A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation
Abstract
:1. Introduction
2. Topology of the V-shaped FSPM Generator
3. Optimization of Key Design Parameters
3.1. Number of Rotor Poles
3.2. Split Ratio
3.3. Rotor Pole Width
4. Comparison of Generator Performance
4.1. PM Flux-Line Distribution
4.2. Flux-Linkage and EMF
4.3. Cogging Torque
4.4. On-Load-Generating Performance
4.5. Comparison of Power-Generating Performance to the Existing Radial-Flux PM Generators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Li, F.; Jin, Z. Maximum Power Point Tracking Strategy for Large-Scale Wind Generation Systems Considering Wind Turbine Dynamics. IEEE Trans. Ind. Electron. 2015, 62, 2530–2539. [Google Scholar] [CrossRef]
- Polinder, H.; Ferreira, J.A.; Jensen, B.B.; Abrahamsen, A.B.; Atallah, K.; McMahon, R.A. Trends in Wind Turbine Generator Systems. IEEE J. Emerg. Sel. Topics Power Electron. 2013, 1, 174–185. [Google Scholar] [CrossRef]
- Boonluk, P.; Khunkitti, S.; Fuangfoo, P.; Siritaratiwat, A. Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand. Energies 2021, 14, 1458. [Google Scholar] [CrossRef]
- Srithapon, C.; Ghosh, P.; Siritaratiwat, A.; Chatthaworn, R. Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost. Energies 2020, 13, 349. [Google Scholar] [CrossRef] [Green Version]
- Boonluk, P.; Siritaratiwat, A.; Fuangfoo, P.; Khunkitti, S. Optimal Siting and Sizing of Battery Energy Storage Systems for Distribution Network of Distribution System Operators. Batteries 2020, 6, 56. [Google Scholar] [CrossRef]
- Chen, H.; El-Refaie, A.M.; Demerdash, N.A.O. Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges—Part I: Fundamentals and Topologies. IEEE Trans. Energy Convers. 2020, 35, 684–698. [Google Scholar] [CrossRef]
- Nobahari, A.; Aliahmadi, M.; Faiz, J. Performance Modifications and Design Aspects of Rotating Flux Switching Permanent Magnet Machines: A Review. IET Electr. Power Appl. 2020, 14, 1–15. [Google Scholar] [CrossRef]
- Nissayan, C.; Seangwong, P.; Chamchuen, S.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. Modeling and Optimal Configuration Design of Flux-Barrier for Torque Improvement of Rotor Flux Switching Permanent Magnet Machine. Energies 2022, 15, 8429. [Google Scholar] [CrossRef]
- Lounthavong, V.; Sriwannarat, W.; Siritaratiwat, A.; Khunkitti, P. Optimal Stator Design of Doubly Salient Permanent Magnet Generator for Enhancing the Electromagnetic Performance. Energies 2019, 12, 3201. [Google Scholar] [CrossRef] [Green Version]
- Sriwannarat, W.; Seangwong, P.; Lounthavong, V.; Khunkitti, S.; Siritaratiwat, A.; Khunkitti, P. An Improvement of Output Power in Doubly Salient Permanent Magnet Generator Using Pole Configuration Adjustment. Energies 2020, 13, 4588. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Chen, J.T. Advanced Flux-Switching Permanent Magnet Brushless Machines. IEEE Trans. Magn. 2010, 46, 1447–1453. [Google Scholar] [CrossRef]
- Cheng, M.; Hua, W.; Zhang, J.; Zhao, W. Overview of Stator-Permanent Magnet Brushless Machines. IEEE Trans. Ind. Electron. 2011, 58, 5087–5101. [Google Scholar] [CrossRef]
- Shao, L.; Hua, W.; Soulard, J.; Zhu, Z.Q.; Wu, Z.; Cheng, M. Electromagnetic Performance Comparison between 12-Phase Switched Flux and Surface-Mounted Pm Machines for Direct-Drive Wind Power Generation. IEEE Trans. Ind. Appl. 2020, 56, 1408–1422. [Google Scholar] [CrossRef]
- Zhao, G.; Hua, W. A Novel Flux-Switching Permanent Magnet Machine with v-Shaped Magnets. AIP Adv. 2017, 7, 056655. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Hua, W. Comparative Study between a Novel Multi-Tooth and a V-Shaped Flux-Switching Permanent Magnet Machines. IEEE Trans. Magn. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Zhu, X.; Shu, Z.; Quan, L.; Xiang, Z.; Pan, X. Design and Multicondition Comparison of Two Outer-Rotor Flux-Switching Permanent-Magnet Motors for in-Wheel Traction Applications. IEEE Trans. Ind. Electron. 2017, 64, 6137–6148. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhu, Z.Q. Torque Density and Magnet Usage Efficiency Enhancement of Sandwiched Switched Flux Permanent Magnet Machines Using V-Shaped Magnets. IEEE Trans. Magn. 2013, 49, 3834–3837. [Google Scholar] [CrossRef]
- Sriwannarat, W.; Siritaratiwat, A.; Khunkitti, P. Structural Design of Partitioned Stator Doubly Salient Permanent Magnet Generator for Power Output Improvement. Adv. Mater. Sci. Eng. 2019, 2019, 2189761. [Google Scholar] [CrossRef] [Green Version]
- Sriwannarat, W.; Khunkitti, P.; Janon, A.; Siritaratiwat, A. An Improvement of Magnetic Flux Linkage in Electrical Generator Using the Novel Permanent Magnet Arrangement. Acta Phys. Pol. A 2018, 133, 642–644. [Google Scholar] [CrossRef]
- Sriwannarat, W.; Seangwong, P.; Siritaratiwat, A.; Fernando, N.; Dechgummarn, Y.; Khunkitti, P. Electromagnetic Torque Improvement of Doubly Salient Permanent Magnet Machine Using Pole Ratio Adjustment Technique. Front. Energy Res. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, G.; Cheng, M. Investigation and Design of a High-Power Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles. IEEE Trans. Magn. 2015, 51, 1–5. [Google Scholar] [CrossRef]
- Zhu, X.; Shu, Z.; Quan, L.; Xiang, Z.; Pan, X. Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multi-Level Design Method. IEEE Trans. Magn. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Yu, F.; Cheng, M.; Chau, K.T. Controllability and Performance of a Nine-Phase FSPM Motor under Severe Five Open-Phase Fault Conditions. IEEE Trans. Energy Convers. 2016, 31, 323–332. [Google Scholar] [CrossRef]
- Xue, X.; Zhao, W.; Zhu, J.; Liu, G.; Zhu, X.; Cheng, M. Design of Five-Phase Modular Flux-Switching Permanent-Magnet Machines for High Reliability Applications. IEEE Trans. Magn. 2013, 49, 3941–3944. [Google Scholar] [CrossRef]
- Thomas, A.S.; Zhu, Z.Q.; Owen, R.L.; Jewell, G.W.; Howe, D. Multiphase Flux-Switching Permanent-Magnet Brushless Machine for Aerospace Application. IEEE Trans. Ind. Appl. 2009, 45, 1971–1981. [Google Scholar] [CrossRef]
- Taha, M.; Wale, J.; Greenwood, D. Greenwood Design of a High Power-Low Voltage Multiphase Permanent Magnet Flux Switching Machine For Automotive Applications. In Proceedings of the 2017 IEEE International Electric Machines & Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017. [Google Scholar]
- Li, F.; Zhu, X. Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching Pm Generator. Energies 2021, 14, 4754. [Google Scholar] [CrossRef]
- Shao, L.; Hua, W.; Zhu, Z.Q.; Tong, M.; Zhao, G.; Yin, F.; Wu, Z.; Cheng, M. Influence of Rotor-Pole Number on Electromagnetic Performance in 12-Phase Redundant Switched Flux Permanent Magnet Machines for Wind Power Generation. IEEE Trans. Ind. Appl. 2017, 53, 3305–3316. [Google Scholar] [CrossRef]
- Shao, L.; Hua, W.; Li, F.; Soulard, J.; Zhu, Z.Q.; Wu, Z.; Cheng, M. A Comparative Study on Nine- and Twelve-Phase Flux-Switching Permanent-Magnet Wind Power Generators. Proc. Conf. IEEE Trans. Ind. Appl. 2019, 55, 3607–3616. [Google Scholar] [CrossRef]
- Li, F.; Hua, W.; Tong, M.; Zhao, G.; Cheng, M. Nine-Phase Flux-Switching Permanent Magnet Brushless Machine for Low-Speed and High-Torque Applications. IEEE Trans. Magn. 2015, 51, 8700204. [Google Scholar]
- Tlali, P.M.; Wang, R.J.; Gerber, S.; Botha, C.D.; Kamper, M.J. Design and Performance Comparison of Vernier and Conventional PM Synchronous Wind Generators. IEEE Trans. Ind. Appl. 2020, 56, 2570–2579. [Google Scholar] [CrossRef]
- Kim, B. Design Method of a Direct-Drive Permanent Magnet Vernier Generator for a Wind Turbine System. Proc. Conf. IEEE Trans. Ind. Appl. 2019, 55, 4665–4675. [Google Scholar] [CrossRef]
- Labuschagne, C.J.J.; Kamper, M.J. Design and Performance Evaluation of PM Vernier Generator Technology for a Small-Scale Uncontrolled Passive Wind Generator System. IEEE Trans. Ind. Appl. 2022, 58, 4657–4667. [Google Scholar] [CrossRef]
- Ullah, W.; Khan, F.; Hussain, S. A Novel Dual Rotor Permanent Magnet Flux Switching Generator for Counter Rotating Wind Turbine Applications. IEEE Access. 2022, 10, 16456–16467. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S.; Fu, W. Sensitivity Analysis and Design Optimization of a New Hybrid-Excited Dual-PM Generator with Relieving-DC-Saturation Structure for Stand-Alone Wind Power Generation. IEEE Trans. Magn. 2020, 56, 1–5. [Google Scholar] [CrossRef]
- Nasiri-Zarandi, R.; Ajamloo, A.M.; Abbaszadeh, K. Design Optimization of a Transverse Flux Halbach-Array PM Generator for Direct Drive Wind Turbines. IEEE Trans. Energy Convers. 2020, 35, 1485–1493. [Google Scholar] [CrossRef]
- Geng, H.; Zhang, X.; Tong, L.; Qingzhi, M.; Mingjun, X.; Zhang, Y.; Wang, L. Performance Optimization Analysis of Hybrid Excitation Generator with the Electromagnetic Rotor and Embedded Permanent Magnet Rotor for Vehicle. IEEE Access. 2021, 9, 163640–163653. [Google Scholar] [CrossRef]
- Seangwong, P.; Siritaratiwat, A.; Sriwannarat, W.; Fernando, N.; Khunkitti, P. Design of Doubly Salient Permanent Magnet Generator for Output Power Enhancement Using Structural Modification. J. Appl. Comput. Mech. 2021, 7, 2171–2178. [Google Scholar]
Parameters | Unit | Initial V-Shaped Structure | Optimal V-Shaped Structure |
---|---|---|---|
Number of phases | phase | 6 | |
Number of stator teeth, Ns | pole | 12 | |
Number of rotor pole, Nr | pole | 22 | 19 |
PM type | - | NdFeB | |
Magnet remanence | T | 1.2 | |
Magnet coercivity | kA/m | −909.46 | |
Axial length, Ls | mm | 185 | |
Outer stator radius, Rso | mm | 163.5 | |
Stator yoke length, Lsy | mm | 8.56 | |
Split ratio | - | 0.8 | |
Stator inner radius, Rsi | mm | 130.8 | |
Cut delta length, Ldelta | mm | 8 | |
Stator pole arc, st | degree | 3.9375 | |
Air gap length, g | mm | 1 | |
PM arc, PM | degree | 3.375 | |
Rotor pole height, Lrh | mm | 25.96 | |
Rotor inner radius, Rri | mm | 60 | |
Flux rib, | mm | 1.5 | |
PM length, LPM | mm | 26.6 | |
Stator slot arc, ss | degree | 10.45 | |
Coil turn | turn | 65 | |
Sandwiching pole arc, sw | degree | 4.92 | |
Total stator slot area | cm2 | 10 | |
Total magnet volume | cm3 | 892 | |
Rotor pole width ratio | - | 1.4 | 1.6 |
Rotor pole arc, rt | degree | 5.25 | 6 |
Rotor pole yoke-arc, ry | degree | 12.075 | 13.8 |
Rated speed | rpm | 500 |
Output Parameters (Unit) | Initial V-Shaped Structure | Optimal V-Shaped Structure |
---|---|---|
Open-circuit phase EMF (Vrms) | 155.3 | 296.9 |
THD (%) | 8.4 | 10.3 |
Output voltage (Vrms) | 149.8 | 260.1 |
Peak–peak cogging torque (N·m) | 32.9 | 2.3 |
Phase current (A) | 10 | |
Output power (W) | 8988 | 15,603.9 |
Output torque (N·m) | 101.3 | 271 |
Power density (kW/m3) | 578.5 | 1004.3 |
Torque density (kN·m/m3) | 6.5 | 17.4 |
Torque ripple (%) | 44.4 | 13.4 |
Copper loss (W) | 326.54 | |
Core loss (W) | 226.4 | 366.7 |
PM eddy current loss (W) | 253.1 | 284.7 |
Efficiency (%) | 91.49 | 93.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seangwong, P.; Chamchuen, S.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation. Energies 2022, 15, 9608. https://doi.org/10.3390/en15249608
Seangwong P, Chamchuen S, Fernando N, Siritaratiwat A, Khunkitti P. A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation. Energies. 2022; 15(24):9608. https://doi.org/10.3390/en15249608
Chicago/Turabian StyleSeangwong, Pattasad, Supanat Chamchuen, Nuwantha Fernando, Apirat Siritaratiwat, and Pirat Khunkitti. 2022. "A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation" Energies 15, no. 24: 9608. https://doi.org/10.3390/en15249608
APA StyleSeangwong, P., Chamchuen, S., Fernando, N., Siritaratiwat, A., & Khunkitti, P. (2022). A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation. Energies, 15(24), 9608. https://doi.org/10.3390/en15249608