A Review on the Estimation of Power Loss Due to Icing in Wind Turbines
Abstract
:1. Introduction
2. CFD-Based Models for Icing Conditions
2.1. Airflow Simulation
2.2. Droplet Behavior
- Mass conservation: the continuity equation for phase can be expressed as
- Momentum Conservation: The equation of conservation of momentum for phase can be written as
2.2.1. Eulerian Multiphase Model
2.2.2. Lagrangian Multiphase Model
2.3. Ice Accretion
3. Blade Element Momentum (BEM) Theory
3.1. Prandtl’s Tip Loss Factor
3.2. Stall–Delay Model
3.3. Viterna–Corrigan Stall Model
3.4. Spera’s Correction
4. Estimating Power Loss in Wind Turbines under Icing Conditions
4.1. CFD–BEM Approach
4.2. Full CFD Approach
4.3. Alternative Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- IEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020. [Google Scholar]
- Pedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6. [Google Scholar]
- Shu, L.; Li, H.; Hu, Q.; Jiang, X.; Qiu, G.; He, G.; Liu, Y. 3D numerical simulation of aerodynamic performance of iced contaminated wind turbine rotors. Cold Reg. Sci. Technol. 2018, 148, 50–62. [Google Scholar] [CrossRef]
- Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21. [Google Scholar] [CrossRef]
- Jasinski, W.J.; Noe, S.C.; Selig, M.S.; Bragg, M.B. Wind Turbine Performance Under Icing Conditions. J. Sol. Energy Eng. 1998, 120, 60–65. [Google Scholar] [CrossRef]
- Fu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188. [Google Scholar] [CrossRef]
- Jin, J.Y.; Virk, M.S. Study of ice accretion along symmetric and asymmetric airfoils. J. Wind Eng. Ind. Aerodyn. 2018, 179, 240–249. [Google Scholar] [CrossRef]
- Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939. [Google Scholar] [CrossRef]
- Zimnickas, V.; Gecevičius, G.; Markevičius, A. A Literature Review of Wind Turbines Icing Problems. In Proceedings of the 13th International Conference of Young Scientists on Energy Issues—CYSENI 2016, Kaunas, Lithuania, 26–27 May 2016; pp. 109–115. [Google Scholar]
- Virk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Kim, J.; Kim, B. Study on correlation between wind turbine performance and ice accretion along a blade tip airfoil using CFD. J. Renew. Sustain. Energy 2018, 10, 023306. [Google Scholar] [CrossRef]
- Abbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Jin, J.Y.; Virk, M.S.; Hu, Q.; Jiang, X. Study of Ice Accretion on Horizontal Axis Wind Turbine Blade Using 2D and 3D Numerical Approach. IEEE Access 2020, 8, 166236–166245. [Google Scholar] [CrossRef]
- Pedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Martini, F.; Contreras Montoya, L.T.; Ilinca, A. Review of Wind Turbine Icing Modelling Approaches. Energies 2021, 14, 5207. [Google Scholar] [CrossRef]
- Homola, M.C.; Virk, M.S.; Nicklasson, P.J.; Sundsbø, P.A. Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 2012, 15, 379–389. [Google Scholar] [CrossRef]
- Hudecz, A.; Koss, H.; Laver, M.O. Ice Accretion on Wind Turbine Blades. In Proceedings of the 15th International Workshop on Atmospheric Icing of Structures (IWAIS XV), St. John’s, NL, Canada, 8–13 September 2013; p. 8. [Google Scholar]
- Makkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137. [Google Scholar] [CrossRef]
- Homola, M.C.; Virk, M.S.; Wallenius, T.; Nicklasson, P.J.; Sundsbø, P.A. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades. J. Wind. Eng. Ind. Aerodyn. 2010, 98, 724–729. [Google Scholar] [CrossRef]
- Taborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, Colombia, 2015. [Google Scholar]
- Villalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 714146. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.-J.; Wang, W.-C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renew. Sustain. Energy Rev. 2016, 63, 506–519. [Google Scholar] [CrossRef]
- Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Sagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671. [Google Scholar] [CrossRef]
- Virk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8. [Google Scholar]
- van Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98. [Google Scholar] [CrossRef]
- ANSYS Inc. Multiphase Flows Models and Capabilities. Available online: https://www.ansys.com/products/fluids/multiphase-flows/multiphase-flows-models (accessed on 18 August 2020).
- Ayabakan, S. TURBICE-The Turbine Blade Icing Model, and its further development via a new interface. In Proceedings of the Winterwind International Wind Energy Conference, Ostersund, Sweden, 12–13 February 2013. [Google Scholar]
- Laín, S.; Aliod, R. Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. Int. J. Heat Fluid Flow 2000, 21, 374–380. [Google Scholar] [CrossRef]
- Messinger, B.L. Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed. J. Aeronaut. Sci. 1953, 20, 29–42. [Google Scholar] [CrossRef]
- Lozowski, E.P.; Stallabrass, J.R.; Hearty, P.F. The Icing of an Unheated, Nonrotating Cylinder. Part I: A Simulation Model. J. Appl. Meteorol. Climatol. 1983, 22, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Lozowski, E.P.; Stallabrass, J.R.; Hearty, P.F. The Icing of an Unheated, Nonrotating Cylinder. Part II. Icing Wind Tunnel Experiments. J. Appl. Meteorol. Climatol. 1983, 22, 2063–2074. [Google Scholar] [CrossRef] [Green Version]
- Sagol, E. Three Dimensional Numerical Prediction of Icing Related Power and Energy Losses on a Wind Turbine. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 2014; p. 177. [Google Scholar]
- Blasco, P.; Palacios, J.; Schmitz, S. Effect of icing roughness on wind turbine power production. Wind Energy 2017, 20, 601–617. [Google Scholar] [CrossRef]
- Zanon, A.; De Gennaro, M.; Kühnelt, H. Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies. Renew. Energy 2018, 115, 760–772. [Google Scholar] [CrossRef]
- Shin, J.; Berkowitz, B.; Chen, H.; Cebeci, T. Prediction of ice shapes and their effect on airfoil performance. In Proceedings of the 29th Aerospace Sciences Meeting, Reno, NV, USA, 7–10 January 1991; p. 264. [Google Scholar]
- Bragg, M.B. Rime Ice Accretion and Its Effect on Airfoil Performance. Ph.D. Dissertation, The Ohio State University, Columbus, OH, USA, 1982; p. 180. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Martini, F.; Contreras, L.T.; Ilinca, A.; Awada, A. Review of Studios on the CFD-BEM Approach for Estimating Power Losses of Iced-Up Wind Turbines. Int. J. Adv. Res. 2021, 9, 633–652. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Aerodynamics of Horizontal Axis Wind Turbines. In Wind Energy Handbook; Wiley: Hoboken, NJ, USA, 2011; pp. 39–136. [Google Scholar]
- Laín, S.; Contreras, L.T.; López, O. A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 375. [Google Scholar] [CrossRef]
- Martínez, J.; Bernabini, L.; Probst, O.; Rodríguez, C. An improved BEM model for the power curve prediction of stall-regulated wind turbines. Wind Energy 2005, 8, 385–402. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Jiang, Y.; Yi, X.; Zhang, Y. Effect of liquid water content on blade icing shape of horizontal axis wind turbine by numerical simulation. Therm. Sci. 2019, 23, 1637–1645. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, C.; Jiang, Y.; Yi, X.; Xu, Z.; Guo, W. Temperature effect on icing distribution near blade tip of large-scale horizontal-axis wind turbine by numerical simulation. Adv. Mech. Eng. 2018, 10. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Jiang, Y.; Yi, X.; Guo, W.; Wang, S.; Feng, F. Ambient Temperature Effect on Wind Turbine Blade Icing Shape by Numerical Simulation. In Proceedings of the 2nd International Conference on Industrial Aerodynamics (ICIA 2017), Qingdao, China, 18–20 October 2017; pp. 290–297. [Google Scholar]
- Pallarol, J.G.; Sunden, B.; Wu, Z. On Ice Accretion for Wind Turbines and Influence of Some Parameters. In Aerodynamics of Wind Turbines; WIT Press: Southampton, UK, 2014; Volume 81, pp. 129–159. [Google Scholar]
- Virk, M.S.; Homola, M.C.; Nicklasson, P.J. Relation Between Angle of Attack and Atmospheric Ice Accretion on Large Wind Turbine’s Blade. Wind Eng. 2010, 34, 607–614. [Google Scholar] [CrossRef]
- Virk, M.S.; Homola, M.C.; Nicklasson, P.J. Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles. Wind Eng. 2010, 34, 207–218. [Google Scholar] [CrossRef]
- Homola, M.C.; Wallenius, T.; Makkonen, L.; Nicklasson, P.J.; Sundsbø, P.A. The relationship between chord length and rime icing on wind turbines. Wind Energy 2010, 13, 627–632. [Google Scholar] [CrossRef]
- Barber, S.; Wang, Y.; Jafari, S.; Chokani, N.; Abhari, R.S. The Effect of Icing on Wind Turbine Performance and Aerodynamics. In Proceedings of the European Wind Energy Conference (EWEC), Warsaw, Poland, 20–23 April 2010; p. 11. [Google Scholar]
- Wang, Q.; Yi, X.; Liu, Y.; Ren, J.; Li, W.; Wang, Q.; Lai, Q. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model. Renew. Energy 2020, 162, 1854–1873. [Google Scholar] [CrossRef]
- Son, C.; Kim, T. Development of an icing simulation code for rotating wind turbines. J. Wind. Eng. Ind. Aerodyn. 2020, 203, 104239. [Google Scholar] [CrossRef]
- Bhatia, D.; Wahaibi, A.Y.S.A. A Numerical Investigation into the Impact of Icing on the Aerodynamic Performance of Aerofoils. In Proceedings of the 7th International Conference on Mechanical, Automotive and Materials Engineering, Melbourne, Australia, 8–10 December 2019; p. 8. [Google Scholar]
- Liang, J.; An, S.; Liu, S.; Wang, R.; Lv, W. Wind Turbine Simulation Based on CFD Optimization Algorithm. IOP Conf. Ser. Earth Environ. Sci. 2019, 234, 6. [Google Scholar] [CrossRef]
- Jin, J.Y.; Virk, M.S. Study of ice accretion and icing effects on aerodynamic characteristics of DU96 wind turbine blade profile. Cold Reg. Sci. Technol. 2019, 160, 119–127. [Google Scholar] [CrossRef]
- Knobbe-Eschen, H.; Stemberg, J.; Abdellaoui, K.; Altmikus, A.; Knop, I.; Bansmer, S.; Balaresque, N.; Suhr, J. Numerical and experimental investigations of wind-turbine blade aerodynamics in the presence of ice accretion. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Ibrahim, G.M.; Pope, K.; Muzychka, Y.S. Transient atmospheric ice accretion on wind turbine blades. Wind Eng. 2018, 42, 596–606. [Google Scholar] [CrossRef]
- Liang, J.; Liu, M.; Wang, R.; Wang, Y. Study on the glaze ice accretion of wind turbine with various chord lengths. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 7. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei, N.; Gantasala, S.; Cervantes, M.J. Wind Turbine Aerodynamic Modeling in Icing Condition: Three-Dimensional RANS-CFD Versus Blade Element Momentum Method. J. Energy Resour. Technol. 2019, 141, 071201. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, X.; Chen, J.; Shen, X.; Du, Z. Numerical simulation of rime ice on NREL Phase VI blade. J. Wind. Eng. Ind. Aerodyn. 2018, 178, 57–68. [Google Scholar] [CrossRef]
- Reid, T.; Baruzzi, G.; Ozcer, I.; Switchenko, D.; Habashi, W. FENSAP-ICE Simulation of Icing on Wind Turbine Blades, Part 1: Performance Degradation. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Dimitrova, M.H. Pertes énergétiques d’une éolienne à partir des formes de glace simulées numériquement. Master’s Thesis, Université du Québec à Rimouski, Rimouski, QC, Canada, 2009. [Google Scholar]
- Turkia, V.; Huttunen, S.; Wallenius, T. Method for estimating wind turbine production losses due to icing. VTT Tech. Res. Cent. Finl. 2013, 114, 44. [Google Scholar]
- Switchenko, D.; Habashi, W.; Reid, T.; Ozcer, I.; Baruzzi, G. FENSAP-ICE Simulation of Complex Wind Turbine Icing Events, and Comparison to Observed Performance Data. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar]
- Etemaddar, M.; Hansen, M.O.L.; Moan, T. Wind turbine aerodynamic response under atmospheric icing conditions. Wind Energy 2014, 17, 241–265. [Google Scholar] [CrossRef]
- Yirtici, O.; Tuncer, I.H.; Ozgen, S. Ice Accretion Prediction on Wind Turbines and Consequent Power Losses. J. Phys. Conf. Ser. 2016, 753, 11. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Liang, J.; Hu, Q.; Jiang, X.; Ren, X.; Qiu, G. Study on small wind turbine icing and its performance. Cold Reg. Sci. Technol. 2017, 134, 11–19. [Google Scholar] [CrossRef]
- Ebrahimi, A. Atmospheric Icing Effects of S816 Airfoil on a 600 kW Wind Turbine Performance. Sci. Iran. 2018, 25, 2693–2705. [Google Scholar] [CrossRef] [Green Version]
- Yirtici, O.; Ozgen, S.; Tuncer, I.H. Predictions of ice formations on wind turbine blades and power production losses due to icing. Wind Energy 2019, 22, 945–958. [Google Scholar] [CrossRef]
- Hildebrandt, S.; Sun, Q. Evaluation of operational strategies on wind turbine power production during short icing events. J. Wind. Eng. Ind. Aerodyn. 2021, 219, 104795. [Google Scholar] [CrossRef]
- Lamraoui, F.; Fortin, G.; Benoit, R.; Perron, J.; Masson, C. Atmospheric icing impact on wind turbine production. Cold Reg. Sci. Technol. 2014, 100, 36–49. [Google Scholar] [CrossRef]
- Fortin, G.; Perron, J. Spinning Rotor Blade Tests in Icing Wind Tunnel. In Proceedings of the 1st AIAA Atmospheric and Space Environments Conference, San Antonio, TX, USA, 22–25 June 2009; p. 16. [Google Scholar]
Software | Atmospheric Conditions | Simulation Set-Up | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | IT | BEM | CFD | WT/Prof | T (°C) | U (m/s) | LWC (g/m3) | MVD (µm) | Ω (RPM) | AoA (°) | BC | RM | AT | TM | OP | Val. |
[5] | R | PROPID | LEWICE | 450-kW/S809 | −10 | 65.2 | 0.1 | 15 35 | 48 | 5 | N/A | N/A | 3 h 7 h | N/A | AC, PC | Exp. |
[62] | RG | PROICET (CIRALIMA, XFOIL and PROPID) | Vestas V80 1.8 MW/NACA63415 | −6 −2 | 8 | 0.05 | 20 | 15.2 | 6 | N/A | N/A | 6 h 4 h | N/A | AC, PC, IS, IM, PL | Num. | |
[50] | R | N/A | LEWICE CFX | NREL Phase VI | −6 | 1.6 to 3.1 | 0.1 | 35 | 800 | N/A | I: Velocity O: Pressure W: Periodic (120°) | N/A | 10 h | k-ε | IS, CP | Exp. |
[16] | R | In-house code | FENSAP-ICE | NREL 5 MW | −10 | 10 | 0.22 | 20 | 11.4 | 5.824 | N/A | [36] | 1 h | S-A | IS, AC, CP, PC, PL | No |
[61] | RG | N/A | FENSAP-ICE | NREL Phase VI | −3 −15 | 7 22 | 0.5 | 20 | 72 | N/A | I: Velocity O: Pressure W: Slip | N/A | 10 min 20 min 1 h | S-A | IS, PL | Exp. & Num. |
[63] | R | FAST | TURBICE FLUENT | NREL 5 MW | −7 | 7 | 0.2 | 25 | 11.5 | N/A | N/A | [36] | 19 min 3 h 10 h | S-A | IS, AC, PC, IM, PL | Exp. |
[33] | R | In-house code | FLUENT | NREL Phase VI | −15 | 7 | 1 | 20 | 72 | N/A | I: Velocity O: Pressure W: Periodic (180°) RRF | 0.1 mm to 2 mm | 1 h | k-ω SST | IS, AC, PL | Exp. |
[64] | RG | N/A | FENSAP-ICE | NREL Phase VI | −1 to −13 | 7 | 0.1 | 20 50 100 | 72 | N/A | I: Velocity O: Pressure W: Slip | 1, 3, and 10 mm | 17 h | S-A | IS, PC | Real |
[65] | RG | WT-Perf | LEWICE FLUENT | NREL 5 MW | 0 −1.25 −2.5 −3.75 −5 −6.25 −7.5 −8.75 −10 | 8 12 16 20 | 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 | 8 10 12 14 16 18 20 22 24 | N/A | 5 | N/A | 0.5 mm | 24 h to obtain the iced profile | k-ε | IS, IM, AC, CP | Exp. |
[66] | R | XFOIL | In-house model (ice accretion) | Aeolos 30 kW/NACA64618 and S809 | −8 | 11 | 0.05 | 27 | 120 | 5 | N/A | N/A | 3 h | N/A | IS, PC | Exp. & Num. |
[67] | G | N/A | FLUENT MATLAB (Ice accretion) | Small HAWT/NACA4409 | −3 −6 −8 | 5 6 8 | 0.71 | 20 | N/A | N/A | MRF | Exp. | 500 s | k-ε | IS, CP | Exp. |
[68] | RG | In-house code | LEWICE FLUENT | 600 kW/S816 | −1.4 −5.7 | 9.2 18.1 27.1 | 0.218 0.242 | 38.3 40.5 | N/A | 8 | N/A | N/A | G: 360 s R: 264 s | k-ω SST | IS, AC, PC | Exp. |
[11] | R | BLADED | STAR-CCM+ | NREL 5 MW/NACA64618 | −8 | 4 to 25 | 0.22 | 25 | 12.1 | N/A | N/A | [36] | 1 h | k-ω SST | IS, IM, AC, PC | Exp. |
[60] | R | N/A | FLUENT | NREL Phase VI | −15 | 7 | 1 | 20 | 72 | N/A | I: Velocity O: Pressure W: Periodic MRF | N/A | 30 min | k-ω SST | PC, IS, IM | No |
[3] | RG | N/A | FLUENT | 300-kW/S819 | −11.3 −1 | 4 to 13 | N/A | N/A | 24 to 45 | N/A | I: Velocity O: Pressure W: Periodic MRF | N/A | 2 h3 h | k-ω SST | IS, CP, PC | Exp. |
[35] | RG | BEM WT-Perf | CFX ICEAC2D | NREL 5 MW | −10 −2 | 10 | 0.22 0.1605 | 20 14.36 | TSR: 7.68 TSR: 7.32 TSR: 7.55 | N/A | N/A | [36] | 8 h | k-ω SST | IS, AC, PC, CP | Exp. & Num. |
[59] | R | In-house code | CFX | NREL 5 MW/NACA64618 | N/A | 11.4 | N/A | N/A | 12.1 | N/A | I: Velocity O: Pressure W: Periodic (120°) | N/A | N/A | k-ω SST | CP | No |
[69] | R | XFOIL | In-house model (ice accretion) SU2 | Aeolos 30 kW NREL 5 MW | −5 −10 −15 | 11 | 0.05 0.15 0.25 | 18 27 35 | 120 12.1 | 5 | N/A | N/A | 20 min 40 min 1 h 80 min | k-ω SST | IS, PC, PL | Exp. |
[70] | RG | Xturb-PSU | FENSAP-ICE | WindPACT 1.5 MW/NACA64618 | −8 −1 | 8 12 | 0.2 0.48 | 30 33 | 0 | 0 | N/A | [36] BS | 2 h | S-A | IS, AC, PC | Exp. |
Advantages | Disadvantages |
---|---|
BEM–CFD | |
|
|
Full CFD | |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras Montoya, L.T.; Lain, S.; Ilinca, A. A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies 2022, 15, 1083. https://doi.org/10.3390/en15031083
Contreras Montoya LT, Lain S, Ilinca A. A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies. 2022; 15(3):1083. https://doi.org/10.3390/en15031083
Chicago/Turabian StyleContreras Montoya, Leidy Tatiana, Santiago Lain, and Adrian Ilinca. 2022. "A Review on the Estimation of Power Loss Due to Icing in Wind Turbines" Energies 15, no. 3: 1083. https://doi.org/10.3390/en15031083
APA StyleContreras Montoya, L. T., Lain, S., & Ilinca, A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies, 15(3), 1083. https://doi.org/10.3390/en15031083