Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply †
Abstract
:1. Introduction
2. Considered Building and Retrofit Measures
3. Methodology
3.1. Final Energy Calculation
3.2. Life Cycle Primary Energy Calculation
3.2.1. Primary Energy Savings
3.2.2. Primary Energy Use for Retrofit
3.3. Life Cycle Cost and Cost Optimum Calculation
3.3.1. Energy Cost Savings
3.3.2. Retrofit Costs
4. Results
4.1. Cost-Optimal Retrofit Measures
4.2. Sensitivity Analyses
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucon, O.; Ürge-Vorsatz, D.; Ahmed, A.Z.; Akbari, H.; Bertoldi, P.; Cabeza, L.F.; Eyre, N.; Gadgil, A.; Harvey, L.D.D.; Jiang, Y.; et al. Buildings. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- United Nations Environment Programme. 2021 Global Status Report for Buildings and Construction. Available online: http://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction (accessed on 22 December 2021).
- IPCC. Climate Change 2014. Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- European Parliament and Council. Directive 2018/844 of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. PE/4/2018/REV/1. Off J Eur, L 156; European Parliament and Council: Strasbourg, France, 2018. [Google Scholar]
- European Parliament and Council. Directive 2018/2002 of the European Parliament and of the Council of 11 December 2018 Amending Directive 2012/27/EU on Energy Efficiency. PE/54/2018/REV/1. Off J Eur, L 328; European Parliament and Council: Strasbourg, France, 2018. [Google Scholar]
- Filippidou, F.; Navarro, J.P.J. Achieving the Cost-Effective Energy Transformation of Europe’s Buildings; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- IEA. World Energy Outlook 2020; IEA: Paris, France, 2020.
- European Commission. Communication from the Commission—Stepping up Europe’s 2030 Climate Ambition Investing in a Climate-Neutral Future for the Benefit of Our People; COM(2020) 562 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission—A Renovation Wave for Europe—Greening Our Buildings, Creating Jobs, Improving Lives; COM(2020) 662 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Boverket. Regulation on Climate Declarations for Buildings; REPORT 2020:28; Boverket: Karlskrona, Sweden, 2020. [Google Scholar]
- Streicher, K.N.; Mennel, S.; Chambers, J.; Parra, D.; Patel, M.K. Cost-effectiveness of large-scale deep energy retrofit packages for residential buildings under different economic assessment approaches. Energy Build. 2020, 215, 109870. [Google Scholar] [CrossRef]
- European Commission. Guidelines Accompanying Commission Delegated Regulation (EU) No. 244/2012 of 16 January 2012 Supplementing Directive 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings by Establishing A Comparative Methodology Framework for Calculating Cost-Optimal Levels of Minimum Energy Performance Requirements for Buildings and Building Elements. Off J Eur, 2012/C 115/01; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Steinbach, J.; Staniaszek, D. Discount Rates in Energy System Analysis; Buildings Performance Institute Europe: Brussels, Belgium, 2015. [Google Scholar]
- Bonakdar, F.; Dodoo, A.; Gustavsson, L. Cost-optimum analysis of building fabric renovation in a Swedish multi-story residential building. Energy Build. 2014, 84, 662–673. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Tettey, U.Y.A. Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building. Energy 2017, 135, 563–576. [Google Scholar] [CrossRef]
- Swedish Energy Agency Energy in Sweden-Facts and Figures. 2019. Available online: http://www.energimyndigheten.se (accessed on 31 August 2020).
- Liu, L.; Moshfegh, B.; Akander, J.; Cehlin, M. Comprehensive investigation on energy retrofits in eleven multi-family buildings in Sweden. Energy Build. 2014, 84, 704–715. [Google Scholar] [CrossRef]
- Arumägi, E.; Kalamees, T. Analysis of energy economic renovation for historic wooden apartment buildings in cold climates. Appl. Energy 2014, 115, 540–548. [Google Scholar] [CrossRef]
- Mata, É.; Sasic Kalagasidis, A.; Johnsson, F. Cost-effective retrofitting of Swedish residential buildings: Effects of energy price developments and discount rates. Energy Effic. 2015, 8, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Mata, É.; Wanemark, J.; Nik, V.M.; Sasic Kalagasidis, A. Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities. Appl. Energy 2019, 242, 1022–1035. [Google Scholar] [CrossRef]
- La Fleur, L.; Rohdin, P.; Moshfegh, B. Investigating cost-optimal energy renovation of a multifamily building in Sweden. Energy Build. 2019, 203, 109438. [Google Scholar] [CrossRef]
- Chen, X.; Qu, K.; Calautit, J.; Ekambaram, A.; Lu, W.; Fox, C.; Gan, G.; Riffat, S. Multi-criteria assessment approach for a residential building retrofit in Norway. Energy Build. 2020, 215, 109668. [Google Scholar] [CrossRef]
- Mauro, G.M.; Hamdy, M.; Vanoli, G.P.; Bianco, N.; Hensen, J.L.M. A new methodology for investigating the cost-optimality of energy retrofitting a building category. Energy Build. 2015, 107, 456–478. [Google Scholar] [CrossRef]
- Zangheri, P.; Armani, R.; Pietrobon, M.; Pagliano, L. Identification of cost-optimal and NZEB refurbishment levels for representative climates and building typologies across Europe. Energy Effic. 2018, 11, 337–369. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, D.; de’ Rossi, F.; Marigliano, M.; Marino, C.; Minichiello, F. Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost-optimal” methodology. J. Build. Eng. 2019, 24, 100743. [Google Scholar] [CrossRef]
- Alsayed, M.F.; Tayeh, R.A. Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings. J. Build. Eng. 2019, 22, 101–112. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Christoforou, E.A.; Kalogirou, S.A. Legislation driven scenarios based on recent construction advancements towards the achievement of nearly zero energy dwellings in the southern European country of Cyprus. Energy 2014, 66, 588–597. [Google Scholar] [CrossRef]
- Lucchi, E.; Tabak, M.; Troi, A. The “Cost Optimality” Approach for the Internal Insulation of Historic Buildings. Energy Procedia 2017, 133, 412–423. [Google Scholar] [CrossRef]
- Annibaldi, V.; Cucchiella, F.; De Berardinis, P.; Rotilio, M.; Stornelli, V. Environmental and economic benefits of optimal insulation thickness: A life-cycle cost analysis. Renew. Sustain. Energy Rev. 2019, 116, 109441. [Google Scholar] [CrossRef]
- Basińska, M.; Kaczorek, D.; Koczyk, H. Economic and Energy Analysis of Building Retrofitting Using Internal Insulations. Energies 2021, 14, 2446. [Google Scholar] [CrossRef]
- Marrone, P.; Asdrubali, F.; Venanzi, D.; Orsini, F.; Evangelisti, L.; Guattari, C.; De Lieto Vollaro, R.; Fontana, L.; Grazieschi, G.; Matteucci, P.; et al. On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues. Energies 2021, 14, 1276. [Google Scholar] [CrossRef]
- Diakaki, C.; Grigoroudis, E.; Kolokotsa, D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 2008, 40, 1747–1754. [Google Scholar] [CrossRef]
- Stenberg, E. Structural Systems of the Million Program Era; KTH School of Architecture: Stockholm, Sweden, 2013. [Google Scholar]
- Statistics Sweden Dwelling Stock. Available online: http://www.scb.se/en/finding-statistics/statistics-by-subject-area/housing-construction-and-building/housing-construction-and-conversion/dwelling-stock/ (accessed on 18 December 2021).
- Gustavsen, A.; Jelle, B.P.; Arasteh, D.; Kohler, C. State-of-the-Art. Highly Insulating Window Frames—Research and Market Review; INTEF Building and Infrastructure: Oslo, Norway, 2007. [Google Scholar]
- Piccardo, C.; Dodoo, A.; Gustavsson, L.; Tettey, U.Y.A. Retrofitting with different building materials: Life-cycle primary energy implications. Energy 2020, 192, 116648. [Google Scholar] [CrossRef]
- Piccardo, C.; Dodoo, A.; Gustavsson, L. Retrofitting a building to passive house level: A life cycle carbon balance. Energy Build. 2020, 223, 110135. [Google Scholar] [CrossRef]
- StruSoft. VIP+ Software. Version 1.1.6; StruSoft: Malmö, Sweden, 2012. [Google Scholar]
- StruSoft AB. VIP-Energy Manual Version 4.0 English. 2016. Available online: https://www.vipenergy.net/Manual_ENG.htm (accessed on 10 January 2022).
- Jóhannesson, G. Active Heat Capacity: Models and Parameters for the Thermal Performance of Buildings; Byggnadsfysik LTH, Lunds Tekniska Högskola: Lund, Sweden, 1981. [Google Scholar]
- Nylund, P. Räkna Med Luftläckningen. Samspel Byggnad-Ventilation; Swedish Council for Building Research: Stockholm, Sweden, 1984. (In Swedish) [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: New York, NY, USA, 2013; Volume 3. [Google Scholar]
- Meteotest. Meteonorm Global Meteorological Database; V7.1.1.122; Meteotest: Bern, Switzerland, 2015. [Google Scholar]
- Boverket. Boverket’s Mandatory Provisions and General Recommendations, BBR; BFS 2011:6 with Amendments up to BFS 2018:4; The National Board of Housing, Building and Planning: Karlskrona, Sweden, 2018.
- Truong, N.L.; Dodoo, A.; Gustavsson, L. Effects of energy efficiency measures in district-heated buildings on energy supply. Energy 2018, 142, 1114–1127. [Google Scholar] [CrossRef]
- Gode, J.; Martinsson, F.; Hagberg, L.; Öman, A.; Höglund, J.; Palm, D. Miljöfaktaboken 2011. Uppskattade Emissionsfaktorer för Bränslen, el, Värme och Transporter; Värmeforsk: Stockholm, Sweden, 2011. [Google Scholar]
- Swiss Centre for Life Cycle Inventories. Ecoinvent v.2.2; Swiss Centre for Life Cycle Inventories: Zürich, Switzerland, 2010. [Google Scholar]
- Rombach, G. Raw material supply by aluminium recycling—Efficiency evaluation and long-term availability. Acta Mater. 2013, 61, 1012–1020. [Google Scholar] [CrossRef]
- Lebullenger, R.; Mear, F.O. Glass Recycling. In Springer Handbook of Glass; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2019; pp. 1355–1377. ISBN 978-3-319-93728-1. [Google Scholar]
- Paroc. PAROC-WIM, Waste Injection into the Melting Furnace in Stone Wool Production; LIFE02 ENV/FIN/000328; European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Miljöteknik District Heating—Prices and Terms. Available online: https://www.ronneby.se/sidowebbplatser/miljoteknik/fjarrvarme/priser-villkor-for-fjarrvarme.html (accessed on 23 April 2021).
- Wikells. Sektionsfakta ROT/VVS 2020; Wikells Byggberäkningar: Växjö, Sweden, 2020. [Google Scholar]
- katteverket Skatt på Avfall. Tax on Waste, in Swedish. Available online: https://www.skatteverket.se/foretagochorganisationer/skatter/punktskatter/avfallsskatt (accessed on 31 August 2020).
- Skatteverket Avfallsförbränningsskatt. Waste Incineration Tax, in Swedish. Available online: https://www.skatteverket.se/foretagochorganisationer/skatter/punktskatter/avfallsforbranningsskatt (accessed on 31 August 2020).
- Ministry of Finance. Lag (2019:1274) om Skatt på Avfall Som Förbränns; Law (2019:1274) on Tax on Incinerated Waste, in Swedish; Ministry of Finance: Stockholm, Sweden, 2019.
- European Commission. Communication from the Commission—The Role of Waste-to-Energy in the Circular Economy; COM/2017/034 Final; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Skatteverket. Lag (2019:1274) om Skatt på Avfall Som Förbränns. Law (2019:1274) on Incinerated Waste Tax. Available online: https://www4.skatteverket.se/rattsligvagledning/381660.html?date=2021-01-01#section1-1 (accessed on 31 August 2020).
BAU | Reference | Sustainability | |
---|---|---|---|
Real discount rate | 5% | 3% | 1% |
Energy price increase | 1% | 2% | 3% |
U-Value | Thickness | Final Energy Saving | Primary Energy Saving | Primary Energy Use | Energy Cost Savings | Retrofit Costs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W/m2K | m | m | m | kWh/m2/Year | kWh/m2/Year | kWh/m2/Year | k€ | k€ | ||||
Glass Wool | Rock Wool | Wood Fiber | Glass Wool | Rock Wool | Wood Fiber | Glass Wool | Rock Wool | Wood Fibre | ||||
0.180 | 0.12 | 0.09 | 0.09 | 44.3 | 49.7 | 0.19 | 0.13 | 0.03 | 231.8 | 9.2 | 8.3 | 11.7 |
0.160 | 0.13 | 0.12 | 0.12 | 44.8 | 50.2 | 0.20 | 0.18 | 0.04 | 234.4 | 9.6 | 9.2 | 13.2 |
0.140 | 0.17 | 0.16 | 0.16 | 45.3 | 50.8 | 0.27 | 0.24 | 0.05 | 237.0 | 11.4 | 11.0 | 16.3 |
0.120 | 0.23 | 0.20 | 0.20 | 45.6 | 51.2 | 0.36 | 0.29 | 0.07 | 239.0 | 13.6 | 12.7 | 19.3 |
0.100 | 0.32 | 0.28 | 0.28 | 46.2 | 51.8 | 0.50 | 0.41 | 0.10 | 241.8 | 18.6 | 16.3 | 25.6 |
0.080 | 0.44 | 0.40 | 0.40 | 46.7 | 52.4 | 0.69 | 0.59 | 0.14 | 244.4 | 24.0 | 22.1 | 35.4 |
U-Value | Thickness | Final Energy Saving | Primary Energy Saving | Primary Energy Use | Energy Cost Savings | Retrofit Costs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W/m2K | m | m | m | kWh/m2/Year | kWh/m2/Year | kWh/m2/Year | k€ | k€ | ||||
Glass Wool | Rock Wool | Wood Fiber | Glass Wool | Rock Wool | Wood Fiber | Glass Wool | Rock Wool | Wood Fibre | ||||
0.180 | 0.11 | 0.10 | 0.10 | 51.8 | 58.2 | 0.28 | 0.24 | 0.06 | 271.2 | 16.0 | 15.5 | 21.1 |
0.160 | 0.14 | 0.13 | 0.13 | 53.0 | 59.6 | 0.35 | 0.31 | 0.07 | 277.8 | 19.4 | 18.0 | 24.9 |
0.140 | 0.19 | 0.18 | 0.18 | 54.3 | 61.1 | 0.48 | 0.43 | 0.10 | 284.6 | 22.6 | 21.5 | 31.1 |
0.120 | 0.25 | 0.22 | 0.22 | 55.1 | 61.9 | 0.63 | 0.52 | 0.12 | 288.5 | 26.5 | 24.4 | 36.1 |
0.100 | 0.33 | 0.30 | 0.30 | 56.1 | 63.1 | 0.84 | 0.71 | 0.17 | 294.0 | 32.4 | 30.3 | 46.3 |
0.080 | 0.46 | 0.42 | 0.42 | 57.1 | 64.2 | 1.16 | 1.00 | 0.23 | 299.0 | 43.1 | 40.1 | 63.1 |
U-Value | Increased U-Value | Thickness | Final Energy Saving | Primary Energy Saving | Primary Energy Use | Energy Cost Savings | Retrofit Costs |
---|---|---|---|---|---|---|---|
W/m2K | W/m2K | m | kWh/m2/Year | kWh/m2/Year | kWh/m2/Year | k€ | k€ |
0.420 | 0.98 | 0.50 | 6.9 | 7.8 | 0.16 | 36.2 | 11.3 |
0.370 | 0.05 | 0.60 | 7.3 | 8.2 | 0.19 | 38.3 | 13.3 |
0.300 | 0.07 | 0.80 | 7.9 | 8.9 | 0.25 | 41.3 | 16.0 |
0.260 | 0.04 | 0.10 | 8.3 | 9.4 | 0.32 | 43.6 | 19.3 |
0.220 | 0.04 | 0.12 | 8.6 | 9.7 | 0.38 | 45.2 | 22.6 |
0.180 | 0.04 | 0.15 | 9.0 | 10.1 | 0.47 | 46.9 | 27.7 |
U-Value | Increased U-Value | Final Energy Saving | Primary Energy Saving | Primary Energy Use | Energy Cost Savings | Retrofit Costs | ||
---|---|---|---|---|---|---|---|---|
W/m2K | W/m2K | kWh/m2/Year | kWh/m2/Year | kWh/m2/Year | k€ | k€ | ||
Alum. | Wood | Alum. | Wood | |||||
1.2 | 0.2 | 54.8 | 61.6 | 0.51 | 0.22 | 287.0 | 135.5 | 117.9 |
1.0 | 0.2 | 55.9 | 62.9 | 0.55 | 0.26 | 292.9 | 140.6 | 122.1 |
0.8 | 0.2 | 57.0 | 64.2 | 0.61 | 0.32 | 298.8 | 161.9 | 139.8 |
0.6 | 0.2 | 57.9 | 65.1 | 0.71 | 0.41 | 303.1 | 200.6 | 171.9 |
Attic Floor | External Walls | Basement Walls | |||||
---|---|---|---|---|---|---|---|
Glass Wool | Rock Wool | Wood Fibre | Glass Wool | Rock Wool | Wood Fibre | XPS | |
Reference | 0.130 | 0.110 | 0.150 | 0.120 | 0.110 | 0.140 | 0.370 |
BAU | 0.140 | 0.140 | 0.160 | 0.130 | 0.140 | 0.160 | 0 |
Sustainability | 0.090 | 0.090 | 0.110 | 0.080 | 0.080 | 0.100 | 0.220 |
Windows | ||
---|---|---|
Aluminum | Wood | |
Reference | 1.00 | 1.00 |
BAU | 1.00 | 1.00 |
Sustainability | 0.90 | 0.90 |
Attic Floor | External Walls | Basement Walls | |||||
---|---|---|---|---|---|---|---|
Glass Wool | Rock Wool | Wood Fibre | Glass Wool | Rock Wool | Wood Fibre | XPS | |
Ronneby | 0.130 | 0.110 | 0.150 | 0.120 | 0.110 | 0.140 | 0.370 |
Växjö | 0.130 | 0.120 | 0.150 | 0.120 | 0.100 | 0.140 | 0.370 |
Helsingborg | 0.130 | 0.120 | 0.150 | 0.120 | 0.110 | 0.140 | 0.370 |
Windows | ||
---|---|---|
Aluminum | Wood | |
Ronneby | 1.00 | 1.00 |
Växjö | 1.00 | 1.00 |
Helsingborg | 1.00 | 1.00 |
U-Value W/m2K | Attic Floor | External Walls | ||||
---|---|---|---|---|---|---|
Ronneby | Växjö | Helsingborg | Ronneby | Växjö | Helsingborg | |
0.180 | 49.7 | 34.1 | 29.4 | 58.2 | 40.2 | 34.2 |
0.160 | 50.2 | 34.5 | 29.7 | 59.6 | 41.2 | 35.0 |
0.140 | 50.8 | 34.9 | 30.0 | 61.1 | 42.3 | 35.8 |
0.120 | 51.2 | 35.2 | 30.3 | 61.9 | 42.9 | 36.3 |
0.100 | 51.8 | 35.7 | 30.6 | 63.1 | 43.7 | 36.9 |
0.080 | 52.4 | 36.1 | 30.9 | 64.2 | 44.5 | 37.5 |
U-Value W/m2K | Basement Walls | ||
---|---|---|---|
Ronneby | Växjö | Helsingborg | |
0.420 | 7.8 | 5.3 | 4.5 |
0.370 | 8.2 | 5.7 | 4.7 |
0.300 | 8.9 | 6.1 | 5.1 |
0.260 | 9.4 | 6.4 | 5.4 |
0.220 | 9.7 | 6.7 | 5.6 |
0.180 | 10.1 | 6.9 | 5.8 |
U-Value W/m2K | Windows | ||
---|---|---|---|
Ronneby | Växjö | Helsingborg | |
1.2 | 61.6 | 42.6 | 36.1 |
1.0 | 62.9 | 43.6 | 36.8 |
0.8 | 64.2 | 44.5 | 37.5 |
0.6 | 65.1 | 45.2 | 38.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gustavsson, L.; Piccardo, C. Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply. Energies 2022, 15, 1009. https://doi.org/10.3390/en15031009
Gustavsson L, Piccardo C. Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply. Energies. 2022; 15(3):1009. https://doi.org/10.3390/en15031009
Chicago/Turabian StyleGustavsson, Leif, and Chiara Piccardo. 2022. "Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply" Energies 15, no. 3: 1009. https://doi.org/10.3390/en15031009
APA StyleGustavsson, L., & Piccardo, C. (2022). Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply. Energies, 15(3), 1009. https://doi.org/10.3390/en15031009