Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling
Abstract
:1. Introduction
2. Drying Mechanism
3. Physics of Convective Drying Process
3.1. Mass Transport
3.1.1. Diffusion
3.1.2. Convection
3.1.3. Evaporation
3.2. Heat Transfer
3.2.1. Conduction Heat Transfer
3.2.2. Convection Heat Transfer
3.2.3. Heat and Mass Transfer Coefficients
4. Current Status of Drying Modelling
4.1. The Traditional Drying Models
4.1.1. Empirical/Semi-Empirical Drying Modelling
4.1.2. Physics-Based Drying Models
Macroscale (Tissue Scale) Modelling
Multiscale Modelling
4.2. Data-Driven Drying Modelling
4.2.1. Machine-Learning-Based Modelling
4.2.2. PIML-Based Modelling
Applications of PIML for Heat and Mass Transfer Analyses
Applications of PIML for Soft Biological Materials Modelling
Applications of PIML for Food Drying Applications
5. PIML-Based Modelling Strategies for Drying Applications
5.1. Purely Data-Driven DNN Modelling
5.2. Physics-Encoded PIML MODEL
6. Conjugation of Airflow in the Drying Model
7. Challenges to Develop Drying Models
7.1. Challenges to Capturing Local Scale Information
7.2. Structural Heterogeneities and Associated Microscale Properties
7.3. Shrinkage of the Products during Drying
7.4. Modelling of Hybrid Drying
7.5. PIML-Based Modelling Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Air-Dried Food Market Size, Global Industry Report, 2020–2027. 2020. Report No: GVR-4-68038-513-7. Available online: https://www.grandviewresearch.com/industry-analysis/air-dried-food-market (accessed on 18 September 2022).
- Khan, M.I.H.; Joardder, M.U.H.; Kumar, C.; Karim, M.A. Multiphase porous media modelling: A novel approach to predicting food processing performance. Crit. Rev. Food Sci. Nutr. 2018, 58, 528–546. [Google Scholar]
- Rzig, R.; Khedher, N.B.; Nasrallah, S.B. A 3-D numerical heat and mass transfer model for simulating the vibration effects on drying process. Heat Transf.—Asian Res. 2017, 46, 1204–1221. [Google Scholar] [CrossRef]
- Jomaa, W.; Puiggali, J.R. Drying of shrinking materials: Modellings with shrinkage velocity. Dry. Technol. 1991, 9, 1271–1293. [Google Scholar] [CrossRef]
- Kiranoudis, C.T.; Tsami, E.; Maroulis, Z.B.; Marinos-Kouris, D. Drying kinetics of some fruits. Dry. Technol. 1997, 15, 1399–1418. [Google Scholar]
- Putranto, A.; Chen, X.D.; Webley, P.A. Modeling of drying of food materials with thickness of several centimeters by the reaction engineering approach (REA). Dry. Technol. 2011, 29, 961–973. [Google Scholar]
- Ben Mabrouk, S.; Benali, E.; Oueslati, H. Experimental study and numerical modelling of drying characteristics of apple slices. Food Bioprod. Process. 2012, 90, 719–728. [Google Scholar] [CrossRef]
- Kaya, A.; Aydın, O.; Dincer, I. Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch). J. Food Eng. 2008, 88, 323–330. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Pham, D.N.; Karim, A. Theoretical and experimental investigation of temperature and moisture distributions and changes in nutritional quality during intermittent microwave convective drying. In Proceedings of the 21st International Drying Symposium, Editorial Universitat Politecnica de Valencia, Valencia, Spain, 11–14 September 2018; 2018; pp. 553–560. [Google Scholar] [CrossRef] [Green Version]
- Golestani, R.; Raisi, A.; Aroujalian, A. Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient. Dry. Technol. 2013, 31, 40–51. [Google Scholar] [CrossRef]
- Kumar, C.; Millar, G.J.; Karim, M.A. Effective Diffusivity and Evaporative Cooling in Convective Drying of Food Material. Dry. Technol. 2014, 33, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.J.; Bejan, A. The effect of shrinkage on the cooking of meat. Int. J. Heat Fluid Flow 1991, 12, 375–383. [Google Scholar]
- Khan, M.; Kumar, C.; Joardder, M.U.H.; Karim, M.A. Determination of appropriate effective diffusivity for different food materials. Dry. Technol. 2017, 35, 335–346. [Google Scholar] [CrossRef]
- Datta, A.K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J. Food Eng. 2007, 80, 80–95. [Google Scholar]
- Gulati, T.; Datta, A.K. Mechanistic understanding of case-hardening and texture development during drying of food materials. J. Food Eng. 2015, 166, 119–138. [Google Scholar] [CrossRef]
- Mercier, S.; Marcos, B.; Moresoli, C.; Mondor, M.; Villeneuve, S. Modeling of internal moisture transport during durum wheat pasta drying. J. Food Eng. 2014, 124, 19–27. [Google Scholar]
- Batuwatta-Gamage, C.P.; Rathnayaka, C.M.; Karunasena, H.C.P.; Wijerathne, W.D.C.C.; Jeong, H.; Welsh, Z.G.; Karim, M.A.; Gu, Y.T. A physics-informed neural network-based surrogate framework to predict moisture concentration and shrinkage of a plant cell during drying. J. Food Eng. 2022, 332, 111137. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Karim, M. Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res. Int. 2017, 99, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.H.; Wellard, R.M.; Nagy, S.A.; Joardder, M.U.H.; Karim, M.A. Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 2016, 38, 252–261. [Google Scholar]
- Khan, M.I.H.; Farrell, T.; Nagy, S.A.; Karim, M.A. Fundamental Understanding of Cellular Water Transport Process in Bio-Food Material during Drying. Sci. Rep. 2018, 8, 15191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.; Joardder, M.U.H.; Farrell, T.W.; Karim, M.A. Multiphase porous media model for intermittent microwave convective drying (IMCD) of food. Int. J. Therm. Sci. 2016, 104, 304–314. [Google Scholar] [CrossRef]
- Hamraoui, A.; Nylander, T. Analytical Approach for the Lucas–Washburn Equation. J. Colloid Interface Sci. 2002, 250, 415–421. [Google Scholar]
- Aguilera, J.M.; Michel, M.; Mayor, G. Fat Migration in Chocolate: Diffusion or Capillary Flow in a Particulate Solid?—A Hypothesis Paper. J. Food Sci. 2004, 69, 167–174. [Google Scholar]
- Lucas, R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Z. 1918, 23, 15–22. [Google Scholar] [CrossRef]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar]
- Chemkhi, S.; Jomaa, W.; Zagrouba, F. Application of a Coupled Thermo-Hydro-Mechanical Model to Simulate the Drying of Nonsaturated Porous Media. Dry. Technol. 2009, 27, 842–850. [Google Scholar]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. A new method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Res. 1966, 58, 19–27. [Google Scholar]
- Bolz, R.; Tuve, G. Handbook of Tables for Applied Engineering Science, 2nd ed.; CRC Press: Cleveland, OH, USA, 1976. [Google Scholar]
- Khan, M.I.H.; Welsh, Z.; Gu, Y.; Karim, M.A.; Bhandari, B. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying. Int. J. Heat Mass Transf. 2020, 153, 119668. [Google Scholar] [CrossRef]
- Bergman, T.L.; Bergman, T.L.; Incropera, F.P.; Dewitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers; Purdue University: West Lafayette, IN, USA, 1949. [Google Scholar]
- Lewis, W.K. The rate of drying of solid materials. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Hendorson, S. Grain drying theory (I) temperature effect on drying coefficient. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Wang, C.; Singh, R. A Single Layer Drying Equation for Rough Rice; ASAE: St. Joseph, MI, USA, 1978; No. 78-3001. [Google Scholar]
- Chayjan, R.A.; Salari, K.; Shadidi, B. Modeling some drying characteristics of garlic sheets under semi fluidized and fluidized bed conditions. Res. Agric. Eng. 2012, 58, 73–82. [Google Scholar]
- Toğrul, İ.T.; Pehlivan, D. Modelling of drying kinetics of single apricot. J. Food Eng. 2003, 58, 23–32. [Google Scholar] [CrossRef]
- Queiroz, M.; Nebra, S. Theoretical and experimental analysis of the drying kinetics of bananas. J. Food Eng. 2001, 47, 127–132. [Google Scholar] [CrossRef]
- Akpinar, E.; Midilli, A.; Bicer, Y. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers. Manag. 2003, 44, 1689–1705. [Google Scholar] [CrossRef]
- El-Sebaii, A.; El-Sebaii, A.A.; Aboul-Enein, S.; Ramadan, M.R.I.; El-Gohary, H.G. Empirical correlations for drying kinetics of some fruits and vegetables. Energy 2002, 27, 845–859. [Google Scholar]
- Midilli, A.; Kucuk, H. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers. Manag. 2003, 44, 1111–1122. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Sablani, S.S.; Nayak, R.; Gu, Y. Machine learning-based modeling in food processing applications: State of the art. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1409–1438. [Google Scholar] [CrossRef]
- Batista, L.M.; da Rosa, C.A.; Pinto, L.A. Diffusive model with variable effective diffusivity considering shrinkage in thin layer drying of chitosan. J. Food Eng. 2007, 81, 127–132. [Google Scholar] [CrossRef]
- Pham, N.D.; Khan, M.; Karim, M. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chem. 2020, 325, 126932. [Google Scholar] [CrossRef]
- Da Silva, W.P.; da Silva, L.D.; Nascimento, P.L. Optimization and simulation of drying processes using diffusion models: Application to wood drying using forced air at low temperature. Wood Sci. Technol. 2011, 45, 787–800. [Google Scholar] [CrossRef]
- Telljohann, U.; Junge, K.; Specht, E. Moisture Diffusion Coefficients for Modeling the First and Second Drying Sections of Green Bricks. Dry. Technol. 2008, 26, 855–863. [Google Scholar] [CrossRef]
- Lu, X.; Tsotsas, E.; Kharaghani, A. Drying of capillary porous media simulated by coupling of continuum-scale and micro-scale models. Int. J. Multiph. Flow 2021, 140, 103654. [Google Scholar] [CrossRef]
- Luikov, A.V. Systems of differential equations of heat and mass transfer in capillary-porous bodies. Int. J. Heat Mass Transf. 1975, 18, 1–14. [Google Scholar] [CrossRef]
- Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. In Advances in Heat Transfer; James, P.H., Thomas, F.I., Eds.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 119–203. [Google Scholar]
- Curcio, S. A Multiphase Model to Analyze Transport Phenomena in Food Drying Processes. Dry. Technol. 2010, 28, 773–785. [Google Scholar] [CrossRef]
- Dhall, A.; Squier, G.; Geremew, M.; Wood, W.A.; George, J.; Datta, A.K. Modeling of Multiphase Transport during Drying of Honeycomb Ceramic Substrates. Dry. Technol. 2012, 30, 607–618. [Google Scholar] [CrossRef]
- Perré, P.; Turner, I.W. A 3-D version of TransPore: A comprehensive heat and mass transfer computational model for simulating the drying of porous media. Int. J. Heat Mass Transf. 1999, 42, 4501–4521. [Google Scholar] [CrossRef]
- Autengruber, M.; Lukacevic, M.; Füssl, J. Finite-element-based moisture transport model for wood including free water above the fiber saturation point. Int. J. Heat Mass Transf. 2020, 161, 120228. [Google Scholar]
- Simo-Tagne, M.; Bennamoun, L.; Léonard, A.; Rogaume, Y. Modeling, numerical simulation and validation of a convective dryer in steady conditions: Case study of tropical woods. Int. J. Model. Simul. 2020, 40, 143–161. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Nagy, S.A.; Karim, M. Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Res. Int. 2018, 105, 772–781. [Google Scholar]
- Khan, M.I.H.; Wellard, R.M.; Nagy, S.A.; Joardder, M.U.H.; Karim, M.A. Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 2017, 117, 266–273. [Google Scholar] [CrossRef]
- Welsh, Z.G.; Khan, M.I.H.; Karim, M.A. Multiscale modeling for food drying: A homogenized diffusion approach. J. Food Eng. 2021, 292, 110252. [Google Scholar]
- Welsh, Z.G.; Simpson, M.J.; Khan, M.I.H.; Karim, A. A multiscale approach to estimate the cellular diffusivity during food drying. Biosyst. Eng. 2021, 212, 273–289. [Google Scholar] [CrossRef]
- Perré, P. Multiscale modeling of drying as a powerful extension of the macroscopic approach: Application to solid wood and biomass processing. Dry. Technol. 2010, 28, 944–959. [Google Scholar] [CrossRef]
- Zadin, V.; Kasemägi, H.; Valdna, V.; Vigonski, S.; Veske, M.; Aabloo, A. Application of multiphysics and multiscale simulations to optimize industrial wood drying kilns. Appl. Math. Comput. 2015, 267, 465–475. [Google Scholar] [CrossRef]
- Díaz, A.R.; Flores, E.I.S.; Yanez, S.J.; Vasco, D.A.; Pina, J.C.; Guzmán, C.F. Multiscale modeling of the thermal conductivity of wood and its application to cross-laminated timber. Int. J. Therm. Sci. 2019, 144, 79–92. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Chen, H.; Wan, C.; Zhang, M. Numerical modeling of drying shrinkage deformation of cement-based composites by coupling multiscale structure model with 3D lattice analyses. Comput. Struct. 2017, 178, 88–104. [Google Scholar] [CrossRef]
- Ho, Q.T.; Verboven, P.; Verlinden, B.E.; Herremans, E.; Wevers, M.; Carmeliet, J.; Nicolaï, B.M. A 3-D multiscale model for gas exchange in fruit. Plant Physiol. 2011, 155, 1158–1168. [Google Scholar]
- Aregawi, W.A.; Abera, M.K.; Fanta, S.W.; Verboven, P.; Nicolai, B. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model. J. Phys. Condens. Matter 2014, 26, 464111. [Google Scholar] [CrossRef]
- Welsh, Z.; Simpson, M.J.; Khan, M.I.H.; Karim, M.A. Multiscale Modeling for Food Drying: State of the Art. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1293–1308. [Google Scholar] [CrossRef] [Green Version]
- Ritto, T.G.; Rochinha, F.A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 2021, 155, 107614. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Kumar, P.; Sinha, K.; Nere, N.K.; Shin, Y.; Ho, R.; Mlinar, L.B.; Sheikh, A.Y. A machine learning framework for computationally expensive transient models. Sci. Rep. 2020, 10, 11492. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 2017, 10, 35. [Google Scholar] [PubMed] [Green Version]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Li, G.; Hari, S.K.S.; Sullivan, M.; Tsai, T.; Pattabiraman, K.; Emer, J.; Keckler, S.W. Understanding error propagation in deep learning neural network (DNN) accelerators and applications. In Proceedings of the International conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2017; pp. 1–12. [Google Scholar]
- Wu, H.; Lv, D.; Cui, T.; Hou, G.; Watanabe, M.; Kong, W. SDLV: Verification of Steering Angle Safety for Self-Driving Cars. Form. Asp. Comput. 2021, 33, 325–341. [Google Scholar] [CrossRef]
- Cardoso, V.B.; Oliveira, A.S.; Forechi, A.; Azevedo, P.; Mutz, F.; Oliveira-Santos, T.; Badue, C.; De Souza, A.F. A Large-Scale Mapping Method Based on Deep Neural Networks Applied to Self-Driving Car Localization. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 30–42. [Google Scholar]
- Tachbelie, M.Y.; Abulimiti, A.; Abate, S.T.; Schultz, T. DNN-Based Speech Recognition for Globalphone Languages. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8269–8273. [Google Scholar]
- Smit, P.; Virpioja, S.; Kurimo, M. Advances in subword-based HMM-DNN speech recognition across languages. Comput. Speech Lang. 2021, 66, 101158. [Google Scholar]
- Wang, D.; Wang, X.; Lv, S. An overview of end-to-end automatic speech recognition. Symmetry 2019, 11, 1018. [Google Scholar]
- Nagrath, P.; Jain, R.; Madan, A.; Arora, R.; Kataria, P.; Hemanth, J. SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustain. Cities Soc. 2021, 66, 102692. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Chatterjee, B.; Gong, M.; Chang, M.; Sen, S.; Raychowdhury, A. A 65 nm Image Processing SoC Supporting Multiple DNN Models and Real-Time Computation-Communication Trade-Off Via Actor-Critical Neuro-Controller. In Proceedings of the 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar]
- Yang, X.; Li, F.; Liu, H. A Survey of DNN Methods for Blind Image Quality Assessment. IEEE Access 2019, 7, 123788–123806. [Google Scholar]
- Mallikarjuna, B.; Shrivastava, G.; Sharma, M. Blockchain technology: A DNN token-based approach in healthcare and COVID-19 to generate extracted data. Expert Syst. 2021, 39, e12778. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Fan, X.; Wu, J.; Chen, J.; Chen, W. DeepDiagnosis: DNN-Based Diagnosis Prediction from Pediatric Big Healthcare Data. In Proceedings of the 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD), Lanzhou, China, 12–15 August 2018. [Google Scholar]
- Shamshirband, S.; Fathi, M.; Dehzangi, A.; Chronopoulos, A.T.; Alinejad-Rokny, H. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. J. Biomed. Inform. 2021, 113, 103627. [Google Scholar] [CrossRef]
- Jain, S.; Chauhan, R. Recognition of Handwritten Digits Using DNN, CNN, and RNN. In Advances in Computing and Data Sciences; Springer: Singapore, 2018. [Google Scholar]
- Rismiyati; Khadijah; Nurhadiyatna, A. Deep learning for handwritten Javanese character recognition. In Proceedings of the 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 15–16 November 2017. [Google Scholar]
- Koyuncu, B.; Koyuncu, H. Handwritten Character Recognition by using Convolutional Deep Neural Network; Review. Int. J. Eng. Technol. IJET 2019, 5, 1–5. [Google Scholar]
- Felix, A.Y.; Jesudoss, A.; Mayan, J.A. Entry and exit monitoring using license plate recognition. In Proceedings of the 2017 IEEE International Conference on Smart Technologies and Management for Computing, Communi-cation, Controls, Energy and Materials (ICSTM), Chennai, India, 2–4 August 2017. [Google Scholar]
- Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov, K.; Supekar, R.; Skinner, D.; Ramadhan, A.; Edelman, A. Universal differential equations for scientific machine learning. arXiv 2020, arXiv:2001.04385. [Google Scholar]
- Sun, Q.; Zhang, M.; Mujumdar, A.S. Recent developments of artificial intelligence in drying of fresh food: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2258–2275. [Google Scholar]
- Khan, M.I.H.; Sablani, S.S.; Joardder, M.U.H.; Karim, M.A. Application of machine learning-based approach in food drying: Opportunities and challenges. Dry. Technol. 2022, 40, 1051–1067. [Google Scholar] [CrossRef]
- Martynenko, A.; Misra, N.N. Machine learning in drying. Dry. Technol. 2019, 38, 596–609. [Google Scholar] [CrossRef]
- Fabani, M.P.; Capossio, J.P.; Román, M.C.; Zhu, W.; Rodriguez, R.; Mazza, G. Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process. J. Environ. Manag. 2021, 281, 111915. [Google Scholar] [CrossRef] [PubMed]
- Demirpolat, A.B. Investigation of Mass Transfer with Different Models in a Solar Energy Food-Drying System. Energies 2019, 12, 3447. [Google Scholar]
- Kırbaş, İ.; Tuncer, A.D.; Şirin, C.; Usta, H. Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Comput. Electron. Agric. 2019, 165, 104928. [Google Scholar] [CrossRef]
- Islam, M.R.; Sablani, S.S.; Mujumdar, A.S. An Artificial Neural Network Model for Prediction of Drying Rates. Dry. Technol. 2003, 21, 1867–1884. [Google Scholar]
- Qadri, O.S.; Osama, K.; Srivastava, A.K. Foam mat drying of papaya using microwaves: Machine learning modeling. J. Food Process Eng. 2020, 43, e13394. [Google Scholar] [CrossRef]
- Ochoa-Martínez, C.I.; Ayala-Aponte, A.A. Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks. LWT—Food Sci. Technol. 2007, 40, 638–645. [Google Scholar] [CrossRef]
- Chen, Y.; Martynenko, A. Computer vision for real-time measurements of shrinkage and color changes in blueberry convective drying. Dry. Technol. 2013, 31, 1114–1123. [Google Scholar]
- Udomkun, P.; Nagle, M.; Argyropoulos, D.; Mahayothee, B.; Müller, J. Multi-sensor approach to improve optical monitoring of papaya shrinkage during drying. J. Food Eng. 2016, 189, 82–89. [Google Scholar] [CrossRef]
- Iheonye, A.; Gariepy, Y.; Raghavan, V. Computer vision for real-time monitoring of shrinkage for peas dried in a fluidized bed dryer. Dry. Technol. 2019, 38, 130–146. [Google Scholar] [CrossRef]
- Das, M.; Alic, E.; Akpinar, E.K. Detailed analysis of mass transfer in solar food dryer with different methods. Int. Commun. Heat Mass Transf. 2021, 128, 105600. [Google Scholar] [CrossRef]
- Hernandez-Perez, J.A.; Garcıa-Alvarado, M.A.; Trystram, G.; Heyd, B. Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innov. Food Sci. Emerg. Technol. 2004, 5, 57–64. [Google Scholar] [CrossRef]
- Shukla, K.; Xu, M.; Trask, N.; Karniadakis, G.E. Scalable algorithms for physics-informed neural and graph networks. Data-Cent. Eng. 2022, 3, e24. [Google Scholar]
- Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transf. 2021, 143, 060801. [Google Scholar]
- Blechschmidt, J.; Ernst, O.G. Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitt. 2021, 44, e202100006. [Google Scholar]
- Almajid, M.M.; Abu-Al-Saud, M.O. Prediction of porous media fluid flow using physics informed neural networks. J. Pet. Sci. Eng. 2022, 208, 109205. [Google Scholar] [CrossRef]
- Weng, Y.; Zhou, D. Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics. J. Phys. Chem. A 2022, 126, 8534–8543. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating physics-based modeling with machine learning: A survey. arXiv 2020, arXiv:2003.04919. [Google Scholar]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2022, 37, 1727–1738. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Mao, Z.; Adams, N.; Karniadakis, G.E. Physics-informed neural networks for inverse problems in supersonic flows. J. Comput. Phys. 2022, 466, 111402. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, W.; Chen, J.; Guo, W. Deep learning methods for solving linear inverse problems: Research directions and paradigms. Signal Process. 2020, 177, 107729. [Google Scholar] [CrossRef]
- Lin, T.; Wang, Z.; Wang, W.; Sui, Y. A neural network-based algorithm for high-throughput characterisation of viscoelastic properties of flowing microcapsules. Soft Matter 2021, 17, 4027–4039. [Google Scholar]
- Ongie, G.; Jalal, A.; Metzler, C.A.; Baraniuk, R.G.; Dimakis, A.G.; Willett, R. Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory 2020, 1, 39–56. [Google Scholar] [CrossRef]
- He, Z.; Ni, F.; Wang, W.; Zhang, J.A. physics-informed deep learning method for solving direct and inverse heat conduction problems of materials. Mater. Today Commun. 2021, 28, 102719. [Google Scholar] [CrossRef]
- Laubscher, R. Simulation of multi-species flow and heat transfer using physics-informed neural networks. Phys. Fluids 2021, 33, 087101. [Google Scholar] [CrossRef]
- Niaki, S.A.; Haghighat, E.; Campbell, T.; Poursartip, A.; Vaziri, R. Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture. Comput. Methods Appl. Mech. Eng. 2021, 384, 113959. [Google Scholar]
- Laubscher, R.; Rousseau, P. Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes. Appl. Soft Comput. 2022, 114, 108050. [Google Scholar] [CrossRef]
- Zhang, W.; al Kobaisi, M. On the Monotonicity and Positivity of Physics-Informed Neural Networks for Highly Anisotropic Diffusion Equations. Energies 2022, 15, 6823. [Google Scholar] [CrossRef]
- Liu, M.; Liang, L.; Sun, W. A generic physics-informed neural network-based constitutive model for soft biological tissues. Comput. Methods Appl. Mech. Eng. 2020, 372, 113402. [Google Scholar]
- Taghizadeh, E.; Byrne, H.M.; Wood, B.D. Explicit physics-informed neural networks for nonlinear closure: The case of transport in tissues. J. Comput. Phys. 2022, 449, 110781. [Google Scholar] [CrossRef]
- Arzani, A.; Wang, J.-X.; D’Souza, R.M. Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Phys. Fluids 2021, 33, 071905. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Baraniak, B. Effect of candelilla wax on functional properties of biopolymer emulsion films—A comparative study. Food Hydrocoll. 2014, 41, 195–209. [Google Scholar] [CrossRef]
- Haghighat, E.; Juanes, R. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput. Methods Appl. Mech. Eng. 2021, 373, 113552. [Google Scholar] [CrossRef]
- Nascimento, R.G.; Fricke, K.; Viana, F.A.C. A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network. Eng. Appl. Artif. Intell. 2020, 96, 103996. [Google Scholar]
- Bai, J.; Jeong, H.; Batuwatta-Gamage, C.P.; Xiao, S.; Wang, Q.; Rathnayaka, C.M.; Alzubaidi, L.; Liu, G.R.; Gu, Y. An introduction to programming Physics-Informed Neural Network-based computational solid mechanics. arXiv 2022, arXiv:2210.09060. [Google Scholar]
- Defraeye, T.; Verboven, P.; Nicolai, B. CFD modelling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modelling. J. Food Eng. 2013, 114, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Defraeye, T.; Herremans, E.; Verboven, P.; Carmeliet, J.; Nicolai, B. Convective heat and mass exchange at surfaces of horticultural products: A microscale CFD modelling approach. Agric. For. Meteorol. 2012, 162, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Defraeye, T.; Radu, A. Insights in convective drying of fruit by coupled modeling of fruit drying, deformation, quality evolution and convective exchange with the airflow. Appl. Therm. Eng. 2018, 129, 1026–1038. [Google Scholar] [CrossRef]
- Wu, J.-L.; Xiao, H.; Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids 2018, 3, 074602. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-X.; Wu, J.-L.; Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2017, 2, 034603. [Google Scholar] [CrossRef]
- Rahman, M.M.; Joardder, M.U.; Khan, M.I.H.; Pham, N.D.; Karim, M.A. Multi-scale model of food drying: Current status and challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 858–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.H.; Rahman, M.M.; Karim, M.A. Recent advances in micro-level experimental investigation in food drying technology. Dry. Technol. 2020, 38, 557–576. [Google Scholar] [CrossRef]
- Kozioł, A.; Cybulska, J.; Pieczywek, P.M.; Zdunek, A. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Carbohydr. Polym. 2017, 161, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Zdunek, A.; Kozioł, A.; Cybulska, J.; Lekka, M.; Pieczywek, P.M. The stiffening of the cell walls observed during physiological softening of pears. Planta 2016, 243, 519–529. [Google Scholar]
- Zdunek, A.; Kurenda, A. Determination of the elastic properties of tomato fruit cells with an atomic force microscope. Sensors 2013, 13, 12175–12191. [Google Scholar] [PubMed] [Green Version]
- Wang, C.; Pritchard, J.; Thomas, C. Investigation of the mechanics of single tomato fruit cells. J. Texture Stud. 2006, 37, 597–606. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Thomas, C. Modelling the mechanical properties of single suspension-cultured tomato cells. Ann. Bot. 2004, 93, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dintwa, E.; Jancsók, P.; Mebatsion, H.K.; Verlinden, B.; Verboven, P.; Wang, C.X.; Thomas, C.R.; Tijskens, E.; Ramon, H.; Nicolaï, B. A finite element model for mechanical deformation of single tomato suspension cells. J. Food Eng. 2011, 103, 265–272. [Google Scholar] [CrossRef]
- Xi, X.; Kim, S.H.; Tittmann, B. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J. Appl. Phys. 2015, 117, 024703. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Chanona-Pérez, J.J.; Méndez-Méndez, J.V.; Calderón-Domínguez, G.; López-Santiago, R.; Arzate-Vázquez, I. Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innov. Food Sci. Emerg. Technol. 2016, 34, 234–242. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Méndez-Méndez, J.V.; Chanona-Pérez, J.J.; Zdunek, A.; Güemes-Vera, N.; Calderón-Domínguez, G.; Rodríguez-González, F. Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innov. Food Sci. Emerg. Technol. 2017, 39, 79–87. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Patel, N.; Mahiuddin, M.; Karim, M.A. Characterisation of mechanical properties of food materials during drying using nanoindentation. J. Food Eng. 2021, 291, 110306. [Google Scholar]
- Khan, M.I.H.; Longa, D.; Sablani, S.S.; Gu, Y. A Novel Machine Learning–Based Approach for Characterising the Micromechanical Properties of Food Material During Drying. Food Bioprocess Technol. 2022. [CrossRef]
- Mahiuddin, M.; Khan, M.I.H.; Kumar, C.; Rahman, M.M.; Karim, M.A. Shrinkage of food materials during drying: Current status and challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahiuddin, M.; Khan, M.I.H.; Pham, N.D.; Karim, M.A. Development of fractional viscoelastic model for characterizing viscoelastic properties of food material during drying. Food Biosci. 2018, 23, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.; Joardder, M.U.H.; Farrell, T.W.; Karim, M.A. Investigation of intermittent microwave convective drying (IMCD) of food materials by a coupled 3D electromagnetics and multiphase model. Dry. Technol. 2018, 36, 736–750. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Karniadakis, G.E. Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations. In Proceedings of the AAAI Spring Symposium: MLPS, Stanford, CA, USA, 22–24 March 2021. [Google Scholar]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G.E.M. hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 2021, 374, 113547. [Google Scholar] [CrossRef]
- Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel physics-informed neural networks via domain decomposition. J. Comput. Phys. 2021, 447, 110683. [Google Scholar] [CrossRef]
- Wang, S.; Yu, X.; Perdikaris, P. When and why PINNs fail to train: A neural tangent kernel perspective. J. Comput. Phys. 2022, 449, 110768. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 2020, 404, 109136. [Google Scholar]
- Hu, H.; Dey, D.; Hebert, M.; Bagnell, J.A. Learning anytime predictions in neural networks via adaptive loss balancing. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 8–12 October 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.H.; Batuwatta-Gamage, C.P.; Karim, M.A.; Gu, Y. Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling. Energies 2022, 15, 9347. https://doi.org/10.3390/en15249347
Khan MIH, Batuwatta-Gamage CP, Karim MA, Gu Y. Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling. Energies. 2022; 15(24):9347. https://doi.org/10.3390/en15249347
Chicago/Turabian StyleKhan, Md Imran H., C. P. Batuwatta-Gamage, M. A. Karim, and YuanTong Gu. 2022. "Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling" Energies 15, no. 24: 9347. https://doi.org/10.3390/en15249347
APA StyleKhan, M. I. H., Batuwatta-Gamage, C. P., Karim, M. A., & Gu, Y. (2022). Fundamental Understanding of Heat and Mass Transfer Processes for Physics-Informed Machine Learning-Based Drying Modelling. Energies, 15(24), 9347. https://doi.org/10.3390/en15249347