Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs
Abstract
:1. Introduction
2. Establishment of Model
2.1. Methane
2.2. Illite
2.3. Quartz
2.4. Kerogen
3. Results and Discussion
3.1. Characteristics of Methane Adsorption
3.2. Effect of Porosity on Methane Adsorption
3.2.1. Shape of Pore
3.2.2. Size of Pore
3.3. Effect of Matrix Types on Methane Adsorption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, A.; Han, W.; Fang, Q.; Memon, A.; Ma, M. Experimental investigation of methane adsorption and desorption in water-bearing shale. Capillarity 2020, 3, 45–55. [Google Scholar] [CrossRef]
- Chen, F.; Lu, S.; Ding, X.; Ju, Y. Evaluation of the density and thickness of adsorbed methane in differently sized pores contributed by various components in a shale gas reservoir: A case study of the Longmaxi Shale in Southeast Chongqing, China. Chem. Eng. J. 2019, 367, 123–138. [Google Scholar] [CrossRef]
- Li, K.; Kong, S.; Xia, P.; Wang, X. Microstructural characterisation of organic matter pores in coal-measure shale. Adv. Geo-Energy Res. 2020, 4, 372–391. [Google Scholar] [CrossRef]
- Zhang, L.H.; Chen, Z.X.; Zhao, Y.L. Well Production Performance Analysis for Shale Gas Reservoirs; Elsevier: Amsterdam, The Netherland, 2019; pp. 2–39. [Google Scholar]
- Jiang, W.; Cao, G.; Luo, C.; Lin, M.; Ji, L.; Zhou, L. A composition-based model for methane adsorption of overmature shales in Wufeng and Longmaxi Formation, Sichuan Basin. Chem. Eng. J. 2022, 429, 130766. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Lu, G.; Zhang, L.H.; Wei, Y.S.; Guo, J.J.; Chang, C. Numerical simulation of shale gas reservoirs considering discrete fracture network using a coupled multiple transport mechanisms and geomechanics model. J. Pet. Sci. Eng. 2020, 195, 107588. [Google Scholar] [CrossRef]
- Eundayo, J.M.; Razaee, R.; Fana, C.Y. Experimental investigation and mathematical modelling of shale gas adsorption and desorption hysteresis. J. Nat. Gas Sci. Eng. 2021, 88, 103761. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Fan, L.; Liu, S.M. A novel experimental system for accurate gas sorption and its application to various shale rocks. Chem. Eng. Res. Des. 2021, 165, 180–191. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, C.; Ni, X.; Gao, X.; He, Y. Amount of adsorbed gas in deep coal reservoir based on adsorption potential theory. J. China Coal Soc. 2018, 43, 1547–1552. [Google Scholar]
- Dubinin, M.M.; Astakhov, V.A. Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Russ. Chem. Bull. 1971, 20, 3–7. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Stoeckli, H.F. Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 1980, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Wang, Y.P.; Guo, W. Predicting the sorption isotherm of methane on shale with simplified local-density model. Nat. Gas Geosci. 2015, 26, 592–598. [Google Scholar]
- Kong, S.; Huang, X.; Li, K.; Song, X. Adsorption/desorption isotherms of CH4 and C2H6 on typical shale samples. Fuel 2019, 255, 115632. [Google Scholar] [CrossRef]
- Chen, Y.F.; Jiang, C.B.; Leung, J.Y.; Wojtanowicz, A.K.; Zhang, D.M. Multiscale characterization of shale pore-fracture system: Geological controls on gas transport and pore size classification in shale reservoirs. J. Pet. Sci. Eng. 2021, 202, 108442. [Google Scholar] [CrossRef]
- Chareonsuppanimit, P.; Mohammad, S.A.; Robinson, R.L.; Gasem, K.A.M. High-pressure adsorption of gases on shales: Measurements and modeling. Int. J. Coal Geol. 2012, 95, 34–46. [Google Scholar] [CrossRef]
- Ono, S.; Kondo, S. Molecular Theory of Surface Tension; Springer: Berlin, Germany, 1960. [Google Scholar]
- Bi, H.; Jiang, Z.; Li, J.; Xiong, F.; Peng, L.; Lei, C. Ono-Kondo model for supercritical shale gas storage: A case study of Silurian Longmaxi Shale in Southeast Chongqing, China. Energy Fuels 2017, 31, 2755–2764. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D.; Wang, H.; Li, X. A modified BET equation to investigate supercritical methane adsorption mechanisms in shale. Mar. Pet. Geol. 2019, 105, 284–292. [Google Scholar] [CrossRef]
- Pang, W.; Jin, Z. Ono-Kondo lattice model for propane multilayer adsorption in organic nanopores in relation to shale gas. Fuel 2019, 235, 158–166. [Google Scholar] [CrossRef]
- Zhou, S.; Ning, Y.; Wang, H.; Liu, H.; Xue, H. Investigation of methane adsorption mechanism on Longmaxi shale by combining the micropore filling and monolayer coverage theories. Adv. Geo-Energy Res. 2018, 2, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Liu, X.J.; Liang, L.X. Adsorption of methane in quartz by Grand Canonical Monte Carlo simulation. Nat. Gas Geosci. 2016, 27, 1532–1540. [Google Scholar]
- Zhang, F.Y.; Sui, H.G.; Yao, J.; Zhang, L. Molecular simulation of shale gas adsorption in organic matter. Sci. Sin. Phys. Mech. Astron. 2017, 47, 114615. [Google Scholar] [CrossRef]
- Shi, H.J.; Chen, C.; Gong, L.; Bai, Z.; Sun, S.Y. Characteristic of Adsorption and Diffusion for Methane in Kerogen. J. Eng. Thermophys. 2019, 40, 1338–1343. [Google Scholar]
- Lv, Z.L.; Ning, Z.F.; Wang, Q.; Huang, L.; Meng, H.; Yu, X.F.; Qin, H.B. Molecular simulation of methane adsorption behavior on clay minerals. J. China Coal Soc. 2019, 44, 3117–3124. [Google Scholar]
- Huang, T.; Liu, D.H.; Sun, J. Simulation on adsorption of methane in micro-pore of clay minerals. Sci. Technol. Eng. 2020, 20, 141–145. [Google Scholar]
- Guo, F.G.; Wang, S.; Feng, Q.H.; Yao, X.Y.; Xue, Q.Z.; Li, X.F. Adsorption and absorption of supercritical methane within shale kerogen slit. J. Mol. Liq. 2020, 320, 114364. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.F.; Liu, W.Y.; Zhang, T.; He, M.X.; Nasrabadi, H. Molecular dynamics of methane flow behavior through realistic organic nanopores under geologic shale condition: Pore size and kerogen types. Chem. Eng. J. 2020, 398, 124341. [Google Scholar] [CrossRef]
- Kawthar, A.B.; Berihun, M.N.; Muhammed, R.M.; Tigabwa, Y.A.; Shiferaw, R.J. Molecular simulation study of CO2/CH4 adsorption on realistic heterogeneous shale surfaces. Appl. Surf. Sci. 2021, 543, 148789. [Google Scholar]
- Sun, Q.; Liu, W.; Zhang, N. Molecular insights into recovery of shale gas by CO2 injection in kerogen slit nanopores. J. Nat. Gas Sci. Eng. 2021, 90, 103903. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S. Quantitative evaluation of free gas and adsorbed gas content of Wufeng-Longmaxi shales in the Jiaoshiba area, Sichuan Basin, China. Adv. Geo-Energy Res. 2019, 3, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Zhang, L.H.; Zhao, Y.L.; He, X.; Wu, J.F.; Su, S.W. Shale gas transport in nanopores: Contribution of different transport mechanisms and influencing factors. Energy Fuels 2021, 35, 2033–2047. [Google Scholar] [CrossRef]
- Martin, M.G.; Siepmann, J.I. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577. [Google Scholar] [CrossRef]
- Ji, L.M.; Qiu, J.L.; Zhang, T.W.; Xia, Y.Q. Experiments on methane adsorption of common clay minerals in shale. Earth Sci. J. China Univ. Geosci. 2012, 37, 1043–1050. [Google Scholar]
- Xiong, J. Investigation of the Influences of the Methane Adsorption Capacity on the Shales; Southwest Petroleum University: Chengdu, China, 2015. [Google Scholar]
- Vandenbroucke, M. Kerogen: From types to models of chemical structure. Oil Gas Sci. Technol. 2003, 58, 243–269. [Google Scholar] [CrossRef] [Green Version]
- Collell, J.; Ungerer, P.; Galliero, G.; Yiannourakou, M.; Montel, F.; Pujol, M. Molecular simulation of bulk organic matter in type II shales in the middle of the oil formation window. Energy Fuels 2014, 28, 7457–7466. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Liu, X.J.; Luo, D.X.; Xiong, J.; Liang, L.X. Construction of the average molecular modeling of the kerogen from the Longmaxi formation. Chem. Ind. Eng. Prog. 2017, 36, 530–537. [Google Scholar]
- Sui, H.G. Molecular Simulation Studies of Shale Gas Adsorption Behavior in Reservoir; China University of Petroleum (East China): Qingdao, China, 2016. [Google Scholar]
- Zhang, L.H.; Liang, H.B.; Zhao, Y.L.; Xie, J.; Peng, X.; Li, Q. Gas transport characteristics in shale matrix based on multiple mechanisms. Chem. Eng. J. 2020, 386, 124002. [Google Scholar] [CrossRef]
- Song, W.; Yao, J.; Ma, J.; Li, A.; Li, Y.; Sun, H.; Zhang, L. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems. Fuel 2018, 215, 196–203. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Li, J. Nano-scale pore structure and fractal dimension of lower Silurian Longmaxi Shale. Chem. Technol. Fuels Oils 2018, 54, 354–366. [Google Scholar] [CrossRef]
Type of Model | Ratio of ε/kB, K | Collision Diameter δ, nm | Atomic Charge q, e |
---|---|---|---|
United atom of methane | 148.1 | 0.373 | 0 |
Type of Kerogen | H/C | O/C | S/C | N/C |
---|---|---|---|---|
Type II | 0.5 | 0.02 | 0.005 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Zhang, J.; Hu, H.; Zhang, D.; Zhao, Y. Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs. Energies 2022, 15, 944. https://doi.org/10.3390/en15030944
Chang C, Zhang J, Hu H, Zhang D, Zhao Y. Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs. Energies. 2022; 15(3):944. https://doi.org/10.3390/en15030944
Chicago/Turabian StyleChang, Cheng, Jian Zhang, Haoran Hu, Deliang Zhang, and Yulong Zhao. 2022. "Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs" Energies 15, no. 3: 944. https://doi.org/10.3390/en15030944
APA StyleChang, C., Zhang, J., Hu, H., Zhang, D., & Zhao, Y. (2022). Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs. Energies, 15(3), 944. https://doi.org/10.3390/en15030944