LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making
Abstract
:1. Introduction
1.1. Solar Power
1.2. Liquefied Natural Gas (LNG)
1.3. Renewable Hydrogen and Bioenergy
1.4. Wind and Hydropower
2. Materials and Methods
- (i)
- National inventory emissions for 2020 according to national fuel mix (compared to the year 2010), and next, the associated environmental impacts of electricity generation from different supplies of fuels for the functional unit of 1 MWh.
- (ii)
- Environmental impacts of projected fuel mixes for 2030 and 2040; and a futuristic scenario where 100% renewable energy technologies are applied and imported. The projected scenarios serve to generate the impacts for 1 TWh.
2.1. Life Cycle Assessment (LCA)
2.1.1. Case Study Settings
2.1.2. Annual Scenario Analysis
- ▪
- Projected fuel mixes for years 2030 and 2040
- ▪
- Green Future: 100% renewable energy
3. Results
3.1. Preliminary Assessment
- -
- Global Warming Potential (GWP), measured in kg CO2-eq;
- -
- Acidification Potential (AP), measured in kg SO2-eq;
- -
- Eutrophication Potential (EP), measured in kg phosphate-eq;
- -
- Human Toxicity Potential (HTP), measured in kg DCB-eq.
3.2. Scenario Test Results
3.3. Discussions: Preliminary Environmental Impacts for 1 MWh
3.4. Projected Scenarios for Annual TWh
3.5. Further Discussion: Low-Carbon H2 production
4. Conclusions and Policy Implications
- ▪
- The highest GWP impacts were from coal and WTE.
- ▪
- With 100% renewable energy employed (‘Green Energy’ future), a noteworthy reduction of 85% GWP was achieved.
- ▪
- An increase in LNG supplies resulted in higher AP and EP impacts due to the transportation of ocean LNG tankers; higher HTP impacts were also observed due to the activities involved in LNG regasification activities.
- ▪
- Future LCA model parameters should include safety indicators for the potential of low-carbon hydrogen application.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Nomenclature
AP | Acidification Potential |
EP | Eutrophication Potential |
GHG | Greenhouse gas |
GWP | Global Warming Potential |
HTTP | Human Toxicity Potential |
LCI | Life cycle inventory |
LNG | Liquefied Natural Gas |
MWh | Megawatt-hour |
NG | Natural gas |
PV | Photovoltaic |
TWh | Terawatt-hour |
WTE | Waste-to-energy |
Appendix A
Source | Fuel Type (ca. Calorific Value in MJ/kg) | Estimated Amount Required (kg) to Generate 1 MWh | Transportation Type | Brief Description | Distance Travelled (km) |
---|---|---|---|---|---|
Indonesia, Malaysia | NG (48 MJ/kg) | 130 | Offshore long-distance gas pipeline | Grissik-Batam-Singapore pipeline | 468 |
Indonesia | Coal (21.5 MJ/kg) | 295 | Sea travel freight shipment | From Palembang port, South Sumatra, to Jurong terminal | 559.3 |
Middle East countries | Crude Oil (35.5 MJ/kg) | 178 | Ocean tanker for oil | Saudi Aramco’s Ju’aymah Terminal to Jurong terminal | 6846.8 |
Australia | LNG (51 MJ/kg) | 124 | Ocean Tanker for LNG | 50% from Barrow Island port, WA, to Jurong Terminal | 3055.8 |
Indonesia | Ocean tanker for LNG | 50% from Tanjung Emas port, Java, Indonesia to Jurong Terminal | 1266.8 |
Air Emissions (kg) | 2010 | 2020 |
Carbon dioxide (CO2) | 455.6 | 361 |
Carbon monoxide (CO) | 0.12 | 0.0303 |
Methane (CH4) | n.a | 8.7 × 10-6 |
Nitrous oxide (N2O) | Negligible | Negligible |
Nitrogen oxides (NOx) | 1.42 | 0.0168 |
Sulfur dioxide (SO2) | 5.18 | 0.0021 |
PM | 0.068 | 0.0213 |
NMVOC | n.a | 0.00021 |
VOC | 0.033 | 0.0007 |
Air Emissions (kg) | 2010 | 2020 |
Carbon dioxide (CO2) | 568.3 | 390.6 |
Carbon monoxide (CO) | 0.19 | 0.0304 |
Methane (CH4) | n.a | 0.774 |
Nitrous oxide (N2O) | 0.06 | 0.000437 |
Nitrogen oxides (NOx) | 1.965 | 0.0172 |
Sulfur dioxide (SO2) | 2.975 | 0.00289 |
PM | 0.079 | 0.0218 |
NMVOC | n.a | 0.000349 |
VOC | 0.065 | 0.000485 |
Year | TWh/Year |
---|---|
2010 | 45 |
2020 | 55 |
2030 | 66 |
2040 | 73 |
Green Energy Future | 79 |
References
- Burchart-Korol, D.; Pustejovska, P.; Blaut, A.; Jursova, S.; Korol, J. Comparative life cycle assessment of current and future electricity generation systems in the Czech Republic and Poland. Intl. J. Life Cycle Assess. 2018, 23, 2165–2177. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.B.H.; Wijaya, D.; Khoo, H.H. LCI analysis of fuels and electricity generation in Singapore. Energy 2010, 35, 4910–4916. [Google Scholar] [CrossRef]
- Chan, J.K.H. The ethics of working with wicked urban waste problems: The case of Singapore’s Semakau Landfill. Landscape Urban Plan 2016, 154, 123–131. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Kumar, A.; Low, J.S.C.; Li, Y.; Tan, Y.S.; Wang, Y.; Aberle, A.G.; Ramakrishna, S. A comparative life-cycle assessment of photovoltaic electricity generation in Singapore by multicrystalline silicon technologies. Solar Energ. Mat. Solar Cells 2018, 174, 157–162. [Google Scholar] [CrossRef]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Teridi, M.A.M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renew. Sustain. Energ. Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Luther, J.; Reindl, T. Solar Photovoltaic (PV) Roadmap for Singapore; Report prepared for Singapore Economic Development Board (EDB) and Energy Market Authority (EMA); NCCS (National Climate Change Secretariat): Singapore, 2013. [Google Scholar]
- SBR (Singapore Business Review). LNG Imports to Triple and Displace Pipeline Gas within 10 Years. 2019. Available online: https://news.nestia.com/detail/LNG-imports-to-triple-and-displace-pipeline-gas-within-10-years/2953745 (accessed on 30 March 2022).
- CNA (Channel News Asia). Stepping on the Gas to Keep Singapore’s Lights Burning. 2018. Available online: https://www.channelnewsasia.com/news/cnainsider/lng-natural-gas-electricity-singapore-energy-security-tank-10088910 (accessed on 3 March 2022).
- Gorgon LNG Project. 2020. Available online: https://www.hydrocarbons-technology.com/projects/gorgon-lng-project/ (accessed on 15 January 2022).
- Antaranews, Indonesia to Export 16 Cargoes of LNG to Singapore per Year. 2019. Available online: https://en.antaranews.com/news/122550/indonesia-to-export-16-cargoes-of-lng-to-singapore-per-year (accessed on 3 March 2022).
- Mehrpooya, M.; Hossieni, M.; Vatani, A. Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL. Ind. Eng. Chem. Res. 2014, 53, 17705–17721. [Google Scholar] [CrossRef]
- Zhang, J.; Meerman, H.; Benders, R.; Faaij, A. Comprehensive review of current natural gas liquefaction processes on technical and economic performance. Appl. Therm. Eng. 2020, 166, 1–16. [Google Scholar] [CrossRef]
- Raj, R.; Suman, R.; Ghandehariun, S.; Kumar, A.; Tiwari, M.K. A techno-economic assessment of the liquefied natural gas (LNG) production facilities in Western Canada. Sustain. Energ. Technol. Assess. 2016, 18, 140–152. [Google Scholar] [CrossRef]
- Khan, M.S.; Karimi, I.A.; Lee, M. Evolution and optimization of the dual mixed refrigerant process of natural gas liquefaction. Appl. Therm. Eng. 2016, 96, 320–329. [Google Scholar] [CrossRef]
- Blagin, E.V.; Uglanov, D.A.; Dovgyallo, A.I. About LNG energy utilization efficiency estimation. Procedia Eng. 2016, 152, 209–218. [Google Scholar] [CrossRef]
- Chan, S.H.; Stempien, J.P.; Ding, O.L.; Su, P.-C.; Ho, H.K. Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore–An update. Int. J. Hydro. Energ. 2016, 41, 13869–13878. [Google Scholar] [CrossRef]
- Manatura, K.; Lu, J.H.; Wu, K.T.; Hsu, H.T. Exergy analysis on torrefied rice husk pellet in fluidized bed gasification. Appl Thermal Eng. 2017, 111, 1016–1024. [Google Scholar] [CrossRef]
- Tillman, D.A. Biomass co-firing: The technology, the experience, the combustion consequences. Biomass Bioenerg. 2000, 19, 365–384. [Google Scholar] [CrossRef]
- Shafie, S.M.; Mahlia, T.M.I.; Masjuki, H.H.; Rismanchi, B. Life cycle assessment (LCA) of electricity generation from rice husk in Malaysia. Energ. Proced. 2012, 14, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Trussart, S.; Messier, D.; Roquet, V.; Aki, S. Hydropower projects: A review of most effective mitigation measures. Energ. Pol. 2002, 30, 1251–1259. [Google Scholar] [CrossRef]
- Hanafi, J.; Riman, A. Life Cycle Assessment of a Mini Hydro Power Plant in Indonesia: A Case Study in Karai River. Procedia CIRP 2015, 29, 444–449. [Google Scholar] [CrossRef]
- Geller, M.T.B.; de Moura Meneses, A.A. Life Cycle Assessment of a Small Hydropower Plant in the Brazilian Amazon. J. Sust. Devp. Energ. Water Environ. Sys. 2016, 4, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.J.; Baack, C.; Eickelkamp, T.; Epe, A.; Lohmann, J.; Troy, S. Life cycle assessment of the offshore wind farm alpha ventus. Energy 2011, 36, 2459–2464. [Google Scholar] [CrossRef]
- EMA (Energy Market Authority). 2020. Available online: https://www.ema.gov.sg/Singapore_Energy_Statistics.aspx (accessed on 5 February 2022).
- Ecoinvent. Life Cycle Inventory Database; Zurich, Switzerland. 2020. Available online: https://www.ecoinvent.org/ (accessed on 15 February 2022).
- Spath, P.L.; Mann, M.K. Life Cycle Assessment of a Natural Gas Combined-Cycle Power Generation System; Report No. NREL/TP-570-27715; National Renewable Energy Laboratory: Golden, CO, USA, 2000. [Google Scholar]
- Spath, P.L.; Mann, M.K.; Kerr, D.R. Life Cycle Assessment of Coal-fired Power Production; Report No. NREL/TP-570-25119; National Renewable Energy Laboratory: Golden, CO, USA, 1999. [Google Scholar]
- Jaramillo, P.; Griffin, W.M.; Matthews, H.S. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation. Environ. Sci. Technol. 2007, 41, 6290–6296. [Google Scholar] [CrossRef]
- Gómez, M.R.; Garcia, R.F.; Carril, J.C.; Gómez, J.R. High efficiency power plant with liquefied natural gas cold energy utilization. J. Energ. Inst. 2014, 87, 59–68. [Google Scholar] [CrossRef]
- Chambers, S. Singapore Says LNG Is the Only Viable Fuel Solution, Readies Incentives; Asia Shipping Media Pte. Ltd.: Singapore, 2019. [Google Scholar]
- Prakash, J. Singapore’s LNG Drive Gets a Boost. 2020. Available online: https://www.gasworld.com/singapores-lng-drive-gets-a-boost/2018356.article (accessed on 28 May 2022).
- Yep, E. Analysis: LNG to Surpass Piped Gas in Singapore’s Future Energy Mix. SP Global. 2019. Available online: https://www.spglobal.com/platts/en/market-insights/latest-news/natural-gas/120619-lng-to-surpass-piped-gas-in-singapores-future-energy-mix (accessed on 1 March 2022).
- Reuters, Singapore Goes Big on Solar Power to Fight Climate Change. 2019. Available online: https://www.scmp.com/news/asia/southeast-asia/article/3035312/singapore-looks-sun-it-aims-expand-solar-power-use-2030 (accessed on 29 March 2022).
- MEWR (Ministry of the Environment and Water Resources). MEWR’s Inaugural Masterplan Charts Singapore’s Path towards a Zero Waste Nation. 2020. Available online: https://www.towardszerowaste.gov.sg/zero-waste-masterplan/ (accessed on 30 April 2022).
- Lim, J. One of World’s Largest Floating Solar Farms Coming Up in Tuas. 2020. Available online: https://www.straitstimes.com/singapore/environment/one-of-worlds-largest-floating-solar-farms-coming-up-in-tuas (accessed on 29 May 2022).
- Tan, A. Singapore Can Tap More Solar Power by 2050. The Straits Times. 2014. Available online: https://www.straitstimes.com/singapore/singapore-can-tap-more-solar-power-by-2050 (accessed on 30 May 2022).
- Tan, J.H.W. Hydrogen a More Sustainable Bet for S’pore’s Energy Future. IPS Commons. 2017. Available online: https://www.ipscommons.sg/hydrogen-a-more-sustainable-bet-for-spores-energy-future/ (accessed on 30 May 2022).
- Garcia, R.; Marques, P.; Freire, F. Life-cycle assessment of electricity in Portugal. Appl Energ. 2014, 134, 563–572. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Azapagic, A. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Manage. 2016, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- EPA. Air Emissions from MSW Combustion Facilities. 2019. Available online: https://www.epa.gov/energy (accessed on 16 January 2022).
- Fthenakis, V.M.; Kim, H.C. Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study. Energ. Pol. 2007, 35, 2549–2557. [Google Scholar] [CrossRef]
- Chen, D.; Christensen, T.H. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Manage. Res. 2010, 28, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mu, D. An LCA study of an electricity coal supply chain. J. Ind. Eng. Manage. 2014, 7, 311–335. [Google Scholar] [CrossRef]
- Seddiek, I.S.; Elgohary, M.M. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. Int. J. Naval Architec. Ocean Eng. 2014, 6, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Lister, J.; Poulsen, R.T.; Ponte, S. Orchestrating transnational environmental governance in maritime shipping. Glo. Environ. Change. 2015, 34, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Halff, A.; Younes, L.; Boersma, T. The likely implications of the new IMO standards on the shipping industry. Energ. Pol. 2019, 126, 277–286. [Google Scholar] [CrossRef]
- Allsopp, M.; Costner, P.; Johnston, P. Incineration and human health. Environ. Sci. Pollut. Res. 2001, 8, 141–145. [Google Scholar] [CrossRef]
- Vehlow, J. Air pollution control systems in WtE units: An overview. Waste Manage. 2015, 37, 58–74. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energ. Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- KPMG Services. Taking Singapore forward as a Regional Green Hydrogen Hub. 2022. Available online: https://home.kpmg/sg/en/home/media/press-contributions/2022/07/taking-singapore-forward-as-a-regional-green-hydrogen-hub.html (accessed on 30 April 2022).
- Pasman, H.J.; Rogers, W.J. Safety challenges in view of the upcoming hydrogen economy: An overview. J. Loss. Prev. Process. Ind. 2010, 23, 697–704. [Google Scholar] [CrossRef]
- Aprea, J.L. Quality specification and safety in hydrogen production, commercialization and utilization. Int. J. H2 Energ. 2014, 39, 8604–8608. [Google Scholar] [CrossRef]
- Hong, X.; Thaore, V.B.; Karimi, I.A.; Farooq, S.; Wang, X.; Usadi, A.K.; Chapman, B.R.; Johnsonc, R.A. Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study. Int. J. H2 Energ. 2021, 46, 32914–32928. [Google Scholar] [CrossRef]
Scenarios | Fossil Fuels | Other | Renewables | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NG | Oil | Coal | LNG | WTE | Solar PV | Renewable H2 | Hydro * | Wind * | Bio-Energy * | |
Year 2010 | 78% | 20% | 0 | 0 | 2% | 0 | 0 | 0 | 0 | 0 |
Year 2020 | 95.2% | 0.7% | 1.2% | 0 | 1.45% | 1.45% | 0 | 0 | 0 | 0 |
Year 2030 | 30% | 0 | 0 | 60% | 1% | 10% | 0 | 0 | 0 | 0 |
Year 2040 | 10% | 0 | 0 | 70% | 0 | 20% | 0 | 0 | 0 | 0 |
Green Energy | 0 | 0 | 0 | 0 | 0 | 50% | 20% | 10% | 10% | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoo, H.H. LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making. Energies 2022, 15, 9272. https://doi.org/10.3390/en15249272
Khoo HH. LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making. Energies. 2022; 15(24):9272. https://doi.org/10.3390/en15249272
Chicago/Turabian StyleKhoo, Hsien H. 2022. "LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making" Energies 15, no. 24: 9272. https://doi.org/10.3390/en15249272
APA StyleKhoo, H. H. (2022). LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making. Energies, 15(24), 9272. https://doi.org/10.3390/en15249272