Study on Unblocking and Permeability Enhancement Technology with Rotary Water Jet for Low Recharge Efficiency Wells in Sandstone Geothermal Reservoirs
Abstract
:1. Introduction
2. Experiment of the Jet Pressure Wave Transmission Efficiency
2.1. Experiment Principle
2.2. Experiment Equipment and Materials
2.3. Experiment Scheme and Procedures
2.4. Experiment Results and Analysis
3. Simulation Study of Rotary Jet Wellbore Flow Field
3.1. Model Description
3.2. Governing Equations
3.3. Meshing Schemes
3.4. Flow Field Characteristics
3.5. Influence of Spray Distance
3.6. Influence of Volume Flow
4. Field Application of Rotary Jet Blockage Removal in Renre 4 Well
4.1. Design of the Rotating Jet Unblocking Tool
4.2. Construction Process and Parameters
4.3. Results and Analysis of Field Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lund, J.W. Direct heat utilization of geothermal resources. Renew. Energy 1997, 10, 403–408. [Google Scholar] [CrossRef]
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Cao, M.; Liu, P. Development and utilization of geothermal energy in China: Current practices and future strategies. Renew. Energy 2018, 125, 401–412. [Google Scholar] [CrossRef]
- Javadi, H.; Ajarostaghi, S.S.M.; Rosen, M.A.; Pourfallah, M. Performance of ground heat exchangers: A comprehensive review of recent advances. Energy 2019, 178, 207–233. [Google Scholar] [CrossRef]
- Wang, G.; Song, X.; Shi, Y.; Zheng, R.; Li, J.; Li, Z. Production performance of a novel open loop geothermal system in a horizontal well. Energy Convers. Manag. 2020, 206, 112478. [Google Scholar] [CrossRef]
- Junhong, A. Present situation and development prospect of geothermal tailwater reinjection technology in plateau. China Plant Eng. 2017, 24, 137–138. [Google Scholar]
- Kaya, E.; Zarrouk, S.J.; O’Sullivan, M.J. Reinjection in geothermal fields: A review of worldwide experience. Renew. Sustain. Energy Rev. 2011, 15, 47–68. [Google Scholar] [CrossRef]
- Song, X.; Zheng, R.; Li, G.; Shi, Y.; Wang, G.; Li, J. Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir. Geothermics 2018, 76, 190–200. [Google Scholar] [CrossRef]
- Seibt, P.; Kellner, T. Practical experience in the reinjection of cooled thermal waters back into sandstone reservoirs. Geothermics 2003, 32, 733–741. [Google Scholar] [CrossRef]
- Ungemach, P. Reinjection of cooled geothermal brines into sandstone reservoirs. Geothermics 2003, 32, 743–761. [Google Scholar] [CrossRef]
- Song, W.; Liu, X.; Zheng, T.; Yang, J. A review of recharge and clogging in sandstone aquifer. Geothermics 2020, 87, 101857. [Google Scholar] [CrossRef]
- Siriwardene, N.R.; Deletic, A.; Fletcher, T. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Res. 2007, 41, 1433–1440. [Google Scholar] [CrossRef]
- Ma, Z.; Hou, C.; Xi, L.; Yun, H.; Sun, C. Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir. Hydrogeol. Eng. Geol. 2013, 40, 133–139. [Google Scholar]
- Houben, G. Iron oxide incrustations in wells. Part 1: Genesis, mineralogy and geochemistry. Appl. Geochem. 2003, 18, 927–939. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhu, J.L. A study of clogging in geothermal reinjection wells in the Neogene sandstone aquifer. Hydrogeol. Eng. Geol. 2009, 36, 138–141. [Google Scholar]
- Liu, G.; Wu, S.; Fan, Z.; Zhou, Z.; Xie, C.; Wu, J.; Liu, Y. Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure. J. Jilin Univ. (Earth Sci. Ed.) 2016, 46, 1799–1807. [Google Scholar]
- Xia, L.; Zheng, X.; Shao, H.; Xin, J.; Sun, Z.; Wang, L. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns. J. Hydrol. 2016, 535, 293–300. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R.; Huang, Z.; Li, G.; Qin, X.; Li, J.; Wu, X. Detached eddy simulation on the structure of swirling jet flow field. Pet. Explor. Dev. 2022, 49, 806–817. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Li, G.; Hu, X.; Hui, C.; Tan, Y.; Huang, H. Study on erosion performance of swirling cavitating jet for natural gas hydrate. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 909–923. [Google Scholar]
- Felli, M.; Falchi, M.; Pereira, J.A. Distance effect on the behavior of an impinging swirling jet by PIV and flow visualizations. Exp. Fluids 2010, 48, 197–209. [Google Scholar] [CrossRef]
- Li, G.; Shen, Z.; Peng, Y. A theoretical study of hydraulically rotating jet nozzle. Acta Pet. Sin. 1995, 16, 148–153. [Google Scholar]
- Bu, Y.; Wang, R.; Zhou, W. Study on flow principles of rotating jet. Oil Drill. Prod. Technol. 1997, 19, 7–10+105. [Google Scholar]
- Li, J.B.; Li, G.S.; Huang, Z.W.; Song, X.Z.; Li, K. Flow Field Study on a New Kind Swirling Multi-orifices Nozzle. Fluid Mach. 2015, 43, 32–36+41. [Google Scholar]
- Percin, M.; Vanierschot, M.; Van Oudheusden, B. Analysis of the pressure fields in a swirling annular jet flow. Exp. Fluids 2017, 58, 166. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, G.; Huang, Z.; Song, X.; He, Z. Effect of confining pressure on the axial impact pressure of hydraulic jetting. J. Exp. Fluid Mech. 2017, 31, 67–72. [Google Scholar]
- Liang, X.; Dezu, R.; Yonghao, M.; Jin, L.; Jianmin, G. Pressure loss and heat transfer characteristics experiment of swirling impinging jet with different shape nozzles. J. Aerosp. Power 2018, 33, 2678–2686. [Google Scholar]
- Hanjie, C.; Zhenping, S.; Yuan, L.; Aibaibu, A.; Yuezhong, W.; Xiaowei, W. Numerical Simulation of Water Jet Perforation on Casing Surge Pressure. Oil Field Equip. 2020, 49, 45–48. [Google Scholar]
- Ivanic, T.; Foucault, E.; Pecheux, J.; Gilard, V. Instabilities in coaxial rotating jets. J. Therm. Sci. 2000, 9, 322–326. [Google Scholar] [CrossRef]
- Love, T.; McCarty, R.; Surjaatmadja, J.; Chambers, R.; Grundmann, S. Selectively placing many fractures in openhole horizontal wells improves production. SPE Prod. Facil. 2001, 16, 219–224. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Density | g/cm3 | 2.52 |
Uniaxial compressive strength | MPa | 99.771 |
Elastic modulus | GPa | 24.2 |
Poisson’s ratio | / | 0.182 |
Permeability | mD | 0.0184 |
Porosity | % | 4.33 |
Construction Layer m | Interval Number / | Pressure MPa | Volume Flow m3/min |
---|---|---|---|
1784–1931 | 14 | 18.4–20.8 | 1.18–1.21 |
1529–1716 | 8 | 18.8–21.7 | 1.20–1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Tian, T.; Hui, C.; Huang, H.; Zhang, Y. Study on Unblocking and Permeability Enhancement Technology with Rotary Water Jet for Low Recharge Efficiency Wells in Sandstone Geothermal Reservoirs. Energies 2022, 15, 9407. https://doi.org/10.3390/en15249407
Yu C, Tian T, Hui C, Huang H, Zhang Y. Study on Unblocking and Permeability Enhancement Technology with Rotary Water Jet for Low Recharge Efficiency Wells in Sandstone Geothermal Reservoirs. Energies. 2022; 15(24):9407. https://doi.org/10.3390/en15249407
Chicago/Turabian StyleYu, Chao, Tian Tian, Chengyu Hui, Haochen Huang, and Yiqun Zhang. 2022. "Study on Unblocking and Permeability Enhancement Technology with Rotary Water Jet for Low Recharge Efficiency Wells in Sandstone Geothermal Reservoirs" Energies 15, no. 24: 9407. https://doi.org/10.3390/en15249407
APA StyleYu, C., Tian, T., Hui, C., Huang, H., & Zhang, Y. (2022). Study on Unblocking and Permeability Enhancement Technology with Rotary Water Jet for Low Recharge Efficiency Wells in Sandstone Geothermal Reservoirs. Energies, 15(24), 9407. https://doi.org/10.3390/en15249407