Agnostic Battery Management System Capacity Estimation for Electric Vehicles
Abstract
:1. Introduction
1.1. Motivation
1.2. Capacity Estimation Techniques
1.3. What Data Is Available
- voltage and current measured with EE during a full charge (in green), used to estimate capacity with the ECE method;
- voltage and current BMS measurements read through the OBDII port (in blue), used to estimate capacity with the ECE method; and
- capacity readings from the CAN-bus (in red), which are internally estimated by the BMS, the exact estimation process of which is unknown to the authors.
1.4. Paper Contributions
- First, capacity readings from the CAN-bus are compared with estimations from the ECE method, while providing insight regarding the observed differences.
- Secondly, the validity of BMS instantaneous current and voltage measurements is assessed by comparing them with EE measurements.
- Thirdly, EE and BMS current/voltage datasets are used to estimate battery capacity with the ECE method, and a comparison between the two is provided.
1.5. Paper Organization
2. Theoretical Background
2.1. EV Battery Capacity
2.2. ECE Method
3. Measurements Methodology
3.1. System Layout
3.2. Data Collection
3.2.1. EE Data
3.2.2. BMS Data
3.2.3. CAN-Bus Data
3.3. Measurement Process
4. Case Study
4.1. Battery Characteristics
4.2. Vehicle Daily Usage
4.3. Charging C-Rate
5. Results
5.1. Step 1: EE and CAN-Bus Readings Capacity Comparison
5.1.1. Capacity EE Estimation
5.1.2. Comparison of EE and CAN-Bus Readings
5.2. Step 2: EE and BMS Current and Voltage Comparison
5.3. Step 3: EE and BMS Capacity Estimation Comparison
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
FR | frequency regulation |
SOC | state-of-charge |
EV | electric vehicle |
BMS | battery management system |
SOH | state of health |
V2G | vehicle-to-grid |
ICA | incremental capacity analysis |
NMC | nickel manganese cobalt |
LMO | lithium manganese oxide |
OBDII | on-board diagnostics port |
IC | incremental capacity |
CAN | central area network |
OCV | open circuit voltage |
ECE | empirical capacity estimation |
SD | standard deviation |
EE | external equipment |
Appendix A
Appendix A.1. BMS Data
Vehicle Years | Distance [km] | Vin [V] | SOCin [%] | SOCend [%] | Tin [C] | Tend [C] | Tout [C] | |
---|---|---|---|---|---|---|---|---|
E24-1 | 2.6 | 9073 | 277 | 4.6 | 92.5 | 20 | 16 | N/A |
3.5 | 14,380 | 282 | 8.9 | 91.8 | 35 | 15 | 5 | |
4.1 | 16,374 | 291 | 4.7 | 91.0 | 19 | 16 | 17 | |
4.5 | 17,061 | 296 | 7.5 | 90.3 | 20 | 16 | 19 | |
5.5 | 18,422 | 286 | 6.0 | 91.6 | 27 | 17 | N/A | |
E24-2 | 1.6 | 14064 | 275 | 5.6 | 94.2 | 16 | 21 | N/A |
2.6 | 22,687 | 274 | 10.9 | 97.8 | 20 | 25 | 11 | |
3.1 | 24,724 | 308 | 4.9 | 94.0 | 19 | 24 | 14 | |
3.5 | 26,735 | 303 | 3.8 | 94.0 | 22 | 28 | 17 | |
4.0 | 30,999 | 307 | 9.4 | 94.1 | 13 | 19 | 10 | |
4.5 | 33,644 | N/A | 1.8 | 93.4 | 21 | 27 | 16 | |
L30-1 | 1.3 | 8147 | 266 | 3.2 | 97.7 | 26 | 25 | N/A |
1.9 | 13,152 | 265 | 2.1 | 95.9 | 16 | 20 | N/A | |
2.3 | 17,058 | 258 | 2.4 | 97.6 | 22 | 24 | 12 | |
2.9 | 20,248 | 272 | 2.4 | 91.8 | 16 | 19 | 14 | |
3.2 | 22,999 | N/A | 0.7 | 97.7 | 21 | 22 | 18 | |
3.8 | 26,657 | 289 | 0.2 | 96.8 | 9 | 16 | 10 | |
4.2 | 30,719 | 286 | 0.0 | 97.8 | 25 | 28 | 16 | |
L30-2 | 2.1 | 17506 | 277 | 2.2 | 97.7 | 26 | 25 | N/A |
2.7 | 21,676 | 285 | 3.4 | 96.5 | 19 | 21 | N/A | |
3.1 | 25,310 | 277 | 2.5 | 96.0 | 17 | 21 | 10 | |
3.7 | 28,202 | 264 | 3.2 | 97.7 | 14 | 20 | 13 | |
4.6 | 34,040 | 272 | 3.4 | 96.8 | 15 | 20 | 10 | |
5.1 | 38,524 | 297 | 0.6 | 97.8 | 23 | 27 | 16 | |
L40 | 1.1 | 35 | 271 | 0.9 | N/A | 37 | 32 | 23 |
2.0 | 38 | 304 | 1.5 | 93.8 | 23 | 30 | 22 | |
2.9 | 43 | 294 | 0.1 | 93.9 | 24 | 32 | 23 | |
3.6 | 43 | 294 | 1.1 | 98.0 | 23 | 31 | 23 | |
3.8 | 43 | 283 | 1.2 | 98.0 | 24 | 31 | 23 | |
L62 | 0.3 | 961 | 302 | 1.8 | 96.5 | 18 | 26 | 22 |
1.0 | 12,631 | 290 | 1.8 | 96.9 | 26 | 30 | 22 | |
1.1 | 14,343 | 292 | 0.4 | 96.4 | 18 | 25 | 20 |
Appendix A.2. Effect of AC Charger Tail
Energy in A |
Energy in B |
Energy AC Charge (in C) |
Battery Capacity |
Share AC Charge | |
---|---|---|---|---|---|
[Ah] | [%] | ||||
E24-1 | 55.1 | 2.0 | 2.2 | 55.3 | 4.0 |
E24-2 | 56.2 | 1.9 | 2.0 | 56.3 | 3.5 |
L30-1 | 66.6 | 1.1 | 0.4 | 65.9 | 0.6 |
L40 | 101.9 | 1.8 | 4.3 | 104.4 | 4.0 |
L62 | 167.1 | 2.9 | 1.1 | 165.3 | 0.7 |
166.2 | 2.9 | 1.1 | 164.4 | 0.7 | |
[kWh] | [%] | ||||
E24-1 | 20.8 | 0.8 | 0.9 | 20.9 | 4.3 |
E24-2 | 21.2 | 0.7 | 0.8 | 21.2 | 3.7 |
L30-1 | 24.4 | 0.4 | 0.2 | 24.2 | 0.8 |
L40 | 37.0 | 0.6 | 1.7 | 38.1 | 4.5 |
L62 | 60.3 | 1.1 | 0.5 | 59.7 | 0.8 |
60.2 | 1.0 | 0.4 | 59.6 | 0.7 |
References
- Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 2014, 258, 321–339. [Google Scholar] [CrossRef]
- Stroe, D.I.; Schaltz, E. SOH Estimation of LMO/NMC-based Electric Vehicle Lithium-Ion Batteries Using the Incremental Capacity Analysis Technique. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, Portland, OR, USA, 23–27 September 2018; pp. 2720–2725. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Huang, P.; Bai, Z.; Wang, Q.; Qi, K. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation 2021, 10, 100140. [Google Scholar] [CrossRef]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; Van Den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Feng, X. State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method. IEEE Trans. Veh. Technol. 2020, 69, 10854–10867. [Google Scholar] [CrossRef]
- Xiong, R.; Tian, J.; Shen, W.; Sun, F. A Novel Fractional Order Model for State of Charge Estimation in Lithium Ion Batteries. IEEE Trans. Veh. Technol. 2019, 68, 4130–4139. [Google Scholar] [CrossRef]
- Farmann, A.; Waag, W.; Marongiu, A.; Sauer, D.U. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Sources 2015, 281, 114–130. [Google Scholar] [CrossRef]
- Gong, X. Modeling of Lithium-ion Battery Considering Temperature and Aging Uncertainties. Ph.D. Thesis, University of Michigan-Dearborn, Dearborn, MI, USA, 2016. [Google Scholar]
- Stroe, D.; Schaltz, E. Lithium-Ion Battery State-of-Health Estimation Using the Incremental Capacity Analysis Technique. IEEE Trans. Ind. Appl. 2020, 56, 678–685. [Google Scholar] [CrossRef]
- Schaltz, E.; Stroe, D.I.; Nørregaard, K.; Stenhøj Kofod, L.; Christensen, A. Incremental Capacity Analysis for Electric Vehicle Battery State-of-Health Estimation. In Proceedings of the 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 8–10 May 2019. [Google Scholar]
- Schaltz, E.; Stroe, D.I.; Nørregaard, K.; Ingvardsen, L.S.; Christensen, A. Incremental Capacity Analysis Applied on Electric Vehicles for Battery State-of-Health Estimation. IEEE Trans. Ind. Appl. 2021, 57, 1810–1817. [Google Scholar] [CrossRef]
- Tanim, T.R.; Shirk, M.G.; Bewley, R.L.; Dufek, E.J.; Liaw, B.Y. Fast charge implications: Pack and cell analysis and comparison. J. Power Sources 2018, 381, 56–65. [Google Scholar] [CrossRef]
- Dubarry, M.; Beck, D. Perspective on Mechanistic Modeling of Li-Ion Batteries. Accounts Mater. Res. 2022, 3, 843–853. [Google Scholar] [CrossRef]
- Thingvad, A.; Calearo, L.; Andersen, P.B.; Marinelli, M. Empirical Capacity Measurements of Electric Vehicles Subject to Battery Degradation from V2G Services. IEEE Trans. Veh. Technol. 2021, 70, 7547–7557. [Google Scholar] [CrossRef]
- Calearo, L.; Thingvad, A.; Ziras, C.; Marinelli, M. A methodology to model and validate electro-thermal-aging dynamics of electric vehicle battery packs. J. Energy Storage 2022, 55, 105538. [Google Scholar] [CrossRef]
- Meng, J.; Cai, L.; Stroe, D.I.; Luo, G.; Sui, X.; Teodorescu, R. Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles. Energy 2019, 185, 1054–1062. [Google Scholar] [CrossRef]
- EN IEC 62660-1:2019(MAIN) Secondary Lithium-Ion Cells for the Propulsion of Electric Road Vehicles—Part 1: Performance Testing. Available online: https://standards.iteh.ai/catalog/standards/clc/8ea64757-cca6-4dff-b2f9-af5997976f3c/en-iec-62660-1-2019 (accessed on 1 June 2022).
- Pollock, J. LeafSpy Help Version 1.50, User Manual; LeafSpy Pro: Cupertino, CA, USA, 2022. [Google Scholar]
- Electric Vehicle Lithium-Ion Battery. Available online: https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/li_ion_ev.html (accessed on 20 October 2021).
- Marinelli, M.; Thingvad, A.; Calearo, L. Across Continents Electric Vehicles Services Project: Final Report; Technical University of Denmark: Lyngby, Denmark, 2020. [Google Scholar]
- Marinelli, M.; Calearo, L.; Engelhardt, J.; Rohde, G. Electrical Thermal and Degradation Measurements of the LEAF e-plus 62-kWh Battery Pack. In Proceedings of the 2022 International Conference on Renewable Energies and Smart Technologies IEEE, Tirana, Albania, 28–29 July 2022. [Google Scholar]
- Calearo, L.; Marinelli, M.; Ziras, C. A review of data sources for electric vehicle integration studies. Renew. Sustain. Energy Rev. 2021, 151, 111518. [Google Scholar] [CrossRef]
EVs | Env-200 24 kWh | Env-200 24 kWh | LEAF 30 kWh | LEAF 30 kWh | LEAF 40 kWh | LEAF 62 kWh |
---|---|---|---|---|---|---|
Name | E24-1 | E24-2 | L30-1 | L30-2 | ||
Chemistry | LMO [19] | LMO + NMC(?) | NMC [19] | NMC [19] | ||
Voltage [V] | 369.6 | 360.0 | 350.4 | 350.4 | ||
Number of cells | 192 | 192 | 192 | 288 | ||
Cells in series | 96 | 96 | 96 | 96 | ||
Cells in parallel | 2 | 2 | 2 | 3 | ||
Capacity [Ah] | 65.4 | 79.5 | 115.4 | 176.4 | ||
Capacity [kWh] | 24.2 | 28.6 | 40.4 | 61.8 |
EV | E24-1 | E24-2 | L30-1 | L30-2 | L40 | L62 |
---|---|---|---|---|---|---|
Registration date | 7 July 2016 | 23 June 2017 | 21 September 2017 | 6 December 2016 | 1 August 2018 | 30 November 2020 |
Distance per day [km/day] | 10 | 21 | 20 | 21 | 0 | 35 |
Throughput drive [kWh/day] | 3.3 | 7 | 6.6 | 7 | 0 | 11.7 |
FR | Yes | No * | Yes | Yes | No | No |
Throughput FR [kWh/day] | 45 | 45 | 45 | 45 | 0 | 0 |
Tot. throughput [kWh/day] | 48.3 | 52 | 51.6 | 52 | 0 | 11.7 |
Active cooling | Yes | Yes | No | No | No | No |
EV | E24-1 | E24-2 | L30-1 | L30-2 | ||
---|---|---|---|---|---|---|
Capacity [Ah] | 65.4 | 79.5 | 115.4 | 176.4 | ||
Current [A] | 24 | 24 | 24 | 24 | ||
C-rate [-] | 0.37 | 0.30 | 0.21 | 0.14 |
STEP 1: | EE capacity estimate () | VS | CAN-bus capacity estimate () |
STEP 2: | EE current and voltage data | VS | BMS current and voltage data |
STEP 3: | EE capacity estimate () | VS | BMS capacity estimate () |
E24-1 | E24-2 | L30-1 | L30-2 | L40 | L62 | |
---|---|---|---|---|---|---|
Voltage difference SD [%] | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.01 |
Voltage difference mean [%] | 0.11 | 0.21 | 0.22 | 0.27 | 0.1 | 0.03 |
Current difference SD [%] | 3.46 | 2.82 | 3.43 | 1.35 | 0.35 | 0.28 |
Current difference mean [%] | 1.92 | 3.79 | 1.26 | 4.96 | 0.39 | 1.39 |
Capacity in Ah | Capacity in kWh | |||
---|---|---|---|---|
Data | EE | BMS | EE | BMS |
E24-1 | 55.3 | 55.5 | 20.9 | 20.9 |
E24-2 | 56.3 | 58.2 | 21.3 | 22.0 |
L30-1 | 65.9 | 65.1 | 24.2 | 23.8 |
L30-2 | 65.3 | 67.9 | 24.2 | 24.9 |
L40 | 104.4 | 104.0 | 38.1 | 37.9 |
L62 | 165.3 | 163.0 | 59.7 | 58.9 |
164.4 | 162.5 | 59.6 | 58.9 |
Characteristic/Data | EE | BMS | CAN-bus |
---|---|---|---|
Measurement accuracy | High | Medium/high, still unknown | Medium/high, still unknown |
Measurement location | DC charger and 12 V bus | Battery terminals | Battery terminals |
Equipment | Expensive | Limited (app to read data) | Limited (app to read data) |
Electrical knowledge | Advanced | Limited | Limited |
Data processing info | Full knowledge | Full knowledge | Limited knowledge |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calearo, L.; Ziras, C.; Thingvad, A.; Marinelli, M. Agnostic Battery Management System Capacity Estimation for Electric Vehicles. Energies 2022, 15, 9656. https://doi.org/10.3390/en15249656
Calearo L, Ziras C, Thingvad A, Marinelli M. Agnostic Battery Management System Capacity Estimation for Electric Vehicles. Energies. 2022; 15(24):9656. https://doi.org/10.3390/en15249656
Chicago/Turabian StyleCalearo, Lisa, Charalampos Ziras, Andreas Thingvad, and Mattia Marinelli. 2022. "Agnostic Battery Management System Capacity Estimation for Electric Vehicles" Energies 15, no. 24: 9656. https://doi.org/10.3390/en15249656
APA StyleCalearo, L., Ziras, C., Thingvad, A., & Marinelli, M. (2022). Agnostic Battery Management System Capacity Estimation for Electric Vehicles. Energies, 15(24), 9656. https://doi.org/10.3390/en15249656