Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study
Abstract
:1. Introduction
2. Status Quo of Gas End-Consumers and Gas Network Operators
2.1. The Gas End-Consumers
2.2. Structure of the Gas Network Operators
3. Methods and Data
3.1. Methodical Approach
3.2. Data
3.3. Scenarios for Future Industrial Energy Demand
4. Industry Sectors with Large Natural Gas Demand and Their Future Development
4.1. Iron and Steel
4.2. Food and Tobacco
4.3. Pulp and Paper
4.4. Glass and Ceramics
4.5. Mineral Processing
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleiter, T.; Schlomann, B.; Eichhammer, W. Energy Consumption and CO2 Emissions of Industrial Process Technologies-Savings Potentials, Obstacles and Instruments: (German: Energieverbrauch und CO2-Emissionen industrieller Prozesstechnologien-Einsparpotenziale, Hemmnisse und Instrumente); Fraunhofer-Verl: Stuttgart, Germany, 2013; Available online: http://publica.fraunhofer.de/dokumente/N-234719.html (accessed on 16 December 2022).
- Navigant, Universität Stuttgart IER, FfE und BBG und Partner. Energy Transition in Industry-Potentials and Interactions with the Energy Sector. Sector profile of the Food Industry: (German: Energiewende in der Industrie-Potenziale und Wechselwirkungen mit dem Energiesektor. Branchensteckbrief der Nahrungsmittelindustrie). In Energy Transition in Industry. Potentials and Interactions with the Energy Sector-Industry Profiles: (German: Energiewende in der Industrie. Potenziale und Wechselwirkungen mit dem Energiesektor-Branchensteckbriefe); Federal Ministry for Economic Affairs and Energy: Berlin, Germany, 2019; Available online: https://www.bmwk.de/Redaktion/DE/Artikel/Energie/energiewende-in-der-industrie.html (accessed on 16 December 2022).
- Fraunhofer ISI.; Consentec, I.F.E.U.; Berlin, T.U. Long-Term Scenarios 3. Scientific Analyses on the Decarbonization of Germany: (German: Langfristszenarien 3. Wissenschaftliche Analysen zur Dekarbonisierung Deutschlands). Study Commissioned by the German Federal Ministry for Economic Affairs and Energy. Available online: https://langfristszenarien.de/enertile-explorer-de/index.php (accessed on 19 July 2021).
- Gnann, T.; Speth, D.; Krail MWietschel, M.; Oberle, S. Pathways to Carbon-Free Transport in Germany until 2050. World Electr. Veh. J. 2022, 13, 136. [Google Scholar] [CrossRef]
- BNetzA; Bundeskartellamt. Monitoring Report 2020: (German: Monitoringbericht gemäß § 63 Abs. 3 i. V. m. § 35 EnWG und § 48 Abs. 3 i. V. m. § 53 Abs. 3 GWB Stand: 01. März 2021). Bericht, Bonn, Germany. 2021. Available online: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht_Energie2020.pdf?__blob=publicationFile&v=8. (accessed on 27 November 2022).
- Oberle, S.; Stute, J.; Fritz, M.; Klobasa, M.; Wietschel, M. Sector Coupling Technologies in Gas, Electricity, and Heat Networks: Competition or Synergy? J. Technol. Assess. Theory Pract. 2020, 29, 24–30. Available online: https://www.tatup.de/index.php/tatup/issue/view/167/172 (accessed on 16 December 2022).
- Öko-Institut, E.V. The Hydrogen Strategy 2.0 for Germany. Study for the Climate Neutrality Foundation: (German: Die Wasserstoffstrategie 2.0 für Deutschland. Untersuchung für die Stiftung Klimaneutralität); Institut für angewandte Ökologie: Berlin, Germany, 2021; Available online: https://www.oeko.de/fileadmin/oekodoc/Die-Wasserstoffstrategie-2-0-fuer-DE.pdf (accessed on 13 July 2021).
- Sardi, K.; de Vita, A.; Capros, P. Asset Study on the Role of Gas DSOs and Distribution Networks in the Context of the Energy Transition. Brussels, Belgium, 2020. Available online: https://op.europa.eu/o/opportal-service/download-handler?identifier=cad1a27a-7fbb-11eb-9ac9-01aa75ed71a1&format=PDF&language=en&productionSystem=cellar (accessed on 1 July 2021).
- Prognos; Öko-Institut; Wuppertal-Institut. Climate-neutral Germany 2045.: How Germany can Achieve Its Climate Targets even before 2050. (German: Klimaneutrales Deutschland 2045. Wie Deutschland Seine Klimaziele Schon vor 2050 Erreichen Kann). Available online: https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_04_KNDE45/A-EW_209_KNDE2045_Zusammenfassung_DE_WEB.pdf (accessed on 24 January 2022).
- BMJV; BfJ. Federal Climate Protection Act (KSG): Of December 12, 2019 (BGBl. I p. 2513), as Amended by Article 1 of the Act of 18 August 2021 (BGBl. I p. 3905). (German: Bundes-Klimaschutzgesetz (KSG)). Available online: https://www.gesetze-im-internet.de/ksg/BJNR251310019.html (accessed on 16 December 2022).
- Dena. Dena Lead Study: The Dawn of Climate Neutrality, Expert Reports: (German: Dena-Leitstudie Aufbruch Klimaneutralität, Gutachterberichte). 2021. Available online: https://www.dena.de/fileadmin/dena/Dokumente/Landingpages/Leitstudie_II/Gutachten/211101_dena_DLS_alle_Gutachten_final.pdf (accessed on 1 July 2022).
- BCG. Climate Paths 2.0-An Economic Program for Climate and Future: (German: Klimapfade 2.0-Ein Wirtschaftsprogramm für Klima und Zukunft). 2021. Available online: https://issuu.com/bdi-berlin/docs/211021_bdi_klimapfade_2.0_-_gesamtstudie_-_vorabve (accessed on 15 June 2022).
- Zwickl-Bernhard, S.; Auer, H. Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods. Energy 2022, 238, 121805. [Google Scholar] [CrossRef]
- Däuper, O.; Straßer, T.; Lange, H.; Tischmacher, D.; Fimpel, A.; Kaspers, J.; Koulaxidis, S.; Warg, F.; Baudisch, K. Wärmewendestudie: Die Wärmewende und ihre Auswirkungen auf die Gasverteilnetze. Management Summary. 2018. Available online: https://www.die-bbh-gruppe.de/fileadmin/user_upload/Aktuelles/Studien/bbh_Management-Summary_ONLINE.PDF (accessed on 26 May 2021).
- Then, D.; Spalthoff, C.; Bauer, J.; Kneiske, T.M.; Braun, M. Impact of Natural Gas Distribution Network Structure and Operator Strategies on Grid Economy in Face of Decreasing Demand. Energies 2020, 13, 664. [Google Scholar] [CrossRef] [Green Version]
- Giehl, J.; Sudhaus, T.; Kurre, A.; Mikulicz-Radecki, F.V.; Hollnagel, J.; Wacker, M.; Himmel, J.; Müller-Kichenbauer, J. Modelling the impact of the energy transition on gas distribution networks in Germany. Energy Strat. Rev. 2021, 38, 100751. [Google Scholar] [CrossRef]
- Eurostat. Natural gas Supply Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_supply_statistics#Consumption_trends (accessed on 20 May 2022).
- AGEB. Application Balances for the Energy Balance Germany. Final Energy Consumption by Energy SOURCES AND Applications: (German: Anwendungsbilanzen zur Energiebilanz Deutschland. Endenergieverbrauch nach Energieträgern und Anwendungszwecken). Münster, Bergheim, Germany. 2020. Available online: https://ag-energiebilanzen.de/medium/ageb-zusammenfassung-anwendungsbilanzen-fuer-die-endenergiesektoren-2010-bis-2020/ (accessed on 16 December 2022).
- Federal Constitutional Court. Constitutional Complaints against Climate Protection Law Partially Successful. Press Release No. 31/2021 of 29 April 2021: (German: Verfassungsbeschwerden Gegen das Klimaschutzgesetz Teilweise Erfolgreich. Pressemitteilung Nr. 31/2021 vom 29. April 2021). Beschluss vom 2021. Available online: https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/DE/2021/bvg21-031.html (accessed on 21 May 2021).
- The Federal Government, Intergenerational Contract for the Climate. Climate Protection Act 2021: (German: Generationenvertrag für das Klima. Klimaschutzgesetz 2021). Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed on 24 May 2021).
- Fraunhofer ISI. Preparation of Application Balances for the Years 2018 to 2020 for the Industry and GHD Sectors. Study for the Working Group on Energy Balances (AGEB)-Draft: (German: Erstellung von Anwendungsbilanzen für die Jahre 2018 bis 2020 für die Sektoren Industrie und GHD. Studie für die Arbeitsgemeinschaft Energiebilanzen e.V. (AGEB)-Entwurf). ISI-Individual Report Industry_GHD 2019. Karlsruhe, Germany, 2020. Available online: https://ag-energiebilanzen.de/medium/isi-einzelbericht-industrie_ghd-2020/ (accessed on 16 December 2022).
- ACER. Gas Factsheet. Available online: https://www.acer.europa.eu/gas-factsheet (accessed on 20 May 2022).
- FNB Gas E.V. National and Regional Gas Transport to the Consumer: (German: Überregionaler und regionaler Gastransport bis zum Verbraucher). Available online: https://fnb-gas.de/deutschland-sicher-mit-erdgas-versorgen/fernleitungsnetz/ (accessed on 27 November 2022).
- BMJV; BFJ. Electricity and Gas Supply Law (German: Gesetz über die Elektrizitäts-und Gasversorgung): Energy Economy Law-EnWG (German: Energiewirtschaftsgesetz-EnWG). 2005. Available online: https://www.gesetze-im-internet.de/enwg_2005/__3.html (accessed on 16 December 2022).
- European Commission. Eurostat-Energy Balances. Available online: https://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed on 1 June 2022).
- Neuwirth, M.; Fleiter, T.; Manz, P.; Hofmann, R. The future potential hydrogen demand in energy-intensive industries—A site-specific approach applied to Germany. Energy Convers. Manag. 2021, 252, 115052. [Google Scholar] [CrossRef]
- ENTSOG. ENTSOG Transparency Platform: Transmission Capacity Map 2019. Available online: https://www.entsog.eu/maps#transmission-capacity-map-2019 (accessed on 19 July 2021).
- European Commission. HORIZON 2020-Work Programme 2014–2015: Technology Readiness Levels (TRL). General Annexes. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf (accessed on 27 November 2022).
- Manz, P.; Fleiter, T.; Aydemir, A. Developing a Georeferenced Database of Energy-Intensive Industry Plants for Estimation of Excess Heat Potentials. In Proceedings Industrial Efficiency 2018: Leading the Low-Carbon Transition; ECEEE: Stockholm, Sweden, 2018. [Google Scholar]
- Manz, P.; Kermeli, K.; Persson, U.; Neuwirth, M.; Fleiter, T.; Crijns-Graus, W. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 2021, 13, 1439. [Google Scholar] [CrossRef]
- Navigant, Universität Stuttgart IER, FfE und BBG und Partner. Energy transition in industry. Potentials and Interactions with the energy Sector-Industry Profiles (German: Energiewende in der Industrie. Potenziale und Wechselwirkungen mit dem Energiesektor-Branchensteckbriefe); Federal Ministry for Economic Affairs and Energy: Berlin, Germany, 2019; Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiewende-in-der-industrie.html (accessed on 27 November 2022).
- Agora Energiewende und Wuppertal Institute. Climate-neutral industry. Key Technologies and Policy Options for Steel, Chemicals and Cement: (German: Klimaneutrale Industrie. Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement). Study. Berlin, Germany, 2019. Available online: https://www.agora-energiewende.de/fileadmin2/Projekte/2018/Dekarbonisierung_Industrie/164_A-EW_Klimaneutrale-Industrie_Studie_WEB.pdf (accessed on 27 November 2022).
- Navigant, Universität Stuttgart IER, FfE und BBG und Partner. Energy transition in industry—Potentials and interactions with the energy sector. Sector profile of the iron and steel industry: (German: Energiewende in der Industrie—Potenziale und Wechselwirkungen mit dem Energiesektor. Branchensteckbrief der Eisen- und Stahlindustrie). In Energy Transition in Industry. Potentials and Interactions with the Energy Sector—Industry Profiles.: (German: Energiewende in der Industrie. Potenziale und Wechselwirkungen mit dem Energiesektor—Branchensteckbriefe); Federal Ministry for Economic Affairs and Energy, Hg.: Berlin, Germany, 2019. [Google Scholar]
- VGE; WGI. Maps of Gas Supply in Germany. Maps in GIS Format: (German: Karten zur Gasversorgung in Deutschland. Karten im GIS-Format). Data no longer available. Available online: https://www.enervie-vernetzt.de/Portaldata/1/Resources/_02_downloads/gas/g_technische_daten/Karten_zur_Gasversorgung_in_Deutschland.htm (accessed on 19 July 2021).
- Bailera, M.; Lisbona, P.; Peña, B.; Romeo, L.M. A review on CO2 mitigation in the Iron and Steel industry through Power to X processes. J. CO2 Util. 2021, 46, 101456. [Google Scholar] [CrossRef]
- BMWI. The National Hydrogen Strategy: (German: Die Nationale Wasserstoffstrategie); BMWI: Berlin, Germany, 2020. [Google Scholar]
- Wang, A.; Jens, J.; Mavins, D.; Moultak, M.; Schimmel, M.; van der Leun, K.; Peters, D.; Buseman, M. European Hydrogen Backbone: Analysing Future Demand, Supply, and Transport of Hydrogen. Creos, DESFA, Elering, Enagás, Energinet, Eustream, FGSZ, Fluxys Belgium, Gas Connect. Utrecht, The Netherlands, 2021. Available online: https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021_v3.pdf (accessed on 2 October 2021).
- Wang, A.; van der Leun, K.; Peters, D.; Buseman, M. European Hydrogen Backbone: How a Dedicated Hydrogen Infrastructure can be Created. Enagás, Energinet, Fluxys Belgium, Gasunie, GRTgaz, NET4GAS, OGE, ONTRAS, Snam, Swedegas, Teréga. Utrecht, The Netherlands, 2020. Available online: https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf (accessed on 22 April 2022).
- Bühler, F.; Zühlsdorf, B.; Nguyen, T.-V.; Elmegaard, B. A comparative assessment of electrification strategies for industrial sites: Case of milk powder production. Appl. Energy 2019, 250, 1383–1401. [Google Scholar] [CrossRef]
- Zühlsdorf, B.; Bühler, F.; Bantle, M.; Elmegaard, B. Analysis of technologies and potentials for heat pump-based process heat supply above 150 °C. Energy Convers. Manag. X 2019, 2, 100011. [Google Scholar] [CrossRef]
- BCG; Prognos. Climate Pathways for Germany: (German: Klimapfade für Deutschland); The Boston Consulting Group (BCG): München, Berlin, Germany; Prognos: Basel, Switzerland, 2018. [Google Scholar]
- Öko-Institut; Fraunhofer ISI. Climate Protection Scenario 2050-2nd Final Report: (German: Klimaschutzszenario 2050-2. Endbericht). 2015. Available online: https://www.oeko.de/oekodoc/2451/2015-608-de.pdf (accessed on 27 November 2022).
- Navigant, Universität Stuttgart IER, FfE und BBG und Partner. Energy transition in industry—Potentials and interactions with the energy sector. Sector profile of the paper industry: (German: Energiewende in der Industrie—Potenziale und Wechselwirkungen mit dem Energiesektor. Branchensteckbrief der Papierindustrie). In Energy Transition in Industry. Potentials and Interactions with the Energy Sector—Industry Profiles: (German: Energiewende in der Industrie. Potenziale und Wechselwirkungen mit dem Energiesektor—Branchensteckbriefe); Federal Ministry for Economic Affairs and Energy, Hg.: Berlin, Germany, 2019. [Google Scholar]
- Veitengruber, F.; Dufter, C.; Gruber, A.; Hübner, T.; Guminski, A.; Kleinertz, B.; von Roon, S. Potential Analysis for the Hybridization of Processes in the Basic Industry: (German: Potenzialanalyse zur Hybridisierung von Prozessen in der Grundstoffindustrie). In Proceedings of the 11th International Energy Economics Conference, Wien, Austria, 13–15 February 2019; Vienna University of Technology: Vienna, Austria, 2019. [Google Scholar]
- Suhr, M.; Klein, G.; Kourti, I.; Rodrigo Gonzalo, M.; Giner Santonja, G.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Production of Pulp, Paper and Board: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2015; Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/PP_revised_BREF_2015.pdf (accessed on 16 December 2022).
- Guelpa, E.; Bischi, A.; Verda, V.; Chertkov, M.; Lund, H. Towards future infrastructures for sustainable multi-energy systems: A review. Energy 2019, 184, 2–21. [Google Scholar] [CrossRef]
- Kapil, A.; Bulatov, I.; Smith, R.; Kim, J.-K. Process integration of low grade heat in process industry with district heating networks. Energy 2012, 44, 11–19. [Google Scholar] [CrossRef]
- BV Glas. Facts & Figures: (German: Zahlen & Fakten). Available online: https://www.bvglas.de/zahlen-fakten/ (accessed on 30 April 2021).
- Navigant, Universität Stuttgart IER, FfE und BBG und Partner. Energy transition in industry—Potentials and interactions with the energy sector. Sector profile of the glass industry: (German: Energiewende in der Industrie—Potenziale und Wechselwirkungen mit dem Energiesektor. Branchensteckbrief der Glasindustrie). In Energy Transition in Industry. Potentials and Interactions with the Energy Sector—Industry Profiles: (German: Energiewende in der Industrie. Potenziale und Wechselwirkungen mit dem Energiesektor—Branchensteckbriefe); Federal Ministry for Economic Affairs and Energy, Hg.: Berlin, Germany, 2019. [Google Scholar]
- BV Glas. Container Glass Industry on the Way to 50 Percent CO2 Reduction: (German: Behälterglasindustrie auf dem Weg zu 50 Prozent CO2-Reduktion). News, 22 February 2022. Available online: https://www.bvglas.de/en/detail/news/behaelterglasindustrie-auf-dem-weg-zu-50-prozent-co2-reduktion/(accessed on 30 April 2021).
- Rehfeldt, M.; Worrell, E.; Eichhammer, W.; Fleiter, T. A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030. Renew. Sustain. Energy Rev. 2020, 120, 109672. [Google Scholar] [CrossRef]
- FEVE. The Furnace for the Future: A Fundamental Milestone Towards Climate-Neutral Glass Packaging. Available online: https://feve.org/about-glass/furnace-for-the-future/ (accessed on 8 June 2021).
- Dena. Dena Lead Study Integrated Energy Transition. Impulses for Shaping the Energy System up to 2050: (German: Dena-Leitstudie Integrierte Energiewende. Impulse für die Gestaltung des Energiesystems bis 2050); Results and Recommendations for Action; German Energy Agency: Berlin, Germany, 2018. [Google Scholar]
- BV Glas. Climate-Friendly Glass Production: German Federal Association of the Glass Industry E.V. Receives Funding from the State of NRW. (German: Klimafreundliche Glasproduktion: Bundesverband Glasindustrie e.V. erhält Förderung vom Land NRW. Pressemitteilung). Available online: https://www.bvglas.de/presse/presseinformation/news/klimafreundliche-glasproduktion-bundesverband-glasindustrie-ev-erhaelt-foerderung-vom-land-nrw/ (accessed on 30 April 2021).
- Navigant, Universität Stuttgart IER, FfE und BBG und Partner. Energy transition in industry—Potentials and interactions with the energy sector. Sector profile of the cement and lime industry: (German: Energiewende in der Industrie—Potenziale und Wechselwirkungen mit dem Energiesektor. Branchensteckbrief der Zement- und Kalkindustrie). In Energy Transition in Industry. Potentials and Interactions with the Energy Sector—Industry Profiles: (German: Energiewende in der Industrie. Potenziale und Wechselwirkungen mit dem Energiesektor—Branchensteckbriefe); Federal Ministry for Economic Affairs and Energy, Hg.: Berlin, Germany, 2019. [Google Scholar]
- VDZ. Cement Industry at a Glance 2019/2020: (German: Zementindustrie im Überblick 2019/2020). Available online: https://mitglieder.vdz-online.de/fileadmin/gruppen/vdz/3LiteraturRecherche/Zementindustie_im_Ueberblick/VDZ_Zementindustrie_im_Ueberblick_2019_2020.pdf (accessed on 27 November 2022).
- PwC; GCCA; WBCSD. Cement Sustainability Initiative Getting the Numbers Rights Project: Emissions Report 2018. Information Collected for the Years 1990, 2000 and all Years from 2005 to 2018. Available online: https://gccassociation.org/gnr/ (accessed on 27 November 2022).
- Vattenfall, Vattenfall and Cementa Focusing on Zero Emissions. Available online: https://group.vattenfall.com/press-and-media/pressreleases/2017/vattenfall-and-cementa-focusing-on-zero-emissions (accessed on 27 November 2022).
Category of End Consumer | TNO Gas Withdrawal Volume in TWh | DNO Gas Withdrawal Volume in TWh |
---|---|---|
≤300 MWh/a | <0.1 | 336.6 |
>300 MWh/a ≤10,000 MWh/a | 0.5 | 28.4 |
>10,000 MWh/a ≤ 100,000 MWh/a | 5.9 | 111.0 |
>100,000 MWh/a | 137.9 | 131.8 |
Gas power plants with ≥10 MW net nominal capacity | 42.5 | 56.7 |
Total | 186.9 | 764.5 |
PtG/PtL | Electricity | |
---|---|---|
Advantages | Little adaptation of infrastructure and demand side | No losses due to conversions from renewable electricity in electrolysers for hydrogen production or other syntheses towards PtG/PtL, and partly higher efficiencies for electrified processes |
Fossil hydrocarbons can be gradually replaced by synthetic hydrocarbons by steadily increasing blends | Carbon is only needed for production in the chemical industry and there is no need for CO2 infrastructure | |
Disadvantages | Significantly higher demand for electricity from renewable sources; importing the majority of synthetic fuels from non-EU countries | Significant differences will arise in the energy supply on the demand side and necessary process changes will occur |
Carbon demand requires direct air capture and additional CO2 infrastructure | Further electricity transportation infrastructure requirements will be significant | |
PtG and PtL are associated with high costs | Industrial feedstock uses a hydrogen network serving about 20 industrial sites |
Industry | Basic Chemicals | Iron and Steel | Food and Tobacco | Pulp and Paper | Glass and Ceramics | Mineral Processing |
---|---|---|---|---|---|---|
Total natural gas demand 2019 (TWh/a) | 51.0 | 19.1 | 31.7 | 19.3 | 16.7 | 12.9 |
Number of production sites | 29 | 30 * | 5292 | 170 | 414 | 104 |
Average natural gas demand per production site (GWh/a) | 1758.6 | 637.9 | 6.0 | 113.2 | 40.2 | 123.9 |
Categories of end consumers according to [5] (MWh/a) | >100,000 | >100,000 | >300 ≤10,000 | >100,000 | >10,000 ≤100,000 | >100,000 |
First assumptions of gas network level | Transportation | Transportation/distribution | Distribution | Transportation/distribution | Transportation/distribution | Transportation/distribution |
Industry | Basic Chemicals | Iron and Steel | Food and Tobacco | Pulp and Paper | Glass/Ceramics | Mineral Processing |
---|---|---|---|---|---|---|
Average natural gas demand per production site in 2019 (TWh/a) | 1758.6 | 638.0 | 6.0 | 113.2 | 40.2 | 123.9 |
Estimated proportion of industrial production sites connected to distribution grid | ~0% | ~70% | ~100% | 30% | ~40% | 28% |
Timeline for complete switch to alternatives to natural gas [3] | n/a | 2030–2050 | 2020–2050 | 2020–2050 | 2020–2050 | 2030–2050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberle, S.; Neuwirth, M.; Gnann, T.; Wietschel, M. Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study. Energies 2022, 15, 9596. https://doi.org/10.3390/en15249596
Oberle S, Neuwirth M, Gnann T, Wietschel M. Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study. Energies. 2022; 15(24):9596. https://doi.org/10.3390/en15249596
Chicago/Turabian StyleOberle, Stella, Marius Neuwirth, Till Gnann, and Martin Wietschel. 2022. "Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study" Energies 15, no. 24: 9596. https://doi.org/10.3390/en15249596
APA StyleOberle, S., Neuwirth, M., Gnann, T., & Wietschel, M. (2022). Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study. Energies, 15(24), 9596. https://doi.org/10.3390/en15249596