Application of Real Options Approach to Analyse Economic Efficiency of Power Plant with CCS Installation under Uncertainty
Abstract
:1. Introduction
2. Reducing Carbon Dioxide Emissions
2.1. General Description of Ways to Reduce Carbon Dioxide Emissions
2.2. CCS Technologies
3. Price of Electricity and Price of CO2 Emission Allowances
4. Dynamic Optimization-Markov Process with Continuous Time in a Decision-Making Model for Investment under Uncertainty
5. Theory of Real Options Approach
6. Decision-Making Model for Investment in CCS Installation under Uncertainty
7. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dixit, A.K.; Pindyck, R.S. Investment under Uncertainty; Princeton University Press: Princeton, NJ, USA, 1994; pp. 135–199. [Google Scholar]
- McDonald, R.; Siegel, D. The Value of Waiting to Invest. Q. J. Econ. 1986, 101, 707–728. [Google Scholar] [CrossRef]
- Sowiński, J. Investing in the Production of Electric Energy in the Market Conditions (In Polish), Inwestowanie w Źródła Wytwarzania Energii Elektrycznej w Warunkach Rynkowych; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2008. [Google Scholar]
- Metz, B.; Davidson, O.; de Coninck, H.C.; Loos, M.; Meyer, L.A. (Eds.) IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005. [Google Scholar]
- Sowiński, J. Perspectives of carbon capture and storage technologies in power plants (In Polish), Perspektywy wykorzystania technologii CCS w elektrowniach. RynekEnergii 2009, Nr II (IV), 122–127. [Google Scholar]
- Finney, K.N.; Akram, M.; Diego, M.E.; Yang, X.; Pourkashanian, M. Chapter 2—Carbon capture technologies. In Bioenergy with Carbon Capture and Storage; Magalhães Pires, J.C., Da Cunha Gonçalves, A.L., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 15–45. ISBN 9780128162293. [Google Scholar] [CrossRef]
- Einloft, S.; Longaray Bernard, F. Chapter 6—Encapsulated liquid sorbents for CO2 capture. In Advances in Carbon Capture; Reza Rahimpour, M., Farsi, M., Amin Makarem, M., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 125–150. ISBN 9780128196571. [Google Scholar] [CrossRef]
- International Energy Agency Report. CO2 Capture as a Factor in Power Station Investment Decisions; Report No. 2006/8; IEA: Cheltenham, UK, 2006. [Google Scholar]
- U.S. Energy Information Administration. Capital Costs and Performance Characteristics for Utility Scale Power Generating Technologies; U.S. Department of Energy: Washington, DC, USA, 2020.
- Cheng, Z.; Li, S.; Liu, Y.; Zhang, Y.; Ling, Z.; Yang, M.; Jiang, L.; Song, Y. Post-combustion CO2 capture and separation in flue gas based on hydrate technology: A review. Renew. Sustain. Energy Rev. 2022, 154, 111806. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Presciutti, A.; Rosi, F. Review on the characteristics and advantages related to the use of flue-gas as CO2/N2 mixture for gas hydrate production. Fluid Phase Equilib. 2021, 541, 113077. [Google Scholar] [CrossRef]
- Tripodi, A.; Conte, F.; Rossetti, I. Carbon Dioxide Methanation: Design of a Fully Integrated Plant. Energy Fuels 2020, 34, 7242–7256. [Google Scholar] [CrossRef]
- Bandilla, K.W. 31—Carbon capture and storage. In Future Energy, 3rd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 669–692. ISBN 9780081028865. [Google Scholar] [CrossRef] [Green Version]
- Fennell, P. 1—Calcium and chemical looping technology: An introduction. In Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture; Woodhead Publishing Series in Energy; Fennell, P., Anthony, B., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 3–14. ISBN 9780857092434. [Google Scholar] [CrossRef]
- Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (Text with EEA relevance). Off. J. Eur. Union 2009, 2009, 114–135.
- ARE, S.A. Statystyka Elektroenergetyki Polskiej (Statistics of the Polish Power Industry); ARE S.A.: Warszawa, Poland, 2019. [Google Scholar]
- PSE. Settlement Price of CO2 Emission Allowances. Available online: https://www.pse.pl/web/pse-eng/data/balancing-market-operation/basic-price-and-cost-indicators/settlement-price-of-co2-emission-allowances (accessed on 10 December 2021).
- TGE. Electricity, Day-Ahead Market. Available online: https://tge.pl/electricity-dam (accessed on 17 June 2021).
- Botterud, A.; Ilic, M.D.; Wagensteen, I. Optimal Investments in Power Generation Under Centralized and Decentralized Decision Making. IEEE Trans. Power Syst. 2005, 20, 254–263. [Google Scholar] [CrossRef]
- Dixit, A.K. Investment and Hysteresis. J. Econ. Perspect. 1992, 6, 107–132. [Google Scholar] [CrossRef] [Green Version]
- Roques, F.A.; Nuttall, W.J.; Newbery, D.M. Using Probabilistic Analysis to Value Power Generation Investments under Uncertainty; Electricity Policy Research Group, University of Cambridge: Cambridge, UK, 2006. [Google Scholar]
- Rothwell, G.S. Electric Utility Power Plant Choice under Investment Regulation. Ph.D. Dissertation, Department of Economics, University of California, Berkeley, CA, USA, 1985. [Google Scholar]
- Sawhill, J.W. Evaluating Utility Investment Decisions: An Options Approach. Masters’s Thesis, Sloan School of Business, Massachusetts Institute of Technology, Cambridge, MA, USA, 1989. [Google Scholar]
- Herbelot, O. Option Valuation of Flexible Investments: The Case of Environmental Investments in the Electric Power Industry. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, May 1992. [Google Scholar]
- Sowiński, J. Critical price of sulphur dioxide emission allowances. Control Cybern. 2001, 30, 191–201. [Google Scholar]
- Sowiński, J. Economic efficiency of power generation investments under uncertainty and risk—A review of models of options approach. Przegląd Elektrotechniczny 2008, 2008, 74–79. [Google Scholar]
- Sowiński, J. Management of proecological investment projects in power plants in the stage of decision making process (in Polish), Zarządzanie na etapie podejmowania decyzji projektami inwestycji proekologicznych w elektrowniach. RynekEnergii 2011, 2011, 10–14. [Google Scholar]
- Hedman, K.W.; Gao, F.; Sheble, G.B. Overview of transmission expansion planning using real options analysis. In Proceedings of the 37th Annual North American Power Symposium, Ames, IA, USA, 23–25 October 2005; pp. 497–502. [Google Scholar]
- Martzoukos, S.H.; Teplitz-Sembitzky, W. Optimal Timing of Transmission Line Investments in the Face of Uncertain Demand: An Option Valuation Approach. Energy Econ. 1992, 14, 3–9. [Google Scholar] [CrossRef]
- Salazar, H.; Liu, C.; Chu, R.F. Decision Analysis of Merchant Transmission Investment by Perpetual Options Theory. IEEE Trans. Power Syst. 2007, 22, 1194–1201. [Google Scholar] [CrossRef]
- Sowiński, J. Assessment of the competitiveness of investments in the field of electricity generation under uncertainty (in Polish), Ocena konkurencyjności inwestycji w sferze wytwarzania energii elektrycznej w warunkach niepewności. Przegląd Elektrotechniczny 2006, 82, 89–91. [Google Scholar]
- Sowiński, J. Prices of carbon dioxide emission allowances and cost of the CCS systems in power plants (in Polish), Ceny uprawnień do emisji ditlenku węgla a koszty systemów CCS w elektrowniach. Polityka Energetyczna 2009, 12, 543–554. [Google Scholar]
- Jabr, R.A. Robust Self-Scheduling Under Price Uncertainty Using Conditional Value-at-Risk. IEEE Trans. Power Syst. 2005, 20, 1852–1858. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Yamin, H.; Li, Z. Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Assessment; Wiley: New York, NY, USA, 2002. [Google Scholar]
CO2 Removal Technique | Power Plant with Pulverised-Fuel Boiler and Desulphurisation Installation | Combined Cycle Gas Turbine CCGT | Integrated Gasification Combined Cycle IGCC | Power Plant with Combustion of Pulverised Coal in Oxygen with CO2 Recirculation |
---|---|---|---|---|
Installation with no CO2 removal | 1213 | 805 | 1790 | 2344 |
Absorption | 2112 | 1567 | 3731 | 3557 |
PSA adsorption | 1569 | 1376 | 2465 | 2510 |
TSA adsorption | 2363 | 1779 | 3475 | − |
Cryogenic technique | − | − | 2763 | 4125 |
Membrane separation | 2411 | 3573 | 5567 | 2537 |
Membrane absorption and MEA | 1885 | − | 3137 | − |
Description of Electricity Generation Technology | Combined Cycle Gas Turbine CCGT(Natural Gas) | Fossil Fuel Steam Boiler–Pulverised Coal FSB (PC)(Hard Coal) | Integrated Gasification Combined Cycle IGCC(Hard Coal) |
---|---|---|---|
Power plant without CO2 capture | 0.03 ÷ 0.05 | 0.04 ÷ 0.05 | 0.04 ÷ 0.06 |
Power plant with CO2 capture and underground stockpiling | 0.04 ÷ 0.08 | 0.06 ÷ 0.10 | 0.06 ÷ 0.09 |
Power plant with CO2 capture and EOR | 0.04 ÷ 0.07 | 0.05 ÷ 0.08 | 0.04 ÷ 0.08 |
Different Capture Processes | |||||
---|---|---|---|---|---|
Parameter | Unit | No Capture | Post-Combustion | Pre-Combustion | Oxy-Fuel |
Thermal efficiency | % | 44.0 | 34.8 | 31.5 | 35.4 |
Capital cost | $/kW | 1410 | 1980 | 1820 | 2210 |
Electricity cost | $/MWh | 54 | 75 | 69 | 78 |
Cost of CO2 avoided | $/t CO2 | – | 34 | 23 | 36 |
Case No | Technology Description | Net/Gross Nominal Capacity | Net Nominal Heat Rate | Capital Cost | Fixed O&M Cost | Variable O&M Cost |
---|---|---|---|---|---|---|
− | − | MW | kJ/kWh | $/kW | $/kW-Year | $/MWh |
1 | 650 MW Net UltraSupercritical Coal w/o Carbon Capture 735 MW Gross | 650/735 | 9114 | 3676 | 40.58 | 4.50 |
2 | 650 MW Net UltraSupercritical Coal 30% Carbon Capture 769 MW Gross | 650/769 | 10,288 | 4558 | 54.30 | 7.08 |
3 | 650 MW Net UltraSupercritical Coal 90% Carbon Capture 831 MW Gross | 650/831 | 13,196 | 5876 | 59.54 | 10.98 |
Specification | Unit | Conventional Power Plant with Pulverised-Fuel Boiler FSB PC | Gas and Steam Power Plant with Coal Gasification IGCC | Gas and Steam Power Plant Fired with Natural Gas CCGT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
− | − | Min | Max | Typical | Min | Max | Typical | Min | Max | Typical |
Emission factor without CO2 capture | kg CO2/(MW·h) | 736 | 811 | 762 | 682 | 846 | 773 | 344 | 379 | 367 |
Emission factor with CO2 capture | kg CO2/(MW·h) | 92 | 145 | 112 | 65 | 152 | 108 | 40 | 66 | 52 |
Increase in consumption of energy required for CO2 capture | % | 24 | 40 | 31 | 14 | 25 | 19 | 11 | 22 | 16 |
Capital expenditure without CO2 capture | USD/kW | 1161 | 1486 | 1286 | 1169 | 1565 | 1326 | 515 | 724 | 568 |
Capital expenditure with CO2 capture | USD/kW | 1894 | 2578 | 2096 | 1414 | 2270 | 1825 | 909 | 1261 | 998 |
Cost of electricity generation without CO2 capture | USD/(MW·h) | 43 | 52 | 46 | 41 | 61 | 47 | 31 | 50 | 37 |
Cost of electricity generation with CO2 capture | USD/(MW·h) | 62 | 86 | 73 | 54 | 79 | 62 | 43 | 72 | 54 |
Discount Rate r | % | 6 | 8 | 10 |
---|---|---|---|---|
Threshold value Case 1 (30% carbon capture) | USD/(MgCO2) | 78 | 103 | 125 |
EUR/(MgCO2) | 68.8 | 90.9 | 110.3 | |
Threshold value Case 2 (90% carbon capture) | USD/(MgCO2) | 35 | 48 | 61 |
EUR/(MgCO2) | 30.9 | 42.4 | 53.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowinski, J. Application of Real Options Approach to Analyse Economic Efficiency of Power Plant with CCS Installation under Uncertainty. Energies 2022, 15, 1050. https://doi.org/10.3390/en15031050
Sowinski J. Application of Real Options Approach to Analyse Economic Efficiency of Power Plant with CCS Installation under Uncertainty. Energies. 2022; 15(3):1050. https://doi.org/10.3390/en15031050
Chicago/Turabian StyleSowinski, Janusz. 2022. "Application of Real Options Approach to Analyse Economic Efficiency of Power Plant with CCS Installation under Uncertainty" Energies 15, no. 3: 1050. https://doi.org/10.3390/en15031050
APA StyleSowinski, J. (2022). Application of Real Options Approach to Analyse Economic Efficiency of Power Plant with CCS Installation under Uncertainty. Energies, 15(3), 1050. https://doi.org/10.3390/en15031050