Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo
Abstract
:1. Introduction
- First, the impacts of CC on solar energy were investigated in Togo. The investigations were further downscaled to each of the five regions to gain deeper insights. Hence, this scheme has shed more light on some regional discrepancies that were previously harder to decrypt from the bigger picture, viz., impacts at the country level.
- Second, the study filled in the gaps by analyzing the impacts of CC on PV cell temperature, considering three types of cell technology (amorphous, monocrystalline, and polycrystalline) and the above-mentioned weather variables. An additional variable was the Togolese PVP, at large, broken down into its five administrative regions. Results were obtained via CORDEX-CORE.
- Third, the study gave an effective picture of the Togolese administrative regions’ weather conditions over the years. The understanding of this picture may help monitor the production of renewable energy for decades to come.
- Finally, the knowledge of the present study could help not only to better select PV technologies, but also to enact green policy, taking into consideration the short and long-term climate interactions on RE.
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. CORDEX-CORE Datasets and RCP Scenarios
2.2.2. Reference Datasets
Datasets | Description | ||
---|---|---|---|
MODEL DATA | Regional Climate Model version 4 (RegCM4): Ta, Rs, Wspd & Rh | Coordinated Regional Climate Downscaling Experiment-Common Regional Experiment (CORDEX-CORE) initiative [57] | |
Nested in three Coupled Model Intercomparing Project—Phase 5 (CMIP5) Earth System Models (ESMs) | Hadley Center Global Environment Model version 2, HadGEM2-ES [74,75] | ||
Max Planck Institute Earth System Model, MPI-ES-MR [76] | |||
Norwegian Earth System Model, NorESM-1 M [77,78] | |||
25 km of the resolution | |||
OBSERVATION DATA | SARAH-2: RS (1986–2015) | Satellite Application Facility on Climate Monitoring (CM-SAF), second edition of the Surface Solar Radiation Data Set-Heliosat Edition 2, SARAH-2 [66] | |
ERA5 reanalysis: Ta, Wspd and Rh (1976–2005) | European Centre for Medium-Range Weather Forecasts (ECMWF)’s fifth-generation reanalysis with a horizontal resolution of ~31 km [55,68] |
2.3. Methods
2.3.1. Flow Chart
2.3.2. Selection of Radiative Forcing Scenarios
- (1)
- Based on the 2000 carbon emissions, a 4% reduction per annum is needed. The latter decrease can only be achievable if the GHG reduction were improved to about 5–6% annually.
- (2)
- Increasing use of RE, nuclear, efficient-energy measures, carbon capture and sequestration, and bioenergy reduce sufficiently all major emission sources.
- (3)
- Implementing new technologies for energy efficiency improvement.
- (4)
- Limiting agricultural areas for food production by means of high agricultural productivity.
- (5)
- Elaborating sustainable criteria for bioenergy production and management.
- (6)
- Reducing significantly non-CO2 greenhouse gas emissions [80].
- (1)
- Energy demand increases greatly because of unprecedented population growth,
- (2)
- Little progress is made in terms of energy efficiency and conservation because of low socio-economic investments,
- (3)
- International trade in energy and technology is still limited, thus hindering any further social and technological progress,
- (4)
- Future energy systems move toward coal-intensive technologies; these choices generate more GHGs.
- (5)
- Strong environmental concerns grow locally, especially in high- and medium-income regions.
- (6)
- Food security becomes a major issue, especially in low-income regions.
- (7)
2.3.3. Simulation of PV Cell Temperature (PVct) and PV Generation Potential (PVGP)
3. Results and Discussion
3.1. Model Data Evaluation
3.2. Atmospheric Variables under RCP2.6 and 8.5 during the near and Mid-Future
3.3. Projected PVct and PVGP Variations following Cell Technology
3.3.1. Projected PVct Changes over Togo
3.3.2. Projected PVct Changes over Maritime Region
3.3.3. Projected PVct Changes over the “Plateau” Region
3.3.4. Projected PVct Changes over the Central Region
3.3.5. Projected PVct Changes over Kara Region
3.3.6. Projected PVct Changes over the Savanna Region
3.4. Projected PVGP Changes over Togo and Its Administrative Regions
3.4.1. PVP Projected Changes over Togo
3.4.2. Projected PVGP over Maritime Region
3.4.3. Projected PVGP over the Plateau Region
3.4.4. Projected PVGP over Central Region
3.4.5. Projected PVGP over Kara Region
3.4.6. Projected PVGP over Savannah Region
3.5. Comparative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wirtschaft, Z.B.W.L. Development of Electricity Program, Electrificaty Ratio with Human Development Index in West Java Province, Indonesia. Mater. Test. 1999, 41, 307. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Nair, N.K.C.; Rayudu, R.K.; Chakrabarti, B. Decentralized Energy Generation for End-Use Applications: Economic, Social and Environmental Benefits Assessment. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 84–89. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Distributed Photovoltaic Power Generation for Energy-Poor Households: The Nigerian Perspective. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kowloon, Hong Kong, 8–11 December 2013. [Google Scholar] [CrossRef]
- International Renewable Energy Agency Fostering Livelihoods with Decentralised Renewable Energy: An Ecosystem Approach; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022; ISBN 978-92-9260-412-7.
- Madurai Elavarasan, R.; Afridhis, S.; Vijayaraghavan, R.R.; Subramaniam, U.; Nurunnabi, M. SWOT Analysis: A Framework for Comprehensive Evaluation of Drivers and Barriers for Renewable Energy Development in Significant Countries. Energy Reports 2020, 6, 1838–1864. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Shafiullah, G.M.; Manoj Kumar, N.; Padmanaban, S. A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future. Energies 2019, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Santika, W.G.; Anisuzzaman, M.; Simsek, Y.; Bahri, P.A.; Shafiullah, G.M.; Urmee, T. Implications of the Sustainable Development Goals on National Energy Demand: The Case of Indonesia. Energy 2020, 196, 117100. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Selvamanohar, L.; Raju, K.; Vijayaraghavan, R.R.; Subburaj, R.; Nurunnabi, M.; Khan, I.A.; Afridhis, S.; Hariharan, A.; Pugazhendhi, R.; et al. A Holistic Review Of The Present And Future Drivers Of The Renewable Energy Mix in Maharashtra, State of India. Sustainability 2020, 12, 6596. [Google Scholar] [CrossRef]
- Speer, B.; Miller, M.; Gueran, L.; Reuter, A.; Widegren, K. The Role of Smart Grids in Integrating Renewable Energy The Role of Smart Grid in Integrating Renewable Energy; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2015. [Google Scholar]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Gellings, C. EPRI Estimating the Costs and Benefits of the Smart Grid: A Preliminary Estimate of the Investment Requirements and the Resultant Benefits of a Fully Functioning Smart Grid; Electric Power Research Institute Final Report; Electric Power Research Institute (EPRI): Washington, DC, USA, 2011. [Google Scholar]
- Ayadi, F.; Colak, I.; Garip, I.; Bulbul, H.I. Impacts of Renewable Energy Resources in Smart Grid. In Proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid), Paris, France, 17–19 June 2020; pp. 183–188. [Google Scholar] [CrossRef]
- Clastres, C. Smart Grids: Another Step towards Competition, Energy Security and Climate Change Objectives. Energy Policy 2011, 39, 5399–5408. [Google Scholar] [CrossRef]
- Wissner, M. The Smart Grid—A Saucerful of Secrets? Appl. Energy 2011, 88, 2509–2518. [Google Scholar] [CrossRef]
- Nobre, P.; Pereira, E.B.; Lacerda, F.F.; Bursztyn, M.; Haddad, E.A.; Ley, D. Solar Smart Grid as a Path to Economic Inclusion and Adaptation to Climate Change in the Brazilian Semiarid Northeast. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 499–517. [Google Scholar] [CrossRef]
- Islam, M.A.; Hasanuzzaman, M.; Rahim, N.A.; Nahar, A.; Hosenuzzaman, M. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security. Sci. World J. 2014, 2014, 197136. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.S.; Dincer, I.; Reddy, B.V. Role of Renewable Energy in Sustainable Development; Springer: Boston, MA, USA, 2010; ISBN 9781441910165. [Google Scholar]
- Oyedepo, S.O.; Babalola, O.P.; Nwanya, S.C.; Kilanko, O.; Leramo, R.O.; Aworinde, A.K.; Adekeye, T.; Oyebanji, J.A.; Abidakun, A.O.; Agberegha, O.L. Towards a Sustainable Electricity Supply in Nigeria: The Role of Decentralized Renewable Energy System. Eur. J. Sustain. Dev. Res. 2018, 2, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyasapoh, M.A.; Elorm, M.D.; Derkyi, N.S.A. The Role of Renewable Energies in Sustainable Development of Ghana. Sci. African 2022, 16, e01199. [Google Scholar] [CrossRef]
- Pooja, B.; Ajmer, S. Smart Metering in Smart Grid Framework: A Review. In Proceedings of the 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 22–24 December 2016; pp. 7–9. [Google Scholar]
- Beidou, F.B.; Morsi, W.G.; Diduch, C.P.; Chang, L. Smart Grid: Challenges, Research Directions and Possible Solutions. In Proceedings of the The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 670–673. [Google Scholar]
- Konstantelos, I.; Giannelos, S.; Member, S.; Strbac, G. Strategic Valuation of Smart Grid Technology Options in Distribution Networks. IEEE Trans. Power Syst. 2016, 8950, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bayindir, R.; Hossain, E.; Vadi, S. The Path of the Smart Grid -The New and Improved Power Grid. In Proceedings of the 2016 International Smart Grid Workshop and Certificate Program (ISGWCP), Istanbul, Turkey, 21–25 March 2016; pp. 62–69. [Google Scholar]
- Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.R.; Chopra, S.S. Distributed Energy Resources and the Application of Ai, Iot, and Blockchain in Smart Grids. Energies 2020, 13, 5739. [Google Scholar] [CrossRef]
- Al Haj Hassan, H.; Gamboa, S.; Nuaymi, L.; Pelov, A.; Montavont, N. The Smart Grid and Future Mobile Networks: Integrating Renewable Energy Sources and Delay Tolerant Users. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q. Sustainable Development of Renewable Energy Integrated Power Sector: Trends, Environmental Impacts, and Recent Challenges. Sci. Total Environ. 2022, 822, 153645. [Google Scholar] [CrossRef]
- Phuangpornpitak, N.; Tia, S. Opportunities and Challenges of Integrating Renewable Energy in Smart Grid System. Energy Procedia 2013, 34, 282–290. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and Solution Technologies for the Integration of Variable Renewable Energy Sources—A Review. Renew. Energy 2019, 145, 2271–2285. [Google Scholar] [CrossRef]
- Begum, R.A.; Al-muhsen, N.F.O.; Soujeri, E. Solar Photovoltaic Energy Optimization Methods, Challenges and Issues: A Comprehensive Review. J. Clean. Prod. 2020, 284, 125465. [Google Scholar] [CrossRef]
- Arnold, B.G.W. Challenges and Opportunities in Smart Grid: A Position Article. Proc. IEEE 2011, 99, 2–7. [Google Scholar] [CrossRef]
- Xiang, C.; Zhao, X.; Tan, L.; Ye, J.; Wu, S.; Zhang, S.; Sun, L. A Solar Tube: Efficiently Converting Sunlight into Electricity and Heat. Nano Energy 2019, 55, 269–276. [Google Scholar] [CrossRef]
- Ibram, G. Solar Fuels Vis-à-Vis Electricity Generation from Sunlight: The Current State-of-the-Art (a Review). Renew. Sustain. Energy Rev. 2015, 44, 904–932. [Google Scholar] [CrossRef]
- Khursheed, M.U.N.; Nadeem Khan, M.F.; Ali, G.; Khan, A.K. A Review of Estimating Solar Photovoltaic Cell Parameters. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Goel, S.; Sharma, R. Performance Evaluation of Stand Alone, Grid Connected and Hybrid Renewable Energy Systems for Rural Application: A Comparative Review. Renew. Sustain. Energy Rev. 2017, 78, 1378–1389. [Google Scholar] [CrossRef]
- Das, B.K. Optimal Sizing of Stand-Alone and Grid-Connected Solar PV Systems in Bangladesh. Int. J. Energy a Clean Environ. 2020, 21, 107–124. [Google Scholar] [CrossRef]
- Ghenai, C.; Bettayeb, M. Grid-Tied Solar PV/Fuel Cell Hybrid Power System for University Building. Energy Procedia 2019, 159, 96–103. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Capacity Highlights; IRENA: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- ARSE Rapports Annuels 2020. Available online: www.arse.tg (accessed on 7 July 2022).
- Srikranjanapert, M.; Junlakarn, S.; Hoonchareon, N. How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential Pv System Owners in Thailand. Sustain. 2021, 13, 2681. [Google Scholar] [CrossRef]
- Pillai, G.G.; Putrus, G.A.; Georgitsioti, T.; Pearsall, N.M. Near-Term Economic Benefits from Grid-Connected Residential PV (Photovoltaic) Systems. Energy 2014, 68, 832–843. [Google Scholar] [CrossRef]
- Raza, F.; Tamoor, M.; Miran, S.; Arif, W.; Kiren, T.; Amjad, W.; Hussain, M.I.; Lee, G.H. The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies 2022, 15, 1198. [Google Scholar] [CrossRef]
- Litjens, G.B.M.A.; Worrell, E.; van Sark, W.G.J.H.M. Economic Benefits of Combining Self-Consumption Enhancement with Frequency Restoration Reserves Provision by Photovoltaic-Battery Systems. Appl. Energy 2018, 223, 172–187. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.Q.; Ma, X.R.; Wu, G.L. Combined Ecological and Economic Benefits of the Solar Photovoltaic Industry in Arid Sandy Ecosystems. J. Clean. Prod. 2020, 262, 121376. [Google Scholar] [CrossRef]
- Bonkaney, A.L.; Madougou, S.; Adamou, R. Impact of Climatic Parameters on the Performance of Solar Photovoltaic (PV) Module in Niamey. Smart Grid Renew. Energy 2017, 08, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Bonkaney, A.; Madougou, S.; Adamou, R. Impacts of Cloud Cover and Dust on the Performance of Photovoltaic Module in Niamey. J. Renew. Energy 2017, 2017, 9107502. [Google Scholar] [CrossRef] [Green Version]
- Slootweg, J.G.; Jordán Córdova, C.E.P.; Montes Portela, C.; Morren, J. Smart Grids—Intelligence for Sustainable Electrical Power Systems. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Römer, B.; Reichhart, P.; Kranz, J.; Picot, A. The Role of Smart Metering and Decentralized Electricity Storage for Smart Grids: The Importance of Positive Externalities. Energy Policy 2012, 50, 486–495. [Google Scholar] [CrossRef]
- Basit, M.A.; Dilshad, S.; Badar, R.; Sami ur Rehman, S.M. Limitations, Challenges, and Solution Approaches in Grid-Connected Renewable Energy Systems. Int. J. Energy Res. 2020, 44, 4132–4162. [Google Scholar] [CrossRef]
- Sathiyanathan, M.; Jaganathan, S.; Josephine, R.L. Multi-Mode Power Converter Topology for Renewable Energy Integration With Smart Grid. In Integration of Renewable Energy Sources with Smart Grid; Wiley Online Library: New York, NY, USA, 2021; pp. 141–169. [Google Scholar] [CrossRef]
- Sawadogo, W.; Reboita, M.S.; Faye, A.; da Rocha, R.P.; Odoulami, R.C.; Olusegun, C.F.; Adeniyi, M.O.; Abiodun, B.J.; Sylla, M.B.; Diallo, I.; et al. Current and Future Potential of Solar and Wind Energy over Africa Using the RegCM4 CORDEX-CORE Ensemble. Clim. Dyn. 2020, 57, 1647–1672. [Google Scholar] [CrossRef]
- Patchali, T.E.; Ajide, O.O.; Matthew, O.J.; Salau, T.A.O.; Oyewola, O.M. Examination of Potential Impacts of Future Climate Change on Solar Radiation in Togo, West Africa. SN Appl. Sci. 2020, 2, 1941. [Google Scholar] [CrossRef]
- Presidence togolaise Stratégie d ’électrification Du Togo. Available online: https://togopresse.tg (accessed on 11 November 2021).
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Bichet, A.; Hingray, B.; Evin, G.; Diedhiou, A.; Kebe, C.M.F.; Anquetin, S. Potential Impact of Climate Change on Solar Resource in Africa for Photovoltaic Energy: Analyses from CORDEX-Africa Climate Experiments. Environ. Res. Lett. 2019, 14, 124039. [Google Scholar] [CrossRef]
- Sawadogo, W.; Abiodun, B.J.; Okogbue, E.C. Impacts of Global Warming on Photovoltaic Power Generation over West Africa. Renew. Energy 2019, 151, 263–277. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montávez, J.P.; López-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Déqué, M.; et al. The Impact of Climate Change on Photovoltaic Power Generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef] [Green Version]
- Remedio, A.R.; Teichmann, C.; Buntemeyer, L.; Sieck, K.; Weber, T.; Rechid, D.; Hoffmann, P.; Nam, C.; Kotova, L.; Jacob, D. Evaluation of New CORDEX Simulations Using an Updated Köppen-Trewartha Climate Classification. Atmosphere 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Coppola, E.; Raffaele, F.; Giorgi, F.; Giuliani, G.; Xuejie, G.; Ciarlo, J.M.; Sines, T.R.; Torres-Alavez, J.A.; Das, S.; di Sante, F.; et al. Climate Hazard Indices Projections Based on CORDEX-CORE, CMIP5 and CMIP6 Ensemble. Clim. Dyn. 2021, 57, 1293–1383. [Google Scholar] [CrossRef]
- Torres-Alavez, J.A.; Das, S.; Corrales-Suastegui, A.; Coppola, E.; Giorgi, F.; Raffaele, F.; Bukovsky, M.S.; Ashfaq, M.; Salinas, J.A.; Sines, T. Future Projections in the Climatology of Global Low-Level Jets from CORDEX-CORE Simulations. Clim. Dyn. 2021, 57, 1551–1569. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Jacob, D.; Teichmann, C.; Omar, S.A.; Ashfaq, M.; Ban, N.; Bülow, K.; Bukovsky, M.; Buntemeyer, L.; et al. The CORDEX-CORE EXP-I Initiative. Bull. Am. Meteorol. Soc. 2021, 103, 293–310. [Google Scholar] [CrossRef]
- Teichmann, C.; Jacob, D.; Remedio, A.R.; Remke, T.; Buntemeyer, L.; Hoffmann, P.; Kriegsmann, A.; Lierhammer, L.; Bülow, K.; Weber, T.; et al. Assessing Mean Climate Change Signals in the Global CORDEX-CORE Ensemble. Clim. Dyn. 2021, 57, 1269–1292. [Google Scholar] [CrossRef]
- Torres-Alavez, J.A.; Glazer, R.; Giorgi, F.; Coppola, E.; Gao, X.; Hodges, K.I.; Das, S.; Ashfaq, M.; Reale, M.; Sines, T. Future Projections in Tropical Cyclone Activity over Multiple CORDEX Domains from RegCM4 CORDEX-CORE Simulations. Clim. Dyn. 2021, 57, 1507–1531. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Teichmann, C.; Jacob, D. Editorial for the CORDEX-CORE Experiment I Special Issue. Clim. Dyn. 2021, 57, 1265–1268. [Google Scholar] [CrossRef]
- Elguindi, N.; Giorgi, F.; Turuncoglu, U. Assessment of CMIP5 Global Model Simulations over the Subset of CORDEX Domains Used in the Phase I CREMA. Clim. Change 2014, 125, 7–21. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and Variability of Surface Solar Radiation in Europe Based On Surface- and Satellite-Based Data Records. J. Geophys. Res. Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Tang, C.; Morel, B.; Wild, M.; Pohl, B.; Abiodun, B.; Lennard, C.; Bessafi, M. Numerical Simulation of Surface Solar Radiation over Southern Africa. Part 2: Projections of Regional and Global Climate Models; Springer: Berlin/Heidelberg, Germany, 2019; Volume 53, ISBN 0123456789. [Google Scholar]
- Boilley, A.; Wald, L. Comparison between Meteorological Re-Analyses from ERA-Interim and MERRA and Measurements of Daily Solar Irradiation at Surface. Renew. Energy 2015, 75, 135–143. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global Reanalysis: Goodbye ERA-Interim, Hello ERA5. In ECMWF Newsletter No. 159; Lentze, G., Ed.; European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2019; pp. 17–24. [Google Scholar] [CrossRef]
- Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Aerts, J.C.J.H. Advancing Global Storm Surge Modelling Using the New ERA5 Climate Reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [Google Scholar] [CrossRef]
- Tall, M.; Albergel, C.; Bonan, B.; Zheng, Y.; Guichard, F.; Dramé, M.S.; Gaye, A.T.; Sintondji, L.O.; Hountondji, F.C.C.; Nikiema, P.M.; et al. Towards a Long-Term Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to 2018. Remote Sens. 2019, 11, 735. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Graham, R.M.; Wang, K.; Gerland, S.; Granskog, M.A. Comparison of ERA5 and ERA-Interim near-Surface Air Temperature, Snowfall and Precipitation over Arctic Sea Ice: Effects on Sea Ice Thermodynamics and Evolution. Cryosphere 2019, 13, 1661–1679. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Hinton, T.; Jones, C.D.; Liddicoat, S.; Martin, G.; O’Connor, F.; Rae, J.; et al. Evaluation of HadGEM2 Model; Met Office: Exeter, UK, 2008; 47p. [Google Scholar]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 Family of Met Office Unified Model Climate Configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef] [Green Version]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and Carbon Cycle Changes from 1850 to 2100 in MPI-ESM Simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Iversen, T.; Bentsen, M.; Bethke, I.; Debernard, J.B.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Kristjansson, J.E.; Medhaug, I.; Sand, M.; et al. The Norwegian Earth System Model, NorESM1-M—Part 2: Climate Response and Scenario Projections. Geosci. Model Dev. 2013, 6, 389–415. [Google Scholar] [CrossRef] [Green Version]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoose, C.; et al. The Norwegian Earth System Model, NorESM1-M—Part 1: Description and Basic Evaluation of the Physical Climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The Representative Concentration Pathways: An Overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.J.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP2.6: Exploring the Possibility to Keep Global Mean Temperature Increase below 2°C. Clim. Change 2011, 109, 95–116. [Google Scholar] [CrossRef]
- Gray, V. Climate Change 2007: The Physical Science Basis Summary for Policymakers. Energy Environ. 2007, 18, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A Scenario of Comparatively High Greenhouse Gas Emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- San José, R.; Pérez, J.L.; González, R.M.; Pecci, J.; Garzón, A.; Palacios, M. Impacts of the 4.5 and 8.5 RCP Global Climate Scenarios on Urban Meteorology and Air Quality: Application to Madrid, Antwerp, Milan, Helsinki and London. J. Comput. Appl. Math. 2016, 293, 192–207. [Google Scholar] [CrossRef]
- Kafka, J.L.; Miller, M.A. A Climatology of Solar Irradiance and Its Controls across the United States: Implications for Solar Panel Orientation. Renew. Energy 2019, 135, 897–907. [Google Scholar] [CrossRef]
- Mavromatakis, F.; Makrides, G.; Georghiou, G.; Pothrakis, A.; Franghiadakis, Y.; Drakakis, E.; Koudoumas, E. Modeling the Photovoltaic Potential of a Site. Renew. Energy 2010, 35, 1387–1390. [Google Scholar] [CrossRef]
- Tonui, J.K.; Tripanagnostopoulos, Y. Performance Improvement of PV/T Solar Collectors with Natural Air Flow Operation. Sol. Energy 2008, 82, 1–12. [Google Scholar] [CrossRef]
- TamizhMani, G.; Ji, L.; Tang, Y.; Petacci, L.; Osterwald, C. Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development For Energy Rating. In Proceedings of the NCPV and Solar Program Review Meeting Proceedings, Denver, Colorado, 24–26 March 2003; pp. 936–939. [Google Scholar]
- Wilcox, L.J.; Highwood, E.J.; Booth, B.B.B.; Carslaw, K.S. Quantifying Sources of Inter-Model Diversity in the Cloud Albedo Effect. Geophys. Res. Lett. 2015, 42, 1568–1575. [Google Scholar] [CrossRef]
- Wilcox, L.J.; Highwood, E.J.; Dunstone, N.J. The Influence of Anthropogenic Aerosol on Multi-Decadal Variations of Historical Global Climate. Environ. Res. Lett. 2013, 8, 024033. [Google Scholar] [CrossRef]
- France, O.B.; France, C.G.; Germany, C.H.; Uk, A.J. Clouds and Aerosols. In Climate Change 2013–The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; pp. 571–658. [Google Scholar] [CrossRef]
- Wu, F.; Fu, C. Assessment of GEWEX/SRB Version 3.0 Monthly Global Radiation Dataset over China. Meteorol. Atmos. Phys. 2011, 112, 155–166. [Google Scholar] [CrossRef]
- Tang, C.; Morel, B.; Wild, M.; Pohl, B.; Abiodun, B.; Bessafi, M. Numerical Simulation of Surface Solar Radiation over Southern Africa. Part 1: Evaluation of Regional and Global Climate Models. Clim. Dyn. 2019, 52, 457–477. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Palmer, T.N. A Personal Perspective on Modelling the Climate System. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150772. [Google Scholar] [CrossRef] [PubMed]
Admin. Regions | Latitude | Longitude | Area (km2) | ||
---|---|---|---|---|---|
Maritime | 6°00′ | 6°50′ | 0°25′ | 2°00′ | 6100 km2 |
Plateau | 6°9 | 8°5′ | 0°30′ | 1°38′ | 16,800 km2 |
Central | 8°0 | 9°15′ | 0°15′ | 1°35′ | 13,317 km2 |
Kara | 9°20′ | 10°05 | 0°55′ | 1°25 E | 11,738 km2 |
Savannah | 0° | 1° | 10° | 11° | 8533 km2 |
PV Cell | a (°C) | a1 (°C/W/m2) | a2 | a3 (°C/m/s) | a4 (°C/Rh%) |
---|---|---|---|---|---|
Mono Si | 1.57 | 0.0289 | 0.961 | −1.457 | 0.109 |
Poly Si | 3.9 | 0.030 | 0.954 | −1.629 | 0.088 |
a-Si | 2.5 | 0.026 | 0.964 | −1.406 | 0.082 |
Admin. Regions | Rs Bias (W/m2) | Tas Bias (°C) | Rh Bias (%) | Wspd Bias (m/s) |
---|---|---|---|---|
Maritime | −26.918 | 0.13 | −5.31 | 0.877 |
Plateau | −17.905 | 0.1289 | −14.215 | −0.10197 |
Central | −12.0461 | 0.2406 | −18.9988 | −0.1329 |
Kara | −4.992 | 0.009 | −23.6915 | 0.1126 |
Savannah | 2.7692306 | 0.926079 | −29.515 | 0.1907783 |
Rise in pv Cell Temperature from 2024–2065 | Decrease in pv Potential from 2024–2065 | ||||||
---|---|---|---|---|---|---|---|
DOMAINS | Min | Max | Scenarios (RCP) | Domains | Min | Max | Scenarios (RCP) |
TOGO (°C) | 0.88 (poly-Si) | 0.3 (a-Si) | 2.6 | Togo (%) | 0.14 (poly-Si) | 0.3 (a-Si) | 2.6 |
REGIONS (°C) | 0.82 (poly-Si) over Maritime | 1.09 (a-Si) over Kara | 2.6 | Regions (%) | 0.095 (poly-Si) in Kara | 0.3 (a-Si) in Maritime | 2.6 |
TOGO (°C) | 0.97 (poly-Si) | 1.88 (a-Si) | 8.5 | Togo (%) | 0.22 (poly-Si) | 0.37 (a-Si) | 8.5 |
REGIONS (°C) | 0.89 (poly-Si) over Maritime | 2.01 (a-Si) over Savanes | 8.5 | Regions (%) | 0.18 (poly-Si) in Plateaux | 0.45 (a-Si) in Maritime | 8.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amega, K.; Laré, Y.; Bhandari, R.; Moumouni, Y.; Egbendewe, A.Y.G.; Sawadogo, W.; Madougou, S. Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo. Energies 2022, 15, 9532. https://doi.org/10.3390/en15249532
Amega K, Laré Y, Bhandari R, Moumouni Y, Egbendewe AYG, Sawadogo W, Madougou S. Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo. Energies. 2022; 15(24):9532. https://doi.org/10.3390/en15249532
Chicago/Turabian StyleAmega, Kokou, Yendoubé Laré, Ramchandra Bhandari, Yacouba Moumouni, Aklesso Y. G. Egbendewe, Windmanagda Sawadogo, and Saidou Madougou. 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo" Energies 15, no. 24: 9532. https://doi.org/10.3390/en15249532
APA StyleAmega, K., Laré, Y., Bhandari, R., Moumouni, Y., Egbendewe, A. Y. G., Sawadogo, W., & Madougou, S. (2022). Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo. Energies, 15(24), 9532. https://doi.org/10.3390/en15249532