 1 |
90° | 4 | 4 | 4 | 4 | 3 | 2 | 3 | 3 | 4 | 2 |
105° | 6 | 6 | 6 | 6 | 4 | 5 | 6 | 6 | 6 | 4 |
120° | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 8 | 7 |
135° | 9 | 9 | 10 | 10 | 8 | 10 | 10 | 10 | 10 | 9 |
150° | 10 | 10 | 11 | 11 | 7 | 11 | 11 | 11 | 11 | 10 |
165° | 11 | 11 | 7 | 7 | 6 | 7 | 7 | 8 | 9 | 6 |
Type | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
15° | 7 | 4 | 9 | 5 | 10 | 6 | 8 | 6 | 6 | 9 |
30° | 1 | 1 | 11 | 2 | 11 | 1 | 10 | 2 | 1 | 10 |
45° | 2 | 2 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 1 |
60° | 4 | 3 | 1 | 3 | 1 | 5 | 2 | 3 | 3 | 2 |
75° | 3 | 5 | 3 | 4 | 2 | 3 | 3 | 4 | 4 | 3 |
90° | 5 | 6 | 4 | 6 | 4 | 4 | 4 | 5 | 5 | 4 |
105° | 6 | 7 | 5 | 7 | 6 | 7 | 5 | 7 | 7 | 5 |
120° | 8 | 8 | 6 | 8 | 9 | 8 | 6 | 8 | 8 | 6 |
135° | 9 | 9 | 7 | 9 | 8 | 9 | 7 | 9 | 9 | 7 |
150° | 10 | 10 | 8 | 10 | 7 | 10 | 9 | 10 | 10 | 8 |
165° | 11 | 11 | 10 | 11 | 5 | 11 | 11 | 11 | 11 | 11 |
Type | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
15° | 4 | 2 | 3 | 4 | 3 | 2 | 3 | 2 | 3 | 4 |
30° | 9 | 8 | 8 | 8 | 6 | 7 | 8 | 7 | 9 | 10 |
45° | 6 | 5 | 5 | 6 | 8 | 4 | 6 | 4 | 5 | 5 |
60° | 8 | 6 | 9 | 9 | 9 | 6 | 9 | 6 | 8 | 7 |
75° | 11 | 9 | 11 | 11 | 11 | 9 | 11 | 10 | 11 | 11 |
90° | 10 | 11 | 10 | 10 | 10 | 11 | 10 | 11 | 10 | 9 |
105° | 7 | 10 | 7 | 7 | 7 | 10 | 7 | 9 | 7 | 8 |
120° | 5 | 7 | 6 | 5 | 5 | 8 | 5 | 8 | 6 | 6 |
135° | 3 | 4 | 4 | 3 | 4 | 5 | 4 | 5 | 4 | 3 |
150° | 2 | 3 | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 2 |
165° | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Type | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
15° | 6 | 8 | 6 | 8 | 7 | 7 | 7 | 7 | 5 | 6 |
30° | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 9 |
45° | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
60° | 5 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 10 |
75° | 2 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 1 | 8 |
90° | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 5 | 2 | 7 |
105° | 3 | 6 | 2 | 2 | 5 | 5 | 6 | 6 | 3 | 5 |
120° | 4 | 5 | 3 | 5 | 4 | 4 | 5 | 4 | 4 | 4 |
135° | 7 | 4 | 4 | 4 | 3 | 3 | 4 | 3 | 6 | 3 |
150° | 8 | 3 | 5 | 3 | 2 | 2 | 3 | 2 | 7 | 2 |
165° | 9 | 2 | 8 | 6 | 1 | 1 | 1 | 1 | 9 | 1 |
Type | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
15° | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
30° | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
45° | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
60° | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
75° | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
90° | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
105° | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
120° | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
135° | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
150° | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
165° | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
Category | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |
Spring | 14.04 | 24.45 | 58.05 | 50.12 | 51.43 | 46.09 | 46.42 | 53.88 | 23.14 | 30.79 |
Summer | 42.85 | 37.58 | 25.56 | 34.86 | 27.93 | 31.41 | 29.00 | 27.33 | 32.53 | 34.62 |
Autumn | 67.81 | 78.94 | 69.10 | 67.55 | 85.11 | 82.89 | 74.70 | 79.74 | 65.66 | 77.11 |
Winter | −4.67 | −19.05 | −6.20 | −11.79 | −16.78 | −18.21 | −12.42 | −14.41 | −13.12 | −9.42 |
Annual | 28.55 | 30.94 | 27.30 | 28.41 | 28.48 | 32.74 | 28.53 | 29.53 | 25.70 | 29.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, S.-J.; Han, S.-H. Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea. Energies 2022, 15, 9214. https://doi.org/10.3390/en15239214
Choe S-J, Han S-H. Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea. Energies. 2022; 15(23):9214. https://doi.org/10.3390/en15239214
Chicago/Turabian StyleChoe, Seung-Ju, and Seung-Hoon Han. 2022. "Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea" Energies 15, no. 23: 9214. https://doi.org/10.3390/en15239214
APA StyleChoe, S. -J., & Han, S. -H. (2022). Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea. Energies, 15(23), 9214. https://doi.org/10.3390/en15239214