Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multifunctional Wastewater Flow Installation for the Removal of Organic Compounds and Biogas Synthesis
- Module 1 (hydrogen bioreactor): the degradation (hydrolysis) of multicomponent solid food waste by anaerobic microorganisms accompanied by the synthesis of H2, CO2, VFA, and alcohols.
- Module 2 (methane tank): the methanogenic degradation of VFA and alcohols, the end products of the hydrogen fermentation.
- Module 3 (air tank): The anaerobe biomass removal by the following food chain: “aerobic microorganisms → Protozoa → invertebrates (nematodes, Rotifera) → insect larvae.”
- Module 4 (aquarium): the removal of rotifers, nematodes, and insect larvae by fish.
2.2. Carriers for the Immobilization of Microorganisms
2.3. Collection of Biohydrogen and Biomethane
2.4. Control of Metabolic Parameters during the Wastewater Treatment
3. Results
3.1. Hydrogen Fermentation of the Multicomponent Food Waste
3.2. The Purification of Hydrogen Bioractor Leachate with Methane Fermentation
3.3. The Purification of Methane Fermentation Leachate Using Air Tank Technology
3.4. Aquarium as the Final Stage of the Leachate Purification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stovpets, O. Social-Ecological Approach to Analysis of the Municipal Waste Utilization Problem in Metropolis (through the Lens of Philosophy and Law). Skhid 2021, 165, 64–71. [Google Scholar] [CrossRef]
- Schanes, K.; Dobernig, K.; Gözet, B. Food Waste Matters—A Systematic Review of Household Food Waste Practices and Their Policy Implications. J. Clean. Prod. 2018, 182, 978–991. [Google Scholar] [CrossRef]
- Lu, H.R.; Qu, X.; Hanandeh, A.E. Towards a Better Environment—The Municipal Organic Waste Management in Brisbane: Environmental Life Cycle and Cost Perspective. J. Clean. Prod. 2020, 258, 120756. [Google Scholar] [CrossRef]
- Das, S.; Lee, S.-H.; Kumar, P.; Kim, K.-H.; Lee, S.S.; Bhattacharya, S.S. Solid Waste Management: Scope and the Challenge of Sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Reznikova, N.; Zvarych, R.; Zvarych, I.; Shnyrkov, O. Global Circular E-Chain in Overcoming the Global Waste. Procedia Environ. Sci. Eng. Manag. 2019, 6, 641–647. [Google Scholar]
- Blair, J.; Mataraarachchi, S. A Review of Landfills, Waste and the Nearly Forgotten Nexus with Climate Change. Environments 2021, 8, 73. [Google Scholar] [CrossRef]
- Stupnikova, Y.; Popova, K. Solution of Environmental Problems in Human Settlements Caused by Negative Effect of SDW Landfills. MATEC Web Conf. 2018, 193, 02006. [Google Scholar] [CrossRef]
- Vaccari, M.; Tudor, T.; Vinti, G. Characteristics of Leachate from Landfills and Dumpsites in Asia, Africa and Latin America: An Overview. Waste Manag. 2019, 95, 416–431. [Google Scholar] [CrossRef]
- Njoku, P.O.; Odiyo, J.O.; Durowoju, O.S.; Edokpayi, J.N. A Review of Landfill Gas Generation and Utilisation in Africa. Open Environ. Sci. 2018, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Long, Y.; Fang, Y.; Du, Y.; Liu, W.; Shen, D. Effects of Aeration and Leachate Recirculation on Methyl Mercaptan Emissions from Landfill. Waste Manag. 2017, 68, 337–343. [Google Scholar] [CrossRef]
- Begum, S.; Arelli, V.; Anupoju, G.R.; Sridhar, S.; Bhargava, S.K.; Eshtiaghi, N. Optimization of Feed and Extractant Concentration for the Liquid–Liquid Extraction of Volatile Fatty Acids from Synthetic Solution and Landfill Leachate. J. Ind. Eng. Chem. 2020, 90, 190–202. [Google Scholar] [CrossRef]
- Ou, J.; Xu, N.; Ernst, P.; Ma, C.; Bush, M.; Goh, K.; Zhao, J.; Zhou, L.; Yang, S.-T.; Liu, X. (Margaret) Process Engineering of Cellulosic N-Butanol Production from Corn-Based Biomass Using Clostridium Cellulovorans. Process Biochem. 2017, 62, 144–150. [Google Scholar] [CrossRef]
- Yan, C.-T.; Jen, J.-F. Determination of Volatile Fatty Acids in Landfill Leachates by Gas Chromatography with Distillation Pretreatment. Anal. Chim. Acta 1992, 264, 259–264. [Google Scholar] [CrossRef]
- Yebouet, O.F.; Campitelli, A.; Amoikon, S.L.T.; Kannengiesser, J.; Stanojkovski, D.; Mrukwia, T.; Dje Koffi, M.; Djeni, T.N. Assessment of the Diversity and Abundance of Bacterial Population and Its Correlation with Medium Chain Fatty Acids Production from Fermentation of Two Leachate Qualities. Bioresour. Technol. Rep. 2021, 16, 100840. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria. Biomass Bioenergy 2009, 33, 848–853. [Google Scholar] [CrossRef]
- Salsali, H.; Parker, W.J.; Sattar, S.A. The Effect of Volatile Fatty Acids on the Inactivation of Clostridium Perfringens in Anaerobic Digestion. World J. Microbiol. Biotechnol. 2008, 24, 659–665. [Google Scholar] [CrossRef]
- Abiriga, D.; Vestgarden, L.S.; Klempe, H. Groundwater Contamination from a Municipal Landfill: Effect of Age, Landfill Closure, and Season on Groundwater Chemistry. Sci. Total Environ. 2020, 737, 140307. [Google Scholar] [CrossRef]
- Pagliano, G.; Ventorino, V.; Panico, A.; Pepe, O. Integrated Systems for Biopolymers and Bioenergy Production from Organic Waste and By-Products: A Review of Microbial Processes. Biotechnol. Biofuels 2017, 10, 113. [Google Scholar] [CrossRef]
- Saratale, G.D.; Chen, S.-D.; Lo, Y.-C.; Saratale, R.G.; Chang, J.-S. Outlook of Biohydrogen Production from Lignocellulosic Feedstock Using Dark Fermentation–a Review. J. Sci. Ind. Res. 2008, 67, 962–979. Available online: https://www.researchgate.net/publication/242126677_Outlook_of_biohydrogen_production_from_lignocellulosic_feedstock_using_dark_fermentation_-_A_review (accessed on 10 November 2021).
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of by-Products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Sun, L.; Fujii, M.; Tasaki, T.; Dong, H.; Ohnishi, S. Improving Waste to Energy Rate by Promoting an Integrated Municipal Solid-Waste Management System. Resour. Conserv. Recycl. 2018, 136, 289–296. [Google Scholar] [CrossRef]
- Khayum, N.; Anbarasu, S.; Murugan, S. Biogas Potential from Spent Tea Waste: A Laboratory Scale Investigation of Co-Digestion with Cow Manure. Energy 2018, 165, 760–768. [Google Scholar] [CrossRef]
- Ananthu, O.S. Small Scale Biogas Production by Using Food Waste—Examples from Three Restaurants. Master’s Thesis, School of Business, Engineering and Science, Halmstad University, Halmstad, Sweden, 29 April 2019. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1307859 (accessed on 11 November 2021).
- Tashyrev, O.B.; Matvieieva, N.A.; Hovorukha, V.M.; Tashyreva, H.O.; Bielikova, O.I.; Havryliuk, O.A.; Duplij, V.P. Application of Lignocellulosic Substrate Obtained after Hydrogen Dark Fermentation of Food Waste as Biofertilizer. Ind. Biotechnol. 2018, 14, 315–322. [Google Scholar] [CrossRef]
- Hovorukha, V.; Havryliuk, O.; Gladka, G.; Tashyrev, O.; Kalinichenko, A.; Sporek, M.; Dołhańczuk-Śródka, A. Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste. Energies 2021, 14, 1831. [Google Scholar] [CrossRef]
- Havryliuk, O.; Hovorukha, V.; Savitsky, O.; Trilis, V.; Kalinichenko, A.; Dołhańczuk-Śródka, A.; Janecki, D.; Tashyrev, O. Anaerobic Degradation of Environmentally Hazardous Aquatic Plant Pistia Stratiotes and Soluble Cu(II) Detoxification by Methanogenic Granular Microbial Preparation. Energies 2021, 14, 3849. [Google Scholar] [CrossRef]
- Ivanov, Y.; Pyatnichko, O.; Zhuk, H.; Onopa, L.; Soltanibereshne, M. Extraction of Carbon Dioxide from Gas Mixtures with Amines Absorbing Process. Energy Proc. 2017, 128, 240–247. [Google Scholar] [CrossRef]
- Suslova, O.; Govorukha, V.; Brovarskaya, O.; Matveeva, N.; Tashyreva, H.; Tashyrev, O. Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration. Int. J. Bioautom. 2014, 18, 45–52. Available online: https://www.proquest.com/openview/b5a0cc3a4fa9b603e25343417abc104e/1?pq-origsite=gscholar&cbl=4720765 (accessed on 15 November 2021).
- Hovorukha, V.; Havryliuk, O.; Tashyreva, H.; Tashyrev, O.; Sioma, I. Thermodynamic Substantiation of Integral Mechanisms of Microbial Interaction with Metals. Ecol. Eng. Environ. Prot. 2018, 2018, 55–63. [Google Scholar] [CrossRef]
- Berezkin, V.G.; Drugov, Y.S. Gas Chromatography in Air Pollution Analysis; Elsevier: Amsterdam, The Netherlands, 1991; ISBN 978-0-08-085856-2. [Google Scholar]
- Begot, C.; Desnier, I.; Daudin, J.D.; Labadie, J.C.; Lebert, A. Recommendations for Calculating Growth Parameters by Optical Density Measurements. J. Microbiol. Methods 1996, 25, 225–232. [Google Scholar] [CrossRef]
- Levin, P.A. 6 Light Microscopy Techniques for Bacterial Cell Biology. In Methods in Microbiology; Academic Press: Cambridge, MA, USA, 2002; Volume 31, pp. 115–132. ISBN 0580-9517. [Google Scholar]
- Bakht, A.; Rasool, N.; Iftikhar, S. Characterization of Plastic Degrading Bacteria Isolated from Landfill Sites. J. Biochem. Microbiol. Technol. Eng. 2020, 3, 030–035. [Google Scholar] [CrossRef]
- Taylor, J. The Estimation of Numbers of Bacteria by Tenfold Dilution Series. J. Appl. Bacteriol. 1962, 25, 54–61. [Google Scholar] [CrossRef]
- Tashyrev, O. Natural and Synthetic Solid Carriers in Flow Module For Microbial Sewage Filtrate Purification. Biotechnol. Acta 2018, 11, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.-T.; Xu, H.; Chen, Y.-M.; Lü, F.; Lan, J.-W.; Shao, L.-M.; Lin, W.-A.; He, P.-J. Biochemical, Hydrological and Mechanical Behaviors of High Food Waste Content MSW Landfill: Preliminary Findings from a Large-Scale Experiment. Waste Manag. 2017, 63, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Enzmann, F.; Mayer, F.; Rother, M.; Holtmann, D. Methanogens: Biochemical Background and Biotechnological Applications. AMB Express 2018, 8, 1. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The Roles of Acetotrophic and Hydrogenotrophic Methanogens during Anaerobic Conversion of Biomass to Methane: A Review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Abreu, A.; Tavares, F.; Alves, M.; Cavaleiro, A.J.; Pereira, M.A. Garden and Food Waste Co-Fermentation for Biohydrogen and Biomethane Production in a Two-Step Hyperthermophilic-Mesophilic Process. Bioresour. Technol. 2019, 278, 180–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeriz-Campoy, R.; Álvarez-Gallego, C.J.; Romero-García, L.I. Thermophilic Anaerobic Co-Digestion of Organic Fraction of Municipal Solid Waste (OFMSW) with Food Waste (FW): Enhancement of Bio-Hydrogen Production. Bioresour. Technol. 2015, 194, 291–296. [Google Scholar] [CrossRef]
- Anburajan, P.; Park, J.-H.; Pugazhendhi, A.; Kim, J.-S.; Kim, S.-H. Biohydrogen Production from Glucose Using Submerged Dynamic Filtration Module: Metabolic Product Distribution and Flux-Based Analysis. Bioresour. Technol. 2019, 287, 121445. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.; Zhang, T.; Bao, M.; Su, H. Optimization and Modeling of Biohydrogen Production by Mixed Bacterial Cultures from Raw Cassava Starch. Front. Chem. Sci. Eng. 2017, 11, 100–106. [Google Scholar] [CrossRef]
- de Sá, L.R.V.; Cammarota, M.C.; de Oliveira, T.C.; Oliveira, E.M.M.; Matos, A.; Ferreira-Leitão, V.S. Pentoses, Hexoses and Glycerin as Substrates for Biohydrogen Production: An Approach for Brazilian Biofuel Integration. Int. J. Hydrog. Energy 2013, 38, 2986–2997. [Google Scholar] [CrossRef]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Res. Int. 2017, 2017, 2370927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-L.; Fan, Y.-T.; Xing, Y.; Pan, C.-M.; Zhang, G.-S.; Lay, J.-J. Enhanced Biohydrogen Production from Cornstalk Wastes with Acidification Pretreatment by Mixed Anaerobic Cultures. Biomass Bioenergy 2007, 31, 250–254. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous Dark Fermentative Hydrogen Production by Mesophilic Microflora: Principles and Progress. Int. J. Hydrog. Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A.; Abd Rahman, N. Food Waste and Food Processing Waste for Biohydrogen Production: A Review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar] [CrossRef]
- Curry, N.; Pillay, P. Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renew Energy 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Bardiya, N.; Somayaji, D.; Khanna, S. Biomethanation of Banana Peel and Pineapple Waste. Bioresour. Technol. 1996, 58, 73–76. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T.; Kumar, R. Improving Biodegradability and Biogas Production of Wheat Straw Substrates Using Sodium Hydroxide and Hydrothermal Pretreatments. Energy 2012, 43, 273–282. [Google Scholar] [CrossRef]
- Clément, B.; Merlin, G. The Contribution of Ammonia and Alkalinity to Landfill Leachate Toxicity to Duckweed. Sci. Total Environ. 1995, 170, 71–79. [Google Scholar] [CrossRef]
- Baderna, D.; Caloni, F.; Benfenati, E. Investigating Landfill Leachate Toxicity in Vitro: A Review of Cell Models and Endpoints. Environ. Int. 2019, 122, 21–30. [Google Scholar] [CrossRef]
- Chen, D.M.-C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The World’s Growing Municipal Solid Waste: Trends and Impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Weber, J.V. Landfill Leachate Treatment Methods: A Review. Environ. Chem. Lett. 2006, 4, 51–61. [Google Scholar] [CrossRef]
- Thomas, M.; Kozik, V.; Barbusiński, K.; Sochanik, A.; Jampilek, J.; Bąk, A. Potassium Ferrate (VI) as the Multifunctional Agent in the Treatment of Landfill Leachate. Materials 2020, 13, 5017. [Google Scholar] [CrossRef] [PubMed]
- Abuabdou, S.M.A.; Jaffari, Z.H.; Ng, C.-A.; Ho, Y.-C.; Bashir, M.J.K. A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate. Water 2021, 13, 2282. [Google Scholar] [CrossRef]
- Tałałaj, I.A.; Biedka, P.; Bartkowska, I. Treatment of Landfill Leachates with Biological Pretreatments and Reverse Osmosis. Environ. Chem. Lett. 2019, 17, 1177–1193. [Google Scholar] [CrossRef] [Green Version]
- Tezcan Un, U.; Filik Iscen, C.; Oduncu, E.; Akcal Comoglu, B.; Ilhan, S. Treatment of Landfill Leachate Using Integrated Continuous Electrocoagulation and the Anaerobic Treatment Technique. Environ. Prog. Sustain. Energy 2018, 37, 1668–1676. [Google Scholar] [CrossRef]
- Yi, E.X.; Wee, S.T.; Lim, C.K.; Ibrahim, Z.; Chan, N.W. Combined Adsorption and Biological Treatment for Landfill Leachate Management. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 50, 26–31. [Google Scholar] [CrossRef]
- Pashaki, S.G.A.; Khojastehpour, M.; Ebrahimi-Nik, M.; Rohani, A. Treatment of Municipal Landfill Leachate: Optimization of Organic Loading Rate in a Two-Stage CSTR Followed by Aerobic Degradation. Renew Energy 2021, 163, 1210–1221. [Google Scholar] [CrossRef]
# | Carrier | Type | Main Features |
---|---|---|---|
1 | Basalt wool | Synthetic | Highly branched structure and excellent resistance to microbial degradation. Supports thin surface microbial biofilms. Can be re-used repeatedly after calcination (sterilization) without loss of basic properties. |
2 | Basalt fiber | Synthetic mineral | Excellent resistance to microbial degradation, but smaller fouling surface compared to basalt wool. Can be reused by simple cleaning and washing. |
3 | Household packaging net | Synthetic mineral | Moderately branched structure and good resistance to microbial degradation. Maintains structure even during heavy microbial fouling. Good washability. |
4 | Nylon fiber | Synthetic organic | Widely used as a carrier for bioremediation purposes. Resistant to microbial degradation. Good washability. Maintains structure even during heavy microbial fouling. |
5 | Polyethylene foam | Synthetic organic | Resistant to microbial degradation. During fouling, supports formation of thick microbial biofilms. |
6 | Hay | Natural organic | Contains indigenous microflora. Provides nutrients for microbial growth and promote the development of different Protozoa (flagellates, ciliates, amoebae) and microscopic invertebrates (nematodes). |
7 | Straw | Natural organic | Provides nutrients for microbial growth. Larger fouling surface compared to hay. The inner stem surface promotes growth of microaerophilic microorganisms. |
8 | Dried marigold stalks | Natural organic | Provides nutrients for microbial growth. Contains indigenous microflora and promotes the development of Protozoa. |
9 | Dried weed stems | Natural organic | Provides nutrients for microbial growth. Contains indigenous microflora and promotes the development of Protozoa. |
10 | Wood shavings | Natural organic | Resistant to microbial degradation. Good washability. The rigid structure prevents sticking. Smaller fouling surface area compared to other carriers. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tashyrev, O.; Hovorukha, V.; Havryliuk, O.; Sioma, I.; Gladka, G.; Kalinichenko, O.; Włodarczyk, P.; Suszanowicz, D.; Zhuk, H.; Ivanov, Y. Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane. Energies 2022, 15, 911. https://doi.org/10.3390/en15030911
Tashyrev O, Hovorukha V, Havryliuk O, Sioma I, Gladka G, Kalinichenko O, Włodarczyk P, Suszanowicz D, Zhuk H, Ivanov Y. Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane. Energies. 2022; 15(3):911. https://doi.org/10.3390/en15030911
Chicago/Turabian StyleTashyrev, Oleksandr, Vira Hovorukha, Olesia Havryliuk, Iryna Sioma, Galina Gladka, Olga Kalinichenko, Paweł Włodarczyk, Dariusz Suszanowicz, Hennadiy Zhuk, and Yuri Ivanov. 2022. "Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane" Energies 15, no. 3: 911. https://doi.org/10.3390/en15030911
APA StyleTashyrev, O., Hovorukha, V., Havryliuk, O., Sioma, I., Gladka, G., Kalinichenko, O., Włodarczyk, P., Suszanowicz, D., Zhuk, H., & Ivanov, Y. (2022). Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane. Energies, 15(3), 911. https://doi.org/10.3390/en15030911