Harmonic Source Location and Characterization Based on Permissible Current Limits by Using Deep Learning and Image Processing
Abstract
:1. Introduction
- (1)
- For HSE, a new formulation is derived, discretizing it on the harmonic level, enabling application of AI classifiers to determine harmonics within discrete bands. IEEE Standard limits are employed in defining band boundaries.
- (2)
- A new technique for harmonic meter placement is proposed by using sensitivity analysis and Monte Carlo Simulation (MCS) whose competence is not degraded when harmonic bus voltages are excluded from the measurements. This will address the case where harmonic bus voltages are not accessible for the network operator.
- (3)
- Novel image feature extraction and DL structures are developed to enable fast and efficient harmonic source location and classification in underdetermined systems.
2. Harmonic Source Characterization (Localization and Estimation)
2.1. Harmonic Source Locator
2.2. Harmonic Meter Placement
3. AI System for Harmonic Source Characterization
3.1. Image Formation for Harmonic Measurements
3.2. Deep Learning for HSE
4. Principles of the Proposed Method
5. Simulation Results and Discussion
5.1. IEEE 14-Bus System with Synthetic Harmonic Data
5.1.1. Comparison of the Proposed Technique with Established Methods
5.1.2. Performance for Different Harmonic Metering Scenarios
5.2. Testing Exact Load Model for Classifiers Trained on Random Data
5.3. Demonstration of the Method on Real Data
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalair, A.; Abas, N.; Kalair, A.R.; Saleem, Z.; Khan, N. Review of harmonic analysis, modeling, and mitigation techniques. Renew. Sustain. Energy Rev. 2017, 78, 1152–1187. [Google Scholar] [CrossRef]
- Liao, H. Power System Harmonic State Estimation and Observability Analysis via Sparsity Maximization. IEEE Trans. Power Syst. 2017, 22, 15–23. [Google Scholar] [CrossRef]
- Hartana, R.K.; Richards, G.G. Harmonic source monitoring and identification using neural networks. IEEE Trans. Power Syst. 1990, 5, 1098–1104. [Google Scholar] [CrossRef]
- Rakpenthai, C.; Uatrongjit, S.; Watson, N.R.; Premrudeepreechacharn, S. On Harmonic State Estimation of Power System with Uncertain Network Parameters. IEEE Trans. Power Syst. 2013, 28, 4829–4838. [Google Scholar] [CrossRef]
- Kumar, A.; Das, B.; Sharma, J. Determination of location of multiple harmonic sources in a power system. Int. J. Electr. Power Energy Syst. 2004, 26, 73–78. [Google Scholar] [CrossRef]
- Arruda, E.F.; Kagan, N.; Ribeiro, P.F. Three-phase harmonic distortion state estimation algorithm based on evolutionary strategies. Electr. Power Syst. Res. 2010, 80, 1024–1032. [Google Scholar] [CrossRef]
- Kanao, N.; Yamashita, M.; Yanagida, H.; Mizukami, M.; Hayashi, Y.; Matsuki, J. Power system harmonic analysis using state-estimation method for Japanese field data. IEEE Trans. Power Deliv. 2005, 20, 970–977. [Google Scholar] [CrossRef]
- Madtharad, C.; Premrudeepreechacharn, S.; Watson, N.R.; Ratchai, S.U. An optimal measurement placement method for power system harmonic state estimation. IEEE Trans. Power Deliv. 2005, 20, 1514–1521. [Google Scholar] [CrossRef]
- Yu, K.K.C.; Watson, N.R.; Arrillaga, J. Error analysis in static harmonic State estimation: A statistical approach. IEEE Trans. Power Deliv. 2005, 20, 1045–1050. [Google Scholar] [CrossRef]
- Almeida, C.F.M.; Kagan, N. Harmonic state estimation through optimal monitoring systems. IEEE Trans. Smart Grid 2013, 4, 467–478. [Google Scholar] [CrossRef]
- Xu, F.; Wang, C.; Guo, K.; Shu, Q.; Ma, Z.; Zheng, H. Harmonic Sources’ Location and Emission Estimation in Underdetermined Measurement System. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Bečirović, V.; Pavić, I.; Filipović-Grčić, B. Sensitivity analysis of method for harmonic state estimation in the power system. Electr. Power Syst. Res. 2018, 154, 515–527. [Google Scholar] [CrossRef]
- Arruda, E.F.D.; Kagan, N.; Ribeiro, P.F. Harmonic Distortion State Estimation Using an Evolutionary Strategy. IEEE Trans. Power Deliv. 2010, 25, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Molina-Moreno, I.; Medina, A.; Cisneros-Magaña, R.; Anaya-Lara, O.; Salazar-Torres, J.A. Enhanced harmonic state estimation in unbalanced three-phase electrical grids based on the Kalman filter and physical scale-down implementation. Int. J. Electr. Power Energy Syst. 2020, 123, 106243. [Google Scholar] [CrossRef]
- Kumar, A.; Das, B.; Sharma, J. Robust dynamic state estimation of power system harmonics. Int. J. Electr. Power Energy Syst. 2006, 28, 65–74. [Google Scholar] [CrossRef]
- Yu, K.K.C.; Watson, N.R.; Arrillaga, J. An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking. IEEE Trans. Power Deliv. 2005, 20, 1577–1584. [Google Scholar] [CrossRef]
- Antona, G.D.; Muscas, C.; Sulis, S. State Estimation for the Localization of Harmonic Sources in Electric Distribution Systems. IEEE Trans. Instrum. Meas. 2009, 58, 1462–1470. [Google Scholar] [CrossRef]
- Antona, G.D.; Muscas, C.; Pegoraro, P.A.; Sulis, S. Harmonic Source Estimation in Distribution Systems. IEEE Trans. Instrum. Meas. 2011, 60, 3351–3359. [Google Scholar] [CrossRef]
- Antona, G.D.; Muscas, C.; Sulis, S. Localization of Nonlinear Loads in Electric Systems through Harmonic Source Estimation. IEEE Trans. Instrum. Meas. 2011, 60, 3423–3430. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, Y.; Huang, X.; Lu, R.; Zhang, H.T. A group sparse Bayesian learning algorithm for harmonic state estimation in power systems. Appl. Energy 2022, 306, 118063. [Google Scholar] [CrossRef]
- Ye, G.; Xiang, Y.; Cuk, V.; Cobben, J.F.G. Harmonic disturbance location by applying Bayesian inference. Electr. Power Syst. Res. 2016, 140, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Hartana, R.K.; Richards, G.G. Constrained neural network-based identification of harmonic sources. IEEE Trans. Ind. Appl. 1993, 29, 202–208. [Google Scholar] [CrossRef]
- Lin, W.-M.; Lin, C.-H.; Tu, K.-P.; Wu, C.-H. Multiple harmonic source detection and equipment identification with cascade correlation network. IEEE Trans. Power Deliv. 2005, 20, 2166–2173. [Google Scholar] [CrossRef]
- Adineh, B.; Habibi, M.R.; Akpolat, A.N.; Blaabjerg, F. Sensorless Voltage Estimation for Total Harmonic Distortion Calculation Using Artificial Neural Networks in Microgrids. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2583–2587. [Google Scholar] [CrossRef]
- Rahmani, A.; Deihimi, A. Reduction of harmonic monitors and estimation of voltage harmonics in distribution networks using wavelet analysis and NARX. Electr. Power Syst. Res. 2020, 178, 106046. [Google Scholar] [CrossRef]
- Zhou, W.; Ardakanian, O.; Zhang, H.T.; Yuan, Y. Bayesian Learning-Based Harmonic State Estimation in Distribution Systems with Smart Meter and DPMU Data. IEEE Trans. Smart Grid 2020, 11, 832–845. [Google Scholar] [CrossRef]
- Saxena, D.; Bhaumik, S.; Singh, S.N. Identification of Multiple Harmonic Sources in Power System Using Optimally Placed Voltage Measurement Devices. IEEE Trans. Ind. Electron. 2014, 61, 2483–2492. [Google Scholar] [CrossRef]
- Moradifar, A.; Akbari Foroud, A.; Gorgani Firouzjah, K. Comprehensive identification of multiple harmonic sources using fuzzy logic and adjusted probabilistic neural network. Neural Comput. Appl. 2019, 31, 543–556. [Google Scholar] [CrossRef]
- Molina-Moreno, I.; Medina, A.; Cisneros-Magaña, R.; Anaya-Lara, O. Time domain harmonic state estimation in unbalanced power networks based on optimal number of meters and the principle of half-wave symmetry. IET Gener. Transm. Distrib. 2017, 11, 3871–3880. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Das, B.; Sharma, J. Genetic algorithm-based meter placement for static estimation of harmonic sources. IEEE Trans. Power Deliv. 2005, 20, 1088–1096. [Google Scholar] [CrossRef]
- Ketabi, A.; Sheibani, M.R.; Nosratabadi, S.M. Power quality meters placement using seeker optimization algorithm for harmonic state estimation. Int. J. Electr. Power Energy Syst. 2012, 43, 141–149. [Google Scholar] [CrossRef]
- Std 519-2022 (Revision of IEEE Std 519-2014); IEEE Standard for Harmonic Control in Electric Power Systems. IEEE: Piscataway, NJ, USA, 2022; pp. 1–31. [CrossRef]
- Desoer, C.; Kuh, E. Basic Circuit Theory; McGraw-Hill: New York, NY, USA, 1984; Volume 10. [Google Scholar]
- Jiao, L.; Zhao, J. A Survey on the New Generation of Deep Learning in Image Processing. IEEE Access 2019, 7, 172231–172263. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Rusiecki, A. Trimmed categorical cross-entropy for deep learning with label noise. Electron. Lett. 2019, 55, 319–320. [Google Scholar] [CrossRef]
- Dabbagchi, I. Power Systems Test Case Archive: 14 Bus Power Flow Test Case; University of Washington: Seattle, WA, USA. Available online: https://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm (accessed on 10 June 2020).
- Mei, F.; Sha, H. Classification of the Type of Harmonic Source Based on Image-Matrix Transformation and Deep Convolutional Neural Network. IEEE Access 2019, 7, 170854–170863. [Google Scholar] [CrossRef]
- TasNetwork. Annual Planning Report 2020—Supplementary Information. Available online: https://www.tasnetworks.com.au/Documents/ (accessed on 10 June 2020).
Harmonic Source Bus | Harmonic Order | |||
---|---|---|---|---|
3, 5, 7, 9 | 11, 13, 15 | 17, 19, 21 | 23 | |
Harmonic Current Permissible Limits (pu) | ||||
3 | 0.0577 | 0.0288 | 0.0216 | 0.0086 |
5 | 0.0140 | 0.0064 | 0.0058 | 0.0023 |
6 | 0.0202 | 0.0091 | 0.0081 | 0.0030 |
9 | 0.0355 | 0.0178 | 0.0127 | 0.0051 |
10 | 0.0161 | 0.0072 | 0.0064 | 0.0024 |
12 | 0.0114 | 0.0052 | 0.0047 | 0.0019 |
13 | 0.0220 | 0.0099 | 0.0088 | 0.0033 |
Case | Number of Meters | Harmonic Bus Voltages | Harmonic Branch Currents |
---|---|---|---|
Base 6 | 6 | 3, 6, 9, 10, 12, 13 | - |
Opt 6 | 6 | 4, 14 | 4–5, 6–13, 7–9, 9–10 |
Base 5 | 5 | 3, 6, 10, 12, 13 | - |
Opt 5 | 5 | 4, 14 | 4–5, 6–13, 9–10 |
Base 4 | 4 | 3, 6, 10, 12 | - |
Opt 4 | 4 | 4, 14 | 6–13, 9–10 |
Base 3 | 3 | 3, 6, 10 | - |
Opt 3 | 3 | 4, 14 | 6–13 |
Harmonic Source Bus | 5 | 6 | 9 | 10 | 12 | 13 |
---|---|---|---|---|---|---|
Harmonic Source Locator | ||||||
Acc1 (%) | 48 | 50 | 50 | 66 | 63 | 60 |
Harmonic Level Classifier | ||||||
Acc2 (%) | 7 | 19 | 43 | 62 | 61 | 56 |
Bus Number | Base 6 | Opt 6 | Base 5 | Opt 5 | Base 4 | Opt 4 | Base 3 | Opt 3 |
---|---|---|---|---|---|---|---|---|
3 | 100 | 100 | 100 | 100 | 99 | 99 | 100 | 99 |
5 | 99 | 100 | 99 | 100 | 99 | 99 | 50 | 99 |
6 | 99 | 51 | 99 | 49 | 99 | 90 | 89 | 86 |
9 | 100 | 100 | 97 | 100 | 97 | 100 | 96 | 99 |
10 | 100 | 100 | 96 | 100 | 95 | 100 | 96 | 86 |
12 | 100 | 87 | 97 | 87 | 97 | 88 | 76 | 50 |
13 | 100 | 100 | 100 | 100 | 96 | 100 | 50 | 100 |
Bus # | Base 6 | Opt 6 | Base 5 | Opt 5 | Base 4 | Opt 4 | Base 3 | Opt 3 |
---|---|---|---|---|---|---|---|---|
3 | 99 | 100 | 100 | 98 | 100 | 73 | 100 | 70 |
5 | 99 | 100 | 99 | 100 | 100 | 99 | 67 | 99 |
6 | 99 | 67 | 99 | 0 | 99 | 90 | 89 | 86 |
9 | 100 | 100 | 97 | 100 | 97 | 100 | 96 | 99 |
10 | 100 | 100 | 96 | 100 | 95 | 100 | 96 | 86 |
12 | 100 | 86 | 97 | 88 | 97 | 88 | 79 | 0 |
13 | 100 | 100 | 100 | 100 | 96 | 100 | 0 | 100 |
Predicted Class | ||||||
---|---|---|---|---|---|---|
True Class | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 140/ 127 | 13/1 | 0/0 | 0/0 | 0/0 | 0/0 |
2 | 13/26 | 123/ 129 | 4/6 | 0/0 | 0/0 | 0/0 |
3 | 1/1 | 30/39 | 135/ 166 | 1/9 | 0/0 | 0/0 |
4 | 0/0 | 30/0 | 47/14 | 146/166 | 4/7 | 0/0 |
5 | 0/0 | 0/0 | 0/0 | 38/10 | 101/124 | 2/12 |
6 | 0/0 | 0/0 | 0/0 | 0/0 | 36/10 | 163/153 |
Harmonic Source Bus | Harmonic Order | |||
---|---|---|---|---|
3, 5, 7, 9 | 11, 13, 15 | 17, 19, 21 | 23 | |
Harmonic Current Permissible Limits (pu) | ||||
WF1 | 0.0340 | 0.0170 | 0.0127 | 0.0051 |
WF2 | 0.0459 | 0.0229 | 0.0164 | 0.0066 |
WF3 | 0.0371 | 0.0185 | 0.0139 | 0.0056 |
WF4 | 0.0501 | 0.0251 | 0.0179 | 0.0072 |
Harmonic Source | Number of Harmonic Meters | Acc (%) | F1-Score (%) |
---|---|---|---|
WF2 | 4 | 88.56 | 92.83 |
WF3 | 4 | 94.53 | 96.55 |
WF2 | 3 | 90.05 | 93.87 |
WF3 | 3 | 92.04 | 95.03 |
WF2 | 2 | 89.05 | 93.08 |
WF3 | 2 | 95.02 | 96.88 |
WF2 | 1 | 91.04 | 94.48 |
WF3 | 1 | 93.03 | 95.68 |
Predicted Class | |||||
---|---|---|---|---|---|
True Class | 1 | 2 | 3 | 4 | 5 |
1 | 127 | 7 | 5 | 1 | 4 |
2 | 15 | 136 | 26 | 8 | 2 |
3 | 5 | 12 | 223 | 11 | 13 |
4 | 1 | 2 | 16 | 96 | 15 |
5 | 1 | 3 | 9 | 25 | 242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eslami, A.; Negnevitsky, M.; Franklin, E.; Lyden, S. Harmonic Source Location and Characterization Based on Permissible Current Limits by Using Deep Learning and Image Processing. Energies 2022, 15, 9278. https://doi.org/10.3390/en15249278
Eslami A, Negnevitsky M, Franklin E, Lyden S. Harmonic Source Location and Characterization Based on Permissible Current Limits by Using Deep Learning and Image Processing. Energies. 2022; 15(24):9278. https://doi.org/10.3390/en15249278
Chicago/Turabian StyleEslami, Ahmadreza, Michael Negnevitsky, Evan Franklin, and Sarah Lyden. 2022. "Harmonic Source Location and Characterization Based on Permissible Current Limits by Using Deep Learning and Image Processing" Energies 15, no. 24: 9278. https://doi.org/10.3390/en15249278
APA StyleEslami, A., Negnevitsky, M., Franklin, E., & Lyden, S. (2022). Harmonic Source Location and Characterization Based on Permissible Current Limits by Using Deep Learning and Image Processing. Energies, 15(24), 9278. https://doi.org/10.3390/en15249278