Why Biomass Fuels Are Principally Not Carbon Neutral
Abstract
:1. Introduction
- To what extent is biomass energy carbon neutral in principle?
2. Materials and Methods
2.1. The Quantitative Tool: Combined Energy and Biosphere Model (CEBM)
2.2. Very Diverse Sensitivities: Annual CO2 Emissions, Deforestation and the Fertilizer Effect
2.2.1. The Fertilizer Effect
2.2.2. Deforestation
2.2.3. Energy-Related CO2 Emissions
3. Results
- Underlying energy scenarios, namely, the following:
- ○
- One higher scenario corresponding to an annual CO2 emissions growth rate of +3%/a and
- ○
- One lower scenario corresponding to an annual CO2 emissions growth rate of +1%/a
- Upon which five types of scenarios for production types are applied, namely those described in Table 1, being ap, as, av, nv, nvn.
3.1. Scenarios on the Amount of Biomass Fuel Production Area
- I
- Every year, 0.1% of each grid cell’s (either natural or agricultural) area is dedicated to biomass energy production (Figure 2 and Figure 3), thus after a century resulting in 10% of the initial area being dedicated to BM fuel production and therefore still leaving sufficient space to the original usages of either natural or agricultural vegetation.
- II
- Every year, 1% of each grid cell’s (either natural or agricultural) area is dedicated to biomass energy production (see Figure 4 and Figure 5), thus after a century resulting in 100% of the initial area being dedicated to BM fuel production and therefore leaving no more sufficient space to the original usages of the earlier natural or agricultural vegetation. It is now already visible that in this group of scenarios the disturbing effects for the entire planet are way too strong to ever still be called “sustainable”. But, nevertheless, such scenarios are undertaken here as hypothetical and hence harmless thought experiments (Gedankenexperiment, in German language) in order to assess the global effects of biomass energy effects pushed to a theoretical maximum.
- I
- => a net effect on the global atmospheric CO2 concentration is almost not visible, hence such a “soft” scenario mode helps too little in mastering the initial research question, namely fighting global warming.
- II
- => while considerable mitigation of the greenhouse effect is achieved, the main message is that engendered disturbing effects on the entire planet are way too strong to ever still be called “sustainable” in any respect. These disturbing effects include the following: huge damage to existing land-use change patterns, destruction of the entire (either agricultural or natural) vegetation cover for the sake of energy production, and disturbed ecological and economical patterns on all levels. In such scenarios, the globe would be completely deprived of its natural material cycles, and thus planetary biochemistry would be overturned with additional damage to the climate (that was intended to be saved in the first place).
3.2. Shifts in Global Carbon Pools and Fluxes Resulting from Biomass Growth Scenarios
3.3. Results from the Scenarios on Biomass Energy Growth
3.4. Scenarios with Lower Increase Rates of Global CO2 Emissions
3.5. Summing up the Effects of Biomass Strategies on the Global Carbon Cycle as Result of the CEBM
- (1)
- Fossil CO2 emissions decrease (to a slightly lesser degree than the extent to which emissions from biomass fuels are added in exchange, the reason being the weaker calorific value of wood as compared to current fossil fuel mix of coal, oil and gas),
- (2)
- In some scenario types, the global total phytomass becomes decisively decreased (because naturally standing forests accumulate more carbon per area than dedicated biomass fuel plantations of whichever of the five strategies mentioned above)
- (3)
- In all scenario types, the carbon flow through the litter compartment (in Figure 1 and Figure 7) decreases (as a result of the “BM fuels” (flux BMFP in Figure 1 and Figure 7) being carried away from the areas) and the inflow into the soil carbon compartment (SOC in Figure 1 and Figure 7) also decreases as a consequence. This SOC pool loses C as a direct consequence of biomass fuel usage; in some cases, considerably, which is ultimately due to the removal of material from the steady state of the natural global carbon cycle that has reached a planetary steady-state equilibrium after thousands of years (computationally, reaching of this equilibrium is shown [31] (pp. 262–263)). Over the decades, this effect produces a very considerable net depletion of soil organic carbon (i.e., of humus) globally.
- (4)
- The amount of carbon released as a result of the possible rededication of natural areas to those with a lower forest density must be taken into account; their emission into the atmosphere is undesirable, and very astonishingly is of strikingly high magnitude. Thus the “rededication emissions” (BUM in in Figure 1—meaning in German Biomasse-Umwidmung, i.e., re-allocation of areas from other dedications (a or n) to biomass production areas) which are equivalent and analogous to deforestation emissions, are likely to represent the main effect of biomass strategies, even if this was very unexpected to the author before performing the present study. Readers in the year 2023 are well aware of striking photos from palm oil plantations in the global South that replaced enormously rich and densely forested primordial areas [54,55,56,57,58,59].
- (5)
- A noticeable relief with regard to the increase in atmospheric CO2 content can be detected in the model results, but it approaches marginal values if the theoretical potential for energetic biomass use is not exhausted.
- (6)
- The effects on the global ecosystem will in many cases be more than considerable.
- (7)
- However, a model result of the CEBM is that the energetic use of biomass contributes to the slowing down of the increase in atmospheric CO2 concentration.
- (8)
- An assessment beyond the area of the carbon cycle is not possible by the CEBM because it perceives merely carbon fluxes, not fluxes of other chemical substances such as oxygen, nitrogen, minerals or any nutrients—or soil quality at large—or any wider biospheric magnitudes such as biodiversity of economic parameters. Therefore, other deliberations certainly must complement the CEBM results. It can be expected that the assessment of the value of biomass strategies will then be seen in a still much more critical light.
3.6. CEBM Model Runs to Evaluate the Overall Carbon Neutrality of Biomass Energy
- In a base case, energy demand (derived in [32] (Chapter 8)) can be covered until 2100 by a strongly reduced percentage of fossil fuels and by a courageously assumed (roughly) half of sustainable non-carbon sources such as solar and wind (nuclear is explicitly not intended!) and the remainder of energy demand is covered by “biomass”—which the core interest of the present study. This is called the “biomass scenario”, depicted at left in Figure 10.
- If the “biomass” share of the above “biomass scenario” is covered by non-carbon energy as well, then the world can satisfy the same energy demand with different energy carriers.
3.7. Effects on Rules for Emission Accounting for Biomass Energy and Biomass Sinks
- Net increase of areas covered with forests in Austria
- Increase of net stock density per unit area
- Increase of average age of forest stands because trees are harvested on average at a later stage.
- A.
- Biomass is regarded as a carbon neutral fuel. In a sustainable production system, the CO2 emissions occurring during biomass energy usage and biomass growth are considered to be equal, which is approximately the case in the medium term (grey double arrow). Here, the CO2 emission factor equals zero. This simplified view is sufficiently exact in some cases and is reflected in the national total of the present report.
- B.
- In this more elaborate concept both carbon fluxes (net emission minus net growth) are represented (two arrows in the sketch). This approach enables possible non-nil net effects to be accounted for, due to (i) import or export of biomass fuels or (ii) net increase or depletion of carbon on the territory of a country as a result of various biogenic or other factors. Here the CO2 emission factor of biomass is equal to the carbon content of the wood but a corresponding arrow in the above sketch represents net tree growth for one year. In this approach, the level of differentiation corresponds to this concept (see pp. 6–7 in [85]).
- The performance of entire nations regarding climate change to date
- Every nation’s decision for future climate policies.
4. Discussion
4.1. On the Notion of the Overall Carbon Neutrality of Biomass Energy
4.2. Comparison of CEBM Results with Literature
- Life cycle completeness: This is the key strength of the CEBM which annually computes all flow equilibria on a global scale, and models the decomposition of dead (or burnt) plant material with geo-referenced time constants
- GHG completeness: as of now, the CEBM restricts itself to CO2
- Avoidance of trade-offs: other, still unrepresented environmental effects are mentioned narratively in the text and in the conclusions
- Priority for physically tangible, absolute reduction:
- Offsetting resistance and empowerment: this is the CEBM’s key focus; its key message is as follows: the essence is every single ton of C remaining under the earth [95]. The same message is expressed by [22] (p. 2) as follows: “The most important climate change mitigation measure is the transformation of energy, industry and transport systems so that fossil carbon remains underground”.
4.3. How Much Carbon Depletion Occurs in Which Compartments
4.4. How to Correctly Draw System Borders When Perceiving Steady State Equilibria
4.5. The Greenhouse Mitigation Potential of the Various Scenarios
4.6. Resulting Decision-Making Support for Energy Planning
4.7. Possible Long-Term Perspective, in General Terms
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Biomass Growth (NPP) | Herbaceous Litter | Woody Litter | Soil Organic Carbon | |
---|---|---|---|---|
Functions (3-dim.) | ||||
Function (2-dim. contour lines) for the factor determining the decay of organic matter in %/a | ||||
Functions as f(temperature) | ||||
Functions as f(precipitation) | ||||
Spatial pattern | ||||
Temporal pattern |
Appendix B
- CO2 = sum of all fluxes into the atmosphere = FCO + BMFP + BUM − NPP(b + a + n) + Burnt + LD(h + w) + SOCD − CM
- FCO = fossil carbon emissions = with fixed annual increase rates, or driven by the energy strategy module
- FC = fossil carbon reserves
- CM = carbon flow from the global atmosphere into the mixed layer of the global ocean
- M & D = mixed and deep ocean layers (obeying a diffusion & mixing equation)
- NPPb = net primary productivity of biomass growing on areas dedicated to biomass energy production, according to the formulae for either NPPa or NPPn, depending on the selected biomass energy scenario (see Table 1)
- NPPa = net primary productivity of agricultural biomass according to country-wise FAO data for average annual yield, growing on each grid cell’s agricultural area
- NPPn = net primary productivity of natural biomass, according to the growth function depending on temperature T and precipitation N, see Table A1, 2nd column, and a soil factor (0…1), growing on each grid cell’s natural area
- NPPn = soil factor ∗ min (3000/(1 + exp(1.315 − 0.119 ∗ T)), 3000 ∗ (1 − exp(−0.000664 ∗ N))), thus numerically implementing Liebig’s minimum principle for plant growth
- Ba + Bn = standing biomass for biomass production (composed by herbaceous + woody)
- Pagr = standing agricultural biomass (composed by herbaceous only, meaning plants standing for 1 year only)
- Pnat = standing natural biomass (composed by herbaceous + woody; the latter having a defined stand age)
- Pnat = 0.59 ∗ NPPn ∗ (stand age0.792)
- BMFP = biomass fuel production, the annual flow of combusted biomass (h + w)
- BUM = biomass standing on areas re-dedicated to biomass fuel use (can be burnt with or without gaining the related heating value)
- Burnt = biomass burnt during deforestation; this amount is governed by the input parameter defining the annually deforested area
- LPh & LPw = litter production, herbaceous & woody, according to a complex litter production function structurally similar to the LD ones
- Lh & Lw = Litter pool (h & w); it is based on balancing the inputs and outputs of the functional equations of NPP and LD
- LDh & LDw = litter depletion, herbaceous & woody (where the share between woody and herbaceous is inputted grid-wise), according to the decay function depending on temperature and precipitation, see Table A1, 3rd & 4th column.
- SOCneu = formation of new soil organic carbon
- SOC = pool of soil organic carbon
- SOCD = SOC depletion, according to the decay function depending on temperature and precipitation, see Table A1, 5th column
References
- IPCC. Sixth Assessment Report. IPCC Working Group I. 2021. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 15 October 2021).
- The European Green Deal. The European Commission. 2020. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 15 October 2021).
- Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
- Azar, C.; Lindgren, K.; Larson, E.; Möllersten, K. Carbon capture and storage from fossil fuels and biomass—Costs and potential role in stabilizing the atmosphere. Clim. Chang. 2006, 74, 47–79. [Google Scholar] [CrossRef]
- Wang, C.; Raza, S.A.; Adebayo, T.S.; Yi, S.; Shah, M.I. The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis. Energy 2023, 262, 125303. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Kraxner, F.; Nilsson, S.; Obersteiner, M. Negative emissions from BioEnergy use, carbon capture and sequestration (BECS)—The case of biomass production by sustainable forest management from semi-natural temperate forests. Biomass Bioenergy 2003, 24, 285–296. [Google Scholar] [CrossRef]
- Ozoliņa, S.A.; Pakere, I.; Jaunzems, D.; Blumberga, A.; Grāvelsiņš, A.; Dubrovskis, D.; Daģis, S. Can energy sector reach carbon neutrality with biomass limitations? Energy 2022, 249, 123797. [Google Scholar] [CrossRef]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energy 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Yang, C.; Kwon, H.; Bang, B.; Jeong, S.; Lee, U. Role of biomass as low-carbon energy source in the era of net zero emissions. Fuel 2022, 328, 125206. [Google Scholar] [CrossRef]
- Liu, T.; Miao, P.; Shi, Y.; Tang KH, D.; Yap, P. Recent advances, current issues and future prospects of bioenergy production: A review. Sci. Total Environ. 2022, 810, 152181. [Google Scholar] [CrossRef]
- Nayak, S.; Goveas, L.C.; Selvaraj, R.; Vinayagam, R.; Manickam, S. Advances in the utilisation of carbon-neutral technologies for a sustainable tomorrow: A critical review and the path forward. Bioresour. Technol. 2022, 364, 128703. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Han, B. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 2022, 61, e202112835. [Google Scholar] [CrossRef]
- Rittmann, B.E. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 2008, 100, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Sahin, Y. Environmental impacts of biofuels. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2011, 26, 129–142. [Google Scholar]
- Kun, Z. The EU renewable energy policy and its impact on forests. In De Gruyter Handbook of Sustainable Development and Finance; Walter de Gruyter: Berlin, Germany, 2022; pp. 219–248. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Spitzer, J.; Kohlmaier, G.H.; Lüdeke, M. Carbon balance of bioenergy from logging residues. Biomass Bioenergy 1995, 8, 221–234. [Google Scholar] [CrossRef]
- Leturcq, P. GHG displacement factors of harvested wood products: The myth of substitution. Sci. Rep. 2020, 10, 20752. [Google Scholar] [CrossRef]
- Köhl, M.; Ehrhart, H.-P.; Knauf, M.; Neupane, P.R. A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals. Ecol. Indic. 2020, 111, 106057. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Bach, V. Life cycle assessment of decarbonization options—towards scientifically robust carbon neutrality. Int. J. Life Cycle Assess. 2021, 26, 635–639. [Google Scholar] [CrossRef]
- Ahamer, G. Scenarios of systemic transitions in energy and economy. Foresight STI Gov. 2022, 16, 17–34. [Google Scholar] [CrossRef]
- Cowie, A.L.; Berndes, G.; Bentsen, N.S.; Brandão, M.; Cherubini, F.; Egnell, G.; George, B.; Gustavsson, L.; Hanewinkel, M.; Harris, Z.M.; et al. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy 2021, 13, 1210–1231. [Google Scholar] [CrossRef]
- Esser, G. The Significance of Biospheric Carbon Pools and Fluxes for the Atmospheric CO2: A Proposed Model Structure. Prog. Biometeorol. 1984, 3, 253–294. [Google Scholar]
- Esser, G. Osnabrück biosphere model: Structure, construction, results. Mod. Ecol. Basic Appl. Asp. 1991, 679–709. Available online: https://ur.booksc.eu/book/73413093/f083bf (accessed on 15 October 2021). [CrossRef]
- Esser, G. Sensitivity of Global Carbon Pools and Fluxes to Human and Potential Climatic Impacts. Tellus 1987, 39B, 245–260. [Google Scholar] [CrossRef]
- Esser, G. Global Land Use Changes from 1860 to 1980 and Future Projections to 2500. Ecol. Model. 1988, 44, 307–316. [Google Scholar] [CrossRef]
- Esser, G.; Hoffstadt, J.; Mack, F.; Qu, W.; Wittenberg, U. The High Resolution Biosphere Model: Status of development, validation, results. Sci. Géologiques Bull. 1997, 50, 73–88. [Google Scholar] [CrossRef]
- Wittenberg, U.; Heimann, M.; Esser, G.; McGuire, A.D.; Sauf, W. On the influence of biomass burning on the seasonal CO2 Signal as observed at monitoring stations. Glob. Biogeochem. Cycles 1998, 12, 531–544. [Google Scholar] [CrossRef]
- Dargaville, R.J.; Heimann, M.; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, J.S.; Esser, G.; Foley, J.; Kaplan, J.; et al. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects. Glob. Biogeochem. Cycles 2002, 16, 39-1–39-15. [Google Scholar] [CrossRef] [Green Version]
- Heimann, M.; Esser, G.; Haxeltine, A.; Kaduk, J.; Kicklighter, D.W.; Knorr, W.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.; Moore, B.; et al. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study. Glob. Biogeochem. Cycles 1998, 12, 1–24. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.D.; Sitch, S.; Clein, J.S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, M.; Joos, F.; Kaplan, J.; Kicklighter, D.W.; et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosytem models. Glob. Biogeochem. Cycles 2001, 15, 183–206. [Google Scholar] [CrossRef] [Green Version]
- Ahamer, G. Der Einfluss Einer Verstärkten Energetischen Biomassenutzung auf Die CO2-Konzentration in der Atmosphäre; Graz University of Technology and Institute for Energy Research, Joanneum Research: Graz, Austria, 1993; Available online: https://www.researchgate.net/publication/319130468_Der_Einfluss_einer_verstarkten_energetischen_Biomassenutzung_auf_die_CO2-Konzentration_in_der_Atmosphare_The_Influence_of_an_Enhanced_Use_of_Biomass_for_Energy_on_the_Atmospheric_CO2_Concentration (accessed on 15 October 2021).
- Ahamer, G. Mapping Global Dynamics—Geographic Perspectives from Local Pollution to Global Evolution; Springer International Publishing: Dordrecht, The Netherlands, 2019; ISBN1 978-3-319-51704-9. ISBN2 978-3-319-51702-5. Available online: https://link.springer.com/book/10.1007/978-3-319-51704-9 (accessed on 13 August 2021).
- Claret, M.; Sonnerup, R.E.; Quay, P.D. A next generation ocean carbon isotope model for climate studies I: Steady state controls on ocean 13C. Glob. Biogeochem. Cycles 2021, 35, e2020GB006757. [Google Scholar] [CrossRef]
- Chen, Y.; Lewis, N.S.; Xiang, C. Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2. Energy Environ. Sci. 2015, 8, 3663–3674. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Plant CO2 responses: An issue of definition, time and resource supply. New Phytol. 2006, 172, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, N.; Risk, D. Physical controls on the isotopic composition of soil-respired CO2. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Esser, G.; Lautenschlager, M. Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model. Environ. Pollut. 1994, 83, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Law, R.M.; Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 2010, 7, 2261–2282. [Google Scholar] [CrossRef] [Green Version]
- Kicklighter, D.W.; Bruno, M.; Dzönges, S.; Esser, G.; Heimann, M.; Helfrich, J.; Ift, F.; Joos, F.; Kaduk, J.; Kohlmaier, G.H.; et al. A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models. Tellus Ser. B Chem. Phys. Meteorol. 1999, 51, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Cowie, A.L.; Smith, P.; Johnson, D. Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 979–1002. [Google Scholar] [CrossRef]
- Achat, D.L.; Fortin, M.F.; Landmann, G.; Ringeval, B.; Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 2015, 5, 15991. [Google Scholar] [CrossRef] [Green Version]
- Ahamer, G. Virtual Structures for mutual review promote understanding of opposed standpoints. Turk. Online J. Distance Educ. 2008, 9, 17–43. [Google Scholar]
- Ahamer, G. Influence of an Enhanced Use of Biomass for Energy on the CO2 Concentration in the Atmosphere. Int. J. Glob. Energy Issues 1994, 6, 112–131. [Google Scholar] [CrossRef]
- Pinschmidt, M. Book Review: The War against the Greens. Popul. Environ. 1996, 17, 351–355. Available online: http://www.jstor.org/stable/27503476 (accessed on 13 August 2021). [CrossRef]
- The Greening of Planet Earth. DVD Film, Produced by Western Fuels Association, Inc., 28 Minutes. 1992. Available online: https://www.amazon.com/Greening-Planet-Earth-Western-Association/dp/B0018BUJUQ (accessed on 15 October 2021).
- The Greening of Planet Earth. Wikipedia Entry. 2021. Available online: https://en.wikipedia.org/wiki/The_Greening_of_Planet_Earth (accessed on 13 August 2021).
- Hackney, R. Flipping Daubert: Putting climate change defendants into the hot seat. Environ. Law 2010, 40, 255–294. Available online: https://law.lclark.edu/live/files/4538-401hackney (accessed on 15 October 2021).
- Ahamer, G. Applying global databases to foresight for energy and land use: The GCDB method. Foresight STI Gov. 2018, 12, 46–61. [Google Scholar] [CrossRef]
- AR5, Synthesis Report of the Fifth Assessment Report by the IPCC. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf (accessed on 15 October 2021).
- Marland, G.; Rotty, R.M.; Treat, N.L. CO2 from Fossil Fuel Burning: Global Distribution of Emissions. Tellus 1985, 37B, 243–258. [Google Scholar] [CrossRef]
- Marland, G.; Boden, T.A.; Griffin, R.C.; Huang, S.F.; Kanciruk, P.; Nelson, T.R. Estimates of CO2 Emissions from Fossil Burning and Cement Manufacturing, Based on the United Nations Energy Statistics and the U.S. Bureau of Mines Cement Manufacturing Data; No. 3176, ORNL/CDIAC-25 NDP-030; Oak Ridge National Laboratory, Environmental Sciences Division Publication: Oak Ridge, TN, USA, 1989. [Google Scholar]
- IPCC. Special Report on Emission Scenarios. Summary for Policy Makers; International Panel for Climate Change—IPCC: Geneva, Switzerland, 2000; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf (accessed on 15 October 2021).
- Carlson, K.M.; Curran, L.M.; Asner, G.P.; Pittman, A.M.; Trigg, S.N.; Marion Adeney, J. Carbon emissions from forest conversion by kalimantan oil palm plantations. Nat. Clim. Chang. 2013, 3, 283–287. [Google Scholar] [CrossRef]
- Danielsen, F.; Beukema, H.; Burgess, N.D.; Parish, F.; Brühl, C.A.; Donald, P.F.; Murdiyarso, D.; Phalan, B.; Reijnders, L.; Struebig, M.; et al. Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. [Plantaciones de biocombustible en terrenos boscosos: Doble peligro para la biodiversidad y el clima]. Conserv. Biol. 2009, 23, 348–358. [Google Scholar] [CrossRef]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef]
- Koh, L.P.; Miettinen, J.; Liew, S.C.; Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Natl. Acad. Sci. USA 2011, 108, 5127–5132. [Google Scholar] [CrossRef] [Green Version]
- Zamri, M.F.M.A.; Milano, J.; Shamsuddin, A.H.; Roslan, M.E.M.; Salleh, S.F.; Rahman, A.A.; Bahru, R.; Fattah, I.M.R.; Mahlia, T.M.I. An overview of palm oil biomass for power generation sector decarbonization in malay-sia: Progress, challenges, and prospects. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, e437. [Google Scholar] [CrossRef]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef] [Green Version]
- Brennan, L.; Owende, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Greiner, S.; Settelmyer, S.; Bird, D.N. How renewable is bioenergy. In Climate Change and Forests: Emerging Policy and Market Opportunities; Brookings Institution Press: Washington, DC, USA, 2009; pp. 89–103. [Google Scholar]
- Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from algae: Challenges and prospects. Curr. Opin. Biotechnol. 2010, 21, 277–286. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP); Organisation of Economic Co-Operation and Development (OECD); International Energy Agency (IEA); Intergovernmental Panel on Climate Change (IPCC). Inventory Reporting Instructions (Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Greenhouse Gas, Vol. 1–3). 1997. Available online: https://www.ipcc.ch/report/revised-1996-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 28 November 2022).
- Baccini, A.; Goetz, S.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.L.; A Beck, P.S.; O Dubayah, R.; A Friedl, M.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Cienciala, E.; Tomppo, E.; Snorrason, A.; Broadmeadow, M.; Colin, A.; Dunger, K.; Exnerova, Z.; Lasserre, B.; Petersson, H.; Priwitzer, T.; et al. Preparing emission reporting from forests: Use of national forest inventories in european countries. Silva Fenn. 2008, 42, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Erda, L.; Wei, X.; Hui, J.; Yinlong, X.; Yue, L.; Liping, B.; Liyong, X. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2149–2154. [Google Scholar] [CrossRef] [Green Version]
- Eve, M.D.; Sperow, M.; Paustian, K.; Follett, R.F. National-scale estimation of changes in soil carbon stocks on agricultural lands. Environ. Pollut. 2002, 116, 431–438. [Google Scholar] [CrossRef]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Kaul, M.; Dadhwal, V.K.; Mohren, G.M.J. Land use change and net C flux in Indian forests. For. Ecol. Manag. 2009, 258, 100–108. [Google Scholar] [CrossRef]
- Kuyah, S.; Dietz, J.; Muthuri, C.; Jamnadass, R.; Mwangi, P.; Coe, R.; Neufeldt, H. Allometric equations for estimating biomass in agricultural landscapes: I. aboveground biomass. Agric. Ecosyst. Environ. 2012, 158, 216–224. [Google Scholar] [CrossRef]
- Löwe, H.; Seufert, G.; Raes, F. Comparison of methods used within member states for estimating CO2 emissions and sinks according to UNFCCC and EU monitoring mechanism: Forest and other wooded land. Biotechnol. Agron. Soc. Environ. 2000, 4, 315–319. [Google Scholar]
- Patenaude, G.; Milne, R.; Dawson, T.P. Synthesis of remote sensing approaches for forest carbon estimation: Reporting to the kyoto protocol. Environ. Sci. Policy 2005, 8, 161–178. [Google Scholar] [CrossRef]
- Peltoniemi, M.; Palosuo, T.; Monni, S.; Mäkipää, R. Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. For. Ecol. Manag. 2006, 232, 75–85. [Google Scholar] [CrossRef]
- Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—A comparative study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Ståhl, G.; Heikkinen, J.; Petersson, H.; Repola, J.; Holm, S. Sample-based estimation of greenhouse gas emissions from forests-a new approach to account for both sampling and model errors. For. Sci. 2014, 60, 3–13. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.-F.; Crouzille, B.; Boucher, O.; Streets, D. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution moderate resolution imaging spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Wilson, B.T.; Woodall, C.W.; Griffith, D.M. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Manag. 2013, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W.; et al. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Chang. Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using Lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Ahamer, G.; Ritter, M. Austrian Air Emission Inventory 1980–1996 in the Framework of the UNFCCC; Unpublished Report R-150; Environment Agency Austria: Vienna, Austria, 1998; Available online: https://www.researchgate.net/publication/262903298_Austrian_IPCC_Air_Emission_Inventory_1980_-_1996 (accessed on 15 October 2021).
- Jonas, M.; Schidler, S. Systematische Erfassung der Kohlenstoffbilanz für Österreich; Projektstatusbericht, OEFZS-A—3824; Austrian Research Centre Seibersdorf: Seibersdorf, Austria, 1996. [Google Scholar]
- Haskett, J.; Schlamadinger, B.; Brown, S. Land-based carbon storage and the european union emissions trading scheme: The science underlying the policy. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 127–136. [Google Scholar] [CrossRef]
- Dutschke, M.; Schlamadinger, B.; Wong JL, P.; Rumberg, M. Value and risks of expiring carbon credits from afforestation and reforestation projects under the CDM. Climate Policy 2005, 5, 109–125. [Google Scholar] [CrossRef]
- Lim, B.; Brown, S.; Schlamadinger, B. Carbon accounting for forest harvesting and wood products: Review and evaluation of different approaches. Environ. Sci. Policy 1999, 2, 207–216. [Google Scholar] [CrossRef]
- Marland, G.; Schlamadinger, B. Biomass fuels and forest-management strategies: How do we calculate the greenhouse-gas emissions benefits? Energy 1995, 20, 1131–1140. [Google Scholar] [CrossRef]
- Schulze, E.-D.; Körner, C.; Law, B.E.; Haberl, H.; Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. Glob. Chang. Biol. Bioenergy 2012, 4, 611–616. [Google Scholar] [CrossRef]
- Lamers, P.; Junginger, M. The ‘debt’ is in the detail: A synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod. Biorefining 2013, 7, 373–385. [Google Scholar] [CrossRef]
- Li, X.; Damartzis, T.; Stadler, Z.; Moret, S.; Meier, B.; Friedl, M.; Maréchal, F. Decarbonization in complex energy systems: A study on the feasibility of carbon neutrality for Switzerland in 2050. Front. Energy Res. 2020, 8, 549615. [Google Scholar] [CrossRef]
- Fan, Y.V.; Klemeš, J.J.; Ko, C.H. Bioenergy carbon emissions footprint considering the biogenic carbon and secondary effects. Int. J. Energy Res. 2021, 45, 283–296. [Google Scholar] [CrossRef]
- Ahamer, G. Can We Synthesise Different Development Theories? Soc. Evol. Hist. 2021, 20, 79–108. [Google Scholar] [CrossRef]
- Ahamer, G. How to promote renewable energies to the public sphere in Eastern Europe. Int. J. Glob. Energy Issues 2021, 43, 477–503. [Google Scholar] [CrossRef]
- Galyna, T.; Rosner, A. The Use of Solar Energy by Households and Energy Cooperatives in Post-War Ukraine: Lessons Learned from Austria. Energies 2022, 15, 7610. [Google Scholar] [CrossRef]
- Pysmenna, U.Y.; Trypolska, G.S. Maintaining the sustainable energy systems: Turning from cost to value. [Обеспечение устoйчивoгo развития энергетических систем: перехoд oт стoимoсти к ценнoсти]. Energ. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 2020, 63, 14–29. [Google Scholar] [CrossRef]
- Trypolska, G. Support scheme for electricity output from renewables in ukraine, starting in 2030. Econ. Anal. Policy 2019, 62, 227–235. [Google Scholar] [CrossRef]
- Trypolska, G.; Kurbatova, T.; Prokopenko, O.; Howaniec, H.; Klapkiv, Y. Wind and solar power plant end-of-life equipment: Prospects for management in Ukraine. Energies 2022, 15, 1662. [Google Scholar] [CrossRef]
- Chepeliev, M.; Diachuk, O.; Podolets, R.; Trypolska, G. The role of bioenergy in Ukraine’s climate mitigation policy by 2050. Renew. Sustain. Energy Rev. 2021, 152, 111714. [Google Scholar] [CrossRef]
- Trypolska, G.; Kyryziuk, S.; Krupin, V.; Wąs, A.; Podolets, R. Economic feasibility of agricultural biogas production by farms in Ukraine. Energies 2022, 15, 87. [Google Scholar] [CrossRef]
- Trypolska, G.; Kryvda, O.; Kurbatova, T.; Andrushchenko, O.; Suleymanov, C.; Brydun, Y. Impact of new renewable electricity generating capacities on employment in Ukraine in 2021–2030. Int. J. Energy Econ. Policy 2021, 11, 98–105. [Google Scholar] [CrossRef]
- Ahamer, G. Major obstacles for implementing renewable energies in Ukraine. Int. J. Glob. Energy Issues 2021, 43, 664–691. [Google Scholar] [CrossRef]
- Tzelepi, V.; Zeneli, M.; Kourkoumpas, D.S.; Karampinis, E.; Gypakis, A.; Nikolopoulos, N.; Grammelis, P. Biomass availability in europe as an alternative fuel for full conversion of lignite power plants: A critical review. Energies 2020, 13, 3390. [Google Scholar] [CrossRef]
- Weng, Y.; Cai, W.; Wang, C. Evaluating the use of BECCS and afforestation under china’s car-bon-neutral target for 2060. Appl. Energy 2021, 299, 117263. [Google Scholar] [CrossRef]
- Gao, C.; Zhu, S.; An, N.; Na, H.; You, H.; Gao, C. Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint. Renew. Sustain. Energy Rev. 2021, 147, 111255. [Google Scholar] [CrossRef]
- Meijide, A.; De La Rua, C.; Guillaume, T.; Röll, A.; Hassler, E.; Stiegler, C.; Tjoa, A.; June, T.; Corre, M.D.; Veldkamp, E.; et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 2020, 11, 1089. [Google Scholar] [CrossRef] [PubMed]
- Ahamer, G. Kon-tiki: Spatio-temporal maps for socio-economic sustainability. J. Multicult. Educ. 2014, 8, 207–224. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Cui, D.; Yoon, S.-J.; Bae, Y.-S.; Park, B.; Wu, Y.; Zhou, F.; Pan, C.; Xiao, R. Energy and CO2 emission analysis of a bio-energy with CCS system: Biomass gasification-solid oxide fuel cell-mini gas turbine-CO2 capture. Fuel Process. Technol. 2022, 238, 107476. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X. The roles of carbon capture, utilization and storage in the transition to a low-carbon energy system using a stochastic optimal scheduling approach. J. Clean. Prod. 2022, 366, 132860. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, G.; Mu, X.; Kong, L. From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. J. Environ. Manag. 2022, 322, 116087. [Google Scholar] [CrossRef]
- Speak, A.; Escobedo, F.J.; Russo, A.; Zerbe, S. Total urban tree carbon storage and waste manage-ment emissions estimated using a combination of LiDAR, field measurements and an end-of-life wood approach. J. Clean. Prod. 2020, 256, 120420. [Google Scholar] [CrossRef]
- Rosa, L.; Sanchez, D.L.; Mazzotti, M. Assessment of carbon dioxide removal potential: Via BECCS in a carbon-neutral Europe. Energy Environ. Sci. 2021, 14, 3086–3097. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, J.; Song, G.; Zhao, H. Regional comprehensive environmental impact assessment of renewable energy system in california. J. Clean. Prod. 2022, 376, 134349. [Google Scholar] [CrossRef]
- Trypolska, G. Prospects for employment in renewable energy in Ukraine, 2014–2035. Int. J. Glob. Energy Issues 2021, 43, 436–457. [Google Scholar] [CrossRef]
- Mao, L.; Zhu, Y.; Ju, C.; Bao, F.; Xu, C. Visualization and bibliometric analysis of carbon neutrality research for global health. Front. Public Health 2022, 10, 896161. [Google Scholar] [CrossRef] [PubMed]
- Pysmenna, U.Y.; Trypolska, G.S. Sustainable energy transitions: Overcoming negative externalities. [Устoйчивые энергетические трансфoрмации: нивелирoвание негативных экстерналий]. Energ. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 2020, 63, 312–327. [Google Scholar] [CrossRef]
- Jazinaninejad, M.; Nematollahi, M.; Shamsi Zamenjani, A.; Tajbakhsh, A. Sustainable operations, managerial decisions, and quantitative analytics of biomass supply chains: A systematic literature review. J. Clean. Prod. 2022, 374, 133889. [Google Scholar] [CrossRef]
- Geng, A.; Yang, H.; Chen, J.; Hong, Y. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. For. Policy Econ. 2017, 85, 192–200. [Google Scholar] [CrossRef]
- Gao, P.; Zhong, L.; Han, B.; He, M.; Sun, Y. Green carbon science: Keeping the pace in practice. Angew. Chem. Int. Ed. 2022, 61, e202210095. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Zhou, Q.; Han, L.; Zhou, J.; Zhang, Y.; Li, B.; Mu, W.; Gao, C. Potential of ecosystem carbon sinks to “neutralize” carbon emissions: A case study of Qinghai in west China and a tale of two stages. Glob. Transit. 2022, 4, 1–10. [Google Scholar] [CrossRef]
- Wieder, W.R.; Boehnert, J.; Bonan, G.B. Evaluating soil biogeochemistry parameterizations in earth system models with observations. Glob. Biogeochem. Cycles 2014, 28, 211–222. [Google Scholar] [CrossRef]
- Grübler, A. Technology and Global Change: Land-Use, Past and Present; Working Paper WP-92; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1992. [Google Scholar]
- Ahamer, G. Cost of energy infrastructure in Europe and Austria: Electricity, gas, oil, and heat. Int. J. Glob. Environ. Issues 2021, 20, 167–193. [Google Scholar] [CrossRef]
- Bussar, C.; Stöcker, P.; Cai, Z.; Moraes, L., Jr.; Magnor, D.; Wiernes, P.; van Bracht, N.; Moser, A.; Sauer, D.U. Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050-sensitivity study. J. Energy Storage 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J. Adaptive intelligent power systems: Active distribution networks. Energy Policy 2008, 36, 4346–4351. [Google Scholar] [CrossRef]
- Pandey, R. Energy policy modelling: Agenda for developing countries. Energy Policy 2002, 30, 97–106. [Google Scholar] [CrossRef]
- Skea, J.; Ekins, P.; Winskel, M. Making the Transition to a Secure Low Carbon Energy System. Energy 2011, 2050, 187–218. [Google Scholar] [CrossRef]
- Ahamer, G.; Jekel, T. Make a change by exchanging views. In Cases on Transnational Learning and Technologically Enabled Environments; IGI Global: Hershey, PA, USA, 2010; pp. 1–30. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Wolverton, C.; Isaacs, E.D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef]
- Ahamer, G. Applying student-generated theories about global change and energy demand. Int. J. Inf. Learn. Technol. 2015, 32, 258–271. [Google Scholar] [CrossRef]
- Grübler, A.; Nowotny, H. Towards the Fifth Kondratieff Upswing: Elements of an Emerging New Growth Phase and Possible Development Trajectories. Int. J. Technol. Manag. 1990, 5, 431–471. [Google Scholar]
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.; De Bruin, W.B.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Chang. 2018, 8, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, K.S.; Grübler, A.; Kuhl, L.; Nemet, G.; Wilson, C. The Energy Technology Innovation System. Annu. Rev. Environ. Resour. 2012, 37, 137–162. [Google Scholar] [CrossRef]
- Grübler, A. Energy transitions research: Insights and cautionary tales. Energy Policy 2012, 50, 8–16. [Google Scholar] [CrossRef]
- Grübler, A. Technology and Global Change; Cambridge University Press: Cambridge, UK, 1998; pp. 1–452. [Google Scholar]
- Grübler, A.; Nakićenović, N.; Victor, D.G. Dynamics of energy technologies and global change. Energy Policy 1999, 27, 247–280. [Google Scholar] [CrossRef] [Green Version]
- Grübler, A.; O’Neill, B.; Riahi, K.; Chirkov, V.; Goujon, A.; Kolp, P.; Prommer, I.; Scherbov, S.; Slentoe, E. Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol. Forecast. Soc. Chang. 2007, 74, 980–1029. [Google Scholar] [CrossRef]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Grübler, A.; Wilson, C.; Nemet, G. Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 22, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Kates, R.W.; Clark, W.C.; Corell, R.; Hall, J.M.; Jaeger, C.C.; Lowe, I.; McCarthy, J.J.; Schellnhuber, H.J.; Bolin, B.; Dickson, N.M.; et al. Environment and development: Sustainability science. Science 2001, 292, 641–642. [Google Scholar] [CrossRef]
- Levesque, A.; Pietzcker, R.C.; Baumstark, L.; De Stercke, S.; Grübler, A.; Luderer, G. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 2018, 148, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Pilch, B.; Aschemann, R.; Ahamer, G. Eine Systemanalyse zur Luftreinhaltung in der Stadtökologie. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark. Band 122, Graz 1992. Available online: https://uni-graz.academia.edu/RalfAschemann (accessed on 15 October 2021).
- Cuellar, A.D.; Herzog, H. A Path Forward for Low Carbon Power. Biomass Energ. 2015, 8, 1701–1715. [Google Scholar] [CrossRef] [Green Version]
- Ross, M. What Have We Learned about the Resource Curse? Annu. Rev. Political Sci. 2015, 18, 239–259. [Google Scholar] [CrossRef] [Green Version]
- Österreichischer Energiebericht 1984: Energiebericht und Energiekonzept 1984 der Österreichischen Bundesregierung; Bundesministerium für Handel, Gewerbe und Industrie, Sektion Energie: Wien, Austria, 1984.
- Spitzer, J. Gegenüberstellung Energiewirtschaftlicher Empfehlungen zur Verwirklichung der Energiepolitischen Ziele bei der Raumwärmeversorgung; Universitätsverlag Leuschner und Lubensky: Graz, Austria, 1990. [Google Scholar]
- Ahamer, G. Geo-Referenceable Model for the Transfer of Radioactive Fallout from Sediments to Plants. Water Air Soil Pollut. 2013, 223, 2511–2524. [Google Scholar] [CrossRef]
- Ackerman, F.; De Canio, S.J.; Howarth, R.B.; Sheeran, K. Limitations of integrated assessment models of climate change. Clim. Chang. 2009, 95, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, K.; Tomoda, T.; Fujii, Y.; Yamaji, K. Assessment of global warming mitigation options with integrated assessment model DNE21. Energy Econ. 2004, 26, 635–653. [Google Scholar] [CrossRef]
- Chester, M.V.; Horvath, A.; Madanat, S. Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions. Atmos. Environ. 2010, 44, 1071–1079. [Google Scholar] [CrossRef]
- Gunatilake, H.; Roland-Holst, D.; Sugiyarto, G. Energy security for India: Biofuels, energy efficiency and food productivity. Energy Policy 2014, 65, 761–767. [Google Scholar] [CrossRef]
- Hasselmann, K.; Hasselmann, S.; Giering, R.; Ocana, V.; Storch, H.V. Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM). Clim. Chang. 1997, 37, 345–386. [Google Scholar] [CrossRef]
- Makky, A.A.; Alaswad, A.; Gibson, D.; Olabi, A.G. Renewable energy scenario and environmental aspects of soil emission measurements. Renew. Sustain. Energy Rev. 2017, 68, 1157–1173. [Google Scholar] [CrossRef] [Green Version]
- Moumen, A.; Azizi, G.; Chekroun, K.B.; Baghour, M. The effects of livestock methane emission on the global warming: A review. Int. J. Glob. Warm. 2016, 9, 229–253. [Google Scholar] [CrossRef]
- Nordhaus, W. Designing a friendly space for technological change to slow global warming. Energy Econ. 2011, 33, 665–673. [Google Scholar] [CrossRef]
- Notter, D.A.; Meyer, R.; Althaus, H.-J. The western lifestyle and its long way to sustainability. Environ. Sci. Technol. 2013, 47, 4014–4021. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Aziz, F.; Li, B.; Perry, S.; Zhang, N.; Bulatov, I.; Smith, R. Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture. Appl. Energy 2016, 161, 695–706. [Google Scholar] [CrossRef]
- Pereira, A.O., Jr.; Pereira, A.S.; La Rovere, E.L.; Barata, M.M.D.L.; Villar, S.D.C.; Pires, S.H. Strategies to promote renewable energy in brazil. Renew. Sustain. Energy Rev. 2011, 15, 681–688. [Google Scholar] [CrossRef]
- Röös, E.; Sundberg, C.; Tidåker, P.; Strid, I.; Hansson, P.-A. Can carbon footprint serve as an indicator of the environmental impact of meat production? Ecol. Indic. 2013, 24, 573–581. [Google Scholar] [CrossRef]
- Suberu, M.Y.; Bashir, N.; Mustafa, M.W. Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria. Renew. Sustain. Energy Rev. 2013, 25, 643–654. [Google Scholar] [CrossRef]
- Weiss, M.; Patel, M.; Heilmeier, H.; Bringezu, S. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials. Resour. Conserv. Recycl. 2007, 50, 260–281. [Google Scholar] [CrossRef] [Green Version]
- White, G. Climate Change and Migration: Security and Borders in a Warming World; Oxford University Press: Oxford, UK, 2012; pp. 1–192. [Google Scholar] [CrossRef]
Abbreviation | Biomass Production Type |
---|---|
ap | Energy plantations on former agricultural areas |
as | Energy utilization of agricultural biomass (e.g., straw burning) |
av | Energy plantations on formerly natural areas |
nv | Energy use of natural biomass growing on natural areas (age 5 years) |
nvn | Energy use of natural biomass growing on natural areas (forestry) |
Mitigation Measure (CEBM Scenario) | Atmospheric CO2 Content in the Year 2100 in ppm | CO2 Reduction Compared to the Trend Case for 2100 |
---|---|---|
Trend = business as usual (+3%/a increase in emissions due to the increase in energy demand) | approx. 1200 | - |
Global maximum biomass use (with trend scenario: +3%/a) | approx. 1000 | approx. 150 |
Reduction of the increase in emissions or energy demand from +3% to +1% (base scenario) | approx. 650 | approx. 550 |
Combination of both methods (biomass scenario) | approx. 550 | approx. 650 |
Reduction target (−1%/a) | approx. 450 | approx. 750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahamer, G. Why Biomass Fuels Are Principally Not Carbon Neutral. Energies 2022, 15, 9619. https://doi.org/10.3390/en15249619
Ahamer G. Why Biomass Fuels Are Principally Not Carbon Neutral. Energies. 2022; 15(24):9619. https://doi.org/10.3390/en15249619
Chicago/Turabian StyleAhamer, Gilbert. 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral" Energies 15, no. 24: 9619. https://doi.org/10.3390/en15249619
APA StyleAhamer, G. (2022). Why Biomass Fuels Are Principally Not Carbon Neutral. Energies, 15(24), 9619. https://doi.org/10.3390/en15249619