Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review
Abstract
:1. Introduction
2. Introductory Concepts
2.1. Building Control Strategies
2.1.1. Classical Controls
2.1.2. Advanced Controls
2.2. Approaches to Control Testing
3. Methodology
- Findings should present, test, and benchmark a new building control strategy or describe in detail a virtual benchmarking framework. This review focuses on the applications of new controllers to residential and fully enclosed commercial buildings.
- The field of application excludes lighting, window openings, shading operation, domestic hot water preparation, and smart grid frameworks. The focus is on high-level (i.e., supervisory) controllers; hence, low-level controllers are out of the scope of this review.
- As the focus is on simulation-based testing, contributions that present emulation or field experiments are disregarded.
- If for the same year, several in-scope-contributions are identified, those with a higher number of citations are prioritized.
4. Results
4.1. Key Performance Indicators
4.1.1. Energy Consumption Metrics
4.1.2. Thermal Comfort Metrics
4.1.3. Energy Cost Metrics
4.1.4. Other Metrics
4.1.5. Number of Computed KPIs
4.2. Benchmarking Reference
4.3. Virtual Scenarios
4.3.1. Test Location
4.3.2. Test Duration
4.3.3. Building and HVAC Models
4.3.4. Occupancy Model
4.4. Visualization of the Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Annual |
BSS | Building simulation software |
CI | Computational intelligence |
D | Daily |
EV | Electric vehicle |
FLC | Fuzzy logic control |
GAC | Generic advanced control |
HVAC | Heating, ventilation, and air conditioning |
KPI | Key performance indicator |
M | Monthly |
MPC | Model predictive control |
MZM | Multi-zone model |
OCC | Occupant-centric control |
OCM | Occupancy model |
PB | Performance bound |
PMV | Predicted mean vote |
PPD | Predicted percentage of dissatisfied |
RBC | Rule-based control |
RL | Reinforcement learning |
RLC | Reinforcement learning control |
RMSE | Root-mean-square error |
SZM | Single zone model |
UDM | User developed model |
unk. | Unknown |
W | Weekly |
Appendix A. Reviewed Papers
ID | Author | Year | Publication | Developed Control | # KPIs | Reference Control | # Locations | Test Duration | MZM | SZM | BSS | UDM | Simple OCM | Advanced OCM | KPIs in Tables | Plots |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[2] | Anastasiadi et al. | 2018 | Journal | FLC | 11 | On/Off | 1 (Athens GR) | A | • | • | • | • | • | |||
[73] | Arabzadeh et al. | 2018 | Journal | GAC | 9 | unk. baseline, GAC | 1 (Finnish climate) | A | • | • | • | • | • | |||
[60] | Ascione et al. | 2016 | Journal | MPC | 2 | RBC | 1 (Naples IT) | D | • | • | • | • | ||||
[82] | Baracu et al | 2013 | Proceedings | TRC | 1 | On/Off | 1 (unk.) | D | • | • | • | • | ||||
[80] | Calvino et al. | 2010 | Journal | FLC | 4 | 2 On/Off | 1 (Palermo IT) | D | • | • | • | • | ||||
[84] | Carrascal et al. | 2016 | Journal | MPC | 2 | 2 On/Off, MPC | 1 (Bilbao SP) | M | • | • | • | • | • | |||
[40] | Chen et al. | 2015 | Journal | MPC | 3 | RBC, MPC | 1 (Pennsylvania US) | D | • | • | • | • | • | |||
[61] | Dermardiros et al. | 2019 | IBPSA Proceedings | RLC | 2 | On/Off and PI | 1 (Montreal US) | W | • | • | • | • | ||||
[59] | Du et al. | 2021 | Journal | RLC | 2 | RBC | 1 (Georgia US) | D | • | • | • | • | • | |||
[90] | Du et al. | 2016 | Journal | GAC | 5 | On/Off, PB | 1 (Hainan CN) | D | • | • | • | • | • | |||
[62] | Egilegor et al. | 1997 | IBPSA Proceedings | FLC | 2 | On/Off, FLC | 6 (unk.) | A | • | • | • | • | • | |||
[35] | Eynard et al. | 2013 | IBPSA Proceedings | MPC | 5 | 2 PI, MPC | 1 (unk.) | W | • | • | • | • | • | |||
[57] | Fischer et al. | 2017 | Journal | MPC | 9 | 4 RBC, MPC | 1 (Potsdam GE) | A | • | • | • | • | • | |||
[44] | Garnier et al. | 2015 | Journal | MPC | 4 | On/Off, 4 RBC | 1 (Perpigan FR) | A | • | • | • | • | • | |||
[42] | Glorennec et al. | 1991 | IBPSA Proceedings | FLC | 1 | PI | 1 (unk.) | D | • | • | • | |||||
[33] | Gouda et al. | 2000 | Proceedings | FLC | 1 | PID | 1 (unk.) | D | • | • | • | • | ||||
[70] | Goyal et al. | 2013 | Journal | GAC | 4 | RBC, 2 MPC | 1 (Gainesville US) | D | • | • | • | • | ||||
[72] | Hilliard et al. | 2016 | Journal | MPC | 5 | RBC, MPC | 1 (unk.) | A | • | • | • | • | • | |||
[71] | Hoyt et al. | 2015 | Journal | TRC | 2 | On/Off | 7 (cities in the US) | A | • | • | • | • | • | |||
[39] | Hu et al. | 2019 | Journal | MPC | 4 | On/Off | 1 (Nordhavn DK) | W | • | • | • | • | ||||
[47] | Klein et al. | 2012 | Journal | GAC | 4 | RBC, GAC | 1 (Los Angeles US) | D | • | • | • | • | ||||
[91] | Kohonen et al. | 1991 | IBPSA Proceedings | GAC | 1 | On/Off, RBC, PB | 1 (unk.) | M | • | • | • | • | ||||
[83] | Kuboth et al. | 2019 | Journal | MPC | 12 | RBC, MPC | 1 (Nuremberg GE) | A | • | • | • | • | ||||
[77] | Kümpel et al. | 2019 | Proceedings | TRC | 4 | On/Off | 1 (Mengen GE) | W | • | • | • | • | ||||
[36] | Lee et al. | 2020 | Proceedings | RLC | 2 | On/Off, RLC | 1 (Chicago US) | D | • | • | • | • | ||||
[63] | Lepore et al. | 2013 | Journal | MPC | 7 | PI | 1 (unk.) | D | • | • | • | • | • | |||
[11] | Li et al. | 2016 | Journal | MPC | 7 | RBC, MPC | 3 (cities in the US) | D | • | • | • | • | • | |||
[18] | Ma et al. | 2012 | Journal | MPC | 2 | 2 RBC | 1 (Chicago US) | W | • | • | • | • | ||||
[89] | Maasoumy et al. | 2012 | Journal | MPC | 4 | On/Off, u.k. baseline | 1 (Berkeley US) | D | • | • | • | • | • | |||
[87] | Mbuwir et al. | 2020 | Proceedings | RLC | 4 | RBC, On/Off, PB, RLC | 1 (unk.) | D | • | • | • | • | • | |||
[43] | McKee et al. | 2020 | Proceedings | RLC | 2 | On/Off | 1 (unk.) | M | • | • | • | • | • | |||
[45] | Moon et al. | 2009 | IBPSA Proceedings | GAC | 5 | On/Off, RBC, GAC | 1 (Detroit US) | W | • | • | • | • | ||||
[92] | Moriyama et al. | 2018 | Proceedings | RLC | 4 | RBC (default in EnergyPlus), RLC | 5 (cities in the US) | A | • | • | • | • | • | |||
[46] | Mossolly et al. | 2009 | Journal | GAC | 13 | On/Off, GAC | 1 (Beirut LB) | M | • | • | • | • | • | |||
[74] | Oldewurtel et al. | 2012 | Journal | MPC | 3 | RBC, PB, MPC | 7 (cities in 3 EU States) | A | • | • | • | • | ||||
[27] | Ouf et al. | 2020 | Journal | GAC | 4 | unk. baseline, 3 GAC | 1 (Ottawa CA) | a | • | • | • | • | ||||
[66] | Pereira et al. | 2020 | Proceedings | FLC | 5 | On/Off | 1 (unk.) | M | • | • | • | • | • | |||
[58] | Ruusu et al. | 2019 | Journal | MPC | 36 | RBC, MPC | 1 (Helsinki FI) | A | • | • | • | • | • | |||
[64] | Sangi et al. | 2018 | Journal | GAC | 12 | RBC, GAC | 1 (Aachen DE) | M | • | • | • | • | • | |||
[86] | Salpakari et al. | 2016 | Journal | GAC | 4 | On/Off, RBC, GAC | 1 (Helsinki FI) | A | • | • | • | • | ||||
[68] | Smarra et al. | 2018 | Journal | MPC | 5 | RBC, MPC | 1 (Aquila IT) | W | • | • | • | • | • | |||
[88] | Vrettos et al. | 2013 | Proceedings | MPC | 4 | RBC | 1 (unk. CH) | A | • | • | • | • | • | |||
[96] | Wang et al. | 2017 | Journal | RLC | 2 | 2 On/Off, RBC | 1 (unk.) | D | • | • | • | • | • | |||
[94] | Yang et al. | 2015 | Journal | RLC | 4 | RBC, RLC | 1 (Zurich CH) | A | • | • | • | • | • | |||
[65] | Ye et al. | 2021 | Journal | GAC | 7 | RBC, GAC | 16 (ASHRAE climate zones) | D | • | • | • | • | • | |||
[85] | Yu et al. | 2010 | Journal | FLC | 3 | RBC | 1 (unk. UK) | M | • | • | • | • | • | |||
[17] | Zaho et al. | 1991 | IBPSA Proceedings | GAC | 1 | PI | 1 (Paris FR) | A | • | • | • | • | ||||
[67] | Zhang et al. | 2013 | IBPSA Proceedings | TRC | 3 | On/Off | 4 (cities in AUS) | A | • | • | • | • | • | |||
[101] | Zhang et al. | 2019 | Proceedings | RLC | 2 | PID, RLC | 4 (main cities in the US) | M | • | • | • | • | ||||
[69] | Zhao et al. | 2013 | IBPSA Proceedings | MPC | 4 | RBC | 1 (Pittsburgh US) | W | • | • | • | • | • |
References
- EPA United States Environmental Protection Agency. Report on the Environment—Indoor Air Quality. Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 13 December 2021).
- Anastasiadi, C.; Dounis, A.I. Co-simulation of fuzzy control in buildings and the HVAC system using BCVTB. Adv. Build. Energy Res. 2018, 12, 195–216. [Google Scholar] [CrossRef]
- IEA International Energy Agency. Tracking Buildings 2020. Available online: https://www.iea.org/reports/tracking-buildings-2020 (accessed on 13 December 2021).
- IEA International Energy Agency. Buildings—A Source of Enormous Untapped Efficiency Potential. Available online: https://www.iea.org/topics/buildings (accessed on 13 December 2021).
- Aries, M.B.C.; Bluyssen, P.M. Climate change consequences for the indoor environment. Heron 2009, 54, 49–70. [Google Scholar]
- United Nations Climate Change. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 13 December 2021).
- Afroz, Z.; Shafiullah, G.; Urmee, T.; Higgins, G. Modeling techniques used in building HVAC control systems: A review. Renew. Sustain. Energy Rev. 2018, 83, 64–84. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Yuce, B.; Rezgui, Y. Computational intelligence techniques for HVAC systems: A review. Build. Simul. 2016, 9, 359–398. [Google Scholar] [CrossRef] [Green Version]
- Nägele, F.; Kasper, T.; Girod, B. Turning up the heat on obsolete thermostats: A simulation-based comparison of intelligent control approaches for residential heating systems. Renew. Sustain. Energy Rev. 2017, 75, 1254–1268. [Google Scholar] [CrossRef]
- Satyavada, H.; Baldi, S. An integrated control-oriented modelling for HVAC performance benchmarking. J. Build. Eng. 2016, 6, 262–273. [Google Scholar] [CrossRef]
- Li, X.; Malkawi, A. Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions. Energy 2016, 112, 1194–1206. [Google Scholar] [CrossRef]
- Clauß, J.; Finck, C.; Vogler-Finck, P.; Beagon, P. Control strategies for building energy systems to unlock demand side flexibility—A review. In Proceedings of the Building Simulation 2017: 15th Conference of IBPSA, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar]
- Serale, G.; Fiorentini, M.; Capozzoli, A.; Bernardini, D.; Bemporad, A. Model Predictive Control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities. Energies 2018, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Dounis, A.I.; Caraiscos, C. Advanced control systems engineering for energy and comfort management in a building environment—A review. Renew. Sustain. Energy Rev. 2009, 13, 1246–1261. [Google Scholar] [CrossRef]
- Mirinejad, H.; Welch, K.C.; Spicer, L. A review of intelligent control techniques in HVAC systems. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- Zaho, H.; Visier, J. Intermittent heating system control based on the quadratic optimization principle. In Proceedings of the Building Simulation 1991: Conference of IBPSA, Nice, France, 20–22 August 1991. [Google Scholar]
- Ma, J.; Qin, J.; Salsbury, T.; Xu, P. Demand reduction in building energy systems based on economic model predictive control. Chem. Eng. Sci. 2012, 67, 92–100. [Google Scholar] [CrossRef]
- Katipamula, S.; Lu, N. Evaluation of residential HVAC control strategies for demand response programs. Ashrae Trans. 2006, 112, 535–546. [Google Scholar]
- Afram, A.; Janabi-Sharifi, F. Theory and applications of HVAC control systems—A review of model predictive control (MPC). Build. Environ. 2014, 72, 343–355. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Kämpf, J.; Henze, G.; Nagy, Z. CityLearn v1.0: An OpenAI Gym environment for demand response with deep reinforcement learning. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation; Association for Computing Machinery: New York, NY, USA, 2019; BuildSys ’19; pp. 356–357. [Google Scholar] [CrossRef]
- Wölfle, D.; Vishwanath, A.; Schmeck, H. A Guide for the design of benchmark environments for building energy optimization. In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation; Association for Computing Machinery: New York, NY, USA, 2020; BuildSys ’20; pp. 220–229. [Google Scholar] [CrossRef]
- Blum, D.; Jorissen, F.; Huang, S.; Chen, Y.; Arroyo, J.; Benne, K.; Li, Y.; Gavan, V.; Rivalin, L.; Helsen, L.; et al. Prototyping the BOPTEST framework for simulation-based testing of advanced control strategies in buildings. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019. [Google Scholar] [CrossRef]
- Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All you need to know about model predictive control for buildings. Annu. Rev. Control 2020, 50, 190–232. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges. Appl. Energy 2020, 269, 115036. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Darko, A.; Olanipekun, A.O.; Ameyaw, E.E. Critical barriers to green building technologies adoption in developing countries: The case of Ghana. J. Clean. Prod. 2018, 172, 1067–1079. [Google Scholar] [CrossRef]
- Ouf, M.M.; Park, J.Y.; Gunay, H.B. A simulation-based method to investigate occupant-centric controls. Build. Simul. 2020, 14, 1017–1030. [Google Scholar] [CrossRef]
- Chen, Y.; Treado, S. Development of a simulation platform based on dynamic models for HVAC control analysis. Energy Build. 2014, 68, 376–386. [Google Scholar] [CrossRef]
- Stopps, H.; Huchuk, B.; Touchie, M.F.; O’Brien, W. Is anyone home? A critical review of occupant-centric smart HVAC controls implementations in residential buildings. Build. Environ. 2021, 187, 107369. [Google Scholar] [CrossRef]
- Gorecki, T.T.; Qureshi, F.A.; Jones, C.N. OpenBuild: An integrated simulation environment for building control. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia, 21–23 September 2015; pp. 1522–1527. [Google Scholar] [CrossRef]
- Beiranvand, V.; Hare, W.; Lucet, Y. Best practices for comparing optimization algorithms. Optim. Eng. 2017, 18, 815–848. [Google Scholar] [CrossRef] [Green Version]
- Jetté, I.; Zaheer-Uddin, M.; Fazio, P. PI-control of dual duct systems: Manual tuning and control loop interaction. Energy Convers. Manag. 1998, 39, 1471–1482. [Google Scholar] [CrossRef]
- Gouda, M.M.; Danaher, S.; Underwood, C.P. Fuzzy logic control versus conventional PID control for controlling indoor temperature of a building space. IFAC Proc. Vol. 2000, 33, 249–254. [Google Scholar] [CrossRef]
- Xu, P.; Haves, P.; Deringer, J. A simulation-based testing and training environment for building controls. In Proceedings of the SimBuild 2004: Building Sustainability and Performance Through Simulation, Boulder, CO, USA, 4–6 August 2004. [Google Scholar]
- Eynard, J.; Bourdais, R.; Gueguen, H.; Dumur, D. Tractable predictive control strategies for heating systems in buildings. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambéry, France, 25–28 August 2013. [Google Scholar]
- Lee, J.Y.; Huang, S.; Rahman, A.; Smith, A.D.; Katipamula, S. Flexible reinforcement learning framework for building control using EnergyPlus-Modelica energy models. In Proceedings of the 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities; Association for Computing Machinery: New York, NY, USA, 2020; RLEM’20; pp. 34–38. [Google Scholar] [CrossRef]
- Ma, J.; Qin, S.J.; Li, B.; Salsbury, T. Economic model predictive control for building energy systems. In Proceedings of the ISGT 2011, Anaheim, CA, USA, 17–19 January 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Bianchini, G.; Casini, M.; Vicino, A.; Zarrilli, D. Demand-response in building heating systems: A Model Predictive Control approach. Appl. Energy 2016, 168, 159–170. [Google Scholar] [CrossRef]
- Hu, M.; Xiao, F.; Jørgensen, J.B.; Li, R. Price-responsive model predictive control of floor heating systems for demand response using building thermal mass. Appl. Therm. Eng. 2019, 153, 316–329. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Srebric, J. Model predictive control for indoor thermal comfort and energy optimization using occupant feedback. Energy Build. 2015, 102, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Preglej, A.; Rehrl, J.; Schwingshackl, D.; Steiner, I.; Horn, M.; Škrjanc, I. Energy-efficient fuzzy model-based multi variable predictive control of a HVAC system. Energy Build. 2014, 82, 520–533. [Google Scholar] [CrossRef]
- Glorennec, P.Y. Application of fuzzy control for building energy management. In Proceedings of the Building Simulation 1991: Conference of IBPSA, Nice, France, 20–22 August 1991. [Google Scholar]
- McKee, E.; Du, Y.; Li, F.; Munk, J.; Johnston, T.; Kurte, K.; Kotevska, O.; Amasyali, K.; Zandi, H. Deep reinforcement learning for residential HVAC control with consideration of human occupancy. In Proceedings of the 2020 IEEE Power Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Garnier, A.; Eynard, J.; Caussanel, M.; Grieu, S. Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings. Appl. Soft Comput. 2015, 37, 847–862. [Google Scholar] [CrossRef]
- Moon, J.W.; Jung, S.K.; Kim, J.J. Application of ANN (Artificial-Neural-Network) in residential thermal control. In Proceedings of the Building Simulation 2009: Conference of IBPSA, Glasgow, UK, 27–30 July 2009. [Google Scholar]
- Mossolly, M.; Ghali, K.; Ghaddar, N. Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy 2009, 34, 58–66. [Google Scholar] [CrossRef]
- Klein, L.; Kwak, J.y.; Kavulya, G.; Jazizadeh, F.; Becerik-Gerber, B.; Varakantham, P.; Tambe, M. Coordinating occupant behavior for building energy and comfort management using multi-agent systems. Autom. Constr. 2012, 22, 525–536. [Google Scholar] [CrossRef]
- IEA EBC International Energy Agency’s Energy in Buildings and Communities Programme. Annex 79 Occupant-Centric Building Design and Operation. Available online: https://annex79.iea-ebc.org/ (accessed on 13 December 2021).
- Hazyuk, I.; Ghiaus, C.; Penhouet, D. Model Predictive Control of thermal comfort as a benchmark for controller performance. Autom. Constr. 2014, 43, 98–109. [Google Scholar] [CrossRef]
- Vaezi-Nejad, H.; Hutter, E.; Haves, P.; Dexter, A.L.; Kelly, G.; Nusgens, P. The use of building emulators to evaluate the performance of building energy management systems. In Proceedings of the Building Simulation 1991: Conference of IBPSA, Nice, France, 20–22 August 1991. [Google Scholar]
- Sangi, R.; Baranski, M.; Oltmanns, J.; Streblow, R.; Müller, D. Modeling and simulation of the heating circuit of a multi-functional building. Energy Build. 2016, 110, 13–22. [Google Scholar] [CrossRef]
- Park, C.; Clark, D.R.; Kelly, G.E. An overview of HVACSIM+, a dynamic building/HVAC/control systems simulation program. In Proceedings of the Building Simulation 1985: Conference of IBPSA, Seattle, WA, USA, 21–22 August 1985. [Google Scholar]
- Hirsch, J.J. Plan for the development of the next-generation building energy analysis computer software. In Proceedings of the Building Simulation 1985: Conference of IBPSA, Seattle, WA, USA, 21–22 August 1985. [Google Scholar]
- Fabrizio, E.; Monetti, V. Methodologies and Advancements in the Calibration of Building Energy Models. Energies 2015, 8, 2548–2574. [Google Scholar] [CrossRef] [Green Version]
- IBPSA International Building Performance Simulation Association. International Conferences. Available online: http://www.ibpsa.org/conferences/ (accessed on 13 December 2021).
- Du, Z.; Jin, X.; Fan, B. Evaluation of operation and control in HVAC (heating, ventilation and air conditioning) system using exergy analysis method. Energy 2015, 89, 372–381. [Google Scholar] [CrossRef]
- Fischer, D.; Bernhardt, J.; Madani, H.; Wittwer, C. Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV. Appl. Energy 2017, 204, 93–105. [Google Scholar] [CrossRef]
- Ruusu, R.; Cao, S.; Manrique Delgado, B.; Hasan, A. Direct quantification of multiple-source energy flexibility in a residential building using a new model predictive high-level controller. Energy Convers. Manag. 2019, 180, 1109–1128. [Google Scholar] [CrossRef]
- Du, Y.; Li, F.; Munk, J.; Kurte, K.; Kotevska, O.; Amasyali, K.; Zandi, H. Multi-task deep reinforcement learning for intelligent multi-zone residential HVAC control. Electr. Power Syst. Res. 2021, 192, 106959. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy Build. 2016, 111, 131–144. [Google Scholar] [CrossRef]
- Dermardiros, V.; Bucking, S.; Athienitis, A.K. A simplied building controls environment with a reinforcement learning application. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019. [Google Scholar]
- Egilegor, B.; Uribe, J.; Arregi, G.; Pradilla, E.; Susperregi, L. A fuzzy control adapted by a neural network to maintain a dwelling within thermal comfort. In Proceedings of the Building Simulation 1997: Conference of IBPSA, Prague, Czech Republic, 8–10 September 1997. [Google Scholar]
- Lepore, R.; Renotte, C.; Frère, M.; Dumont, E. Energy consumption reduction in office buildings using model-based predictive control. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambéry, France, 25–28 August 2013. [Google Scholar]
- Sangi, R.; Müller, D. A novel hybrid agent-based model predictive control for advanced building energy systems. Energy Convers. Manag. 2018, 178, 415–427. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, Y.; Zhang, J.; Pang, Z.; O’Neill, Z.; Dong, B.; Cheng, H. Energy-saving potential evaluation for primary schools with occupant-centric controls. Appl. Energy 2021, 293, 116854. [Google Scholar] [CrossRef]
- Pereira, R.; Barata, F.A.; Viveiros, C. Intelligent systems applied to buildings’ management. In Proceedings of the 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 8–10 July 2020; Volume 1, pp. 224–229. [Google Scholar] [CrossRef]
- Zhang, H.; Bannister, P. HVAC control simulation study fro Australian office buildings. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambéry, France, 25–28 August 2013. [Google Scholar]
- Smarra, F.; Jain, A.; de Rubeis, T.; Ambrosini, D.; D’Innocenzo, A.; Mangharam, R. Data-driven model predictive control using random forests for building energy optimization and climate control. Appl. Energy 2018, 226, 1252–1272. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lam, K.P.; Ydstie, B.E. EnergyPlus model-based predictive control (EPMPC) by using MATLAB/Simulink and MLE+. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambéry, France, 25–28 August 2013. [Google Scholar]
- Goyal, S.; Ingley, H.A.; Barooah, P. Occupancy-based zone-climate control for energy-efficient buildings: Complexity vs. performance. Appl. Energy 2013, 106, 209–221. [Google Scholar] [CrossRef]
- Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 2015, 88, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Hilliard, T.; Swan, L.; Kavgic, M.; Qin, Z.; Lingras, P. Development of a whole building model predictive control strategy for a LEED silver community college. Energy Build. 2016, 111, 224–232. [Google Scholar] [CrossRef]
- Arabzadeh, V.; Alimohammadisagvand, B.; Jokisalo, J.; Siren, K. A novel cost-optimizing demand response control for a heat pump heated residential building. Build. Simul. 2018, 11, 533–547. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Enescu, D. A review of thermal comfort models and indicators for indoor environments. Renew. Sustain. Energy Rev. 2017, 79, 1353–1379. [Google Scholar] [CrossRef]
- Garnier, A.; Eynard, J.; Caussanel, M.; Grieu, S. HVAC Control and comfort management in non-residential buildings. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambéry, France, 25–28 August 2013. [Google Scholar]
- Kümpel, A.; Stinner, F.; Gauch, B.; Baranski, M.; Müller, D. A representative simulation model for benchmarking building control strategies. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC); International Association for Automation and Robotics in Construction (IAARC): Banff, AL, Canada, 2019; pp. 242–249. [Google Scholar] [CrossRef] [Green Version]
- ISO 7730 2005-11-15; Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO International Organization for Standardization: Geneva, Switzerland, 2005.
- ANSI/ASHRAE Standard 55-2013; Thermal Environmental Conditions for Human Occupancy. ASHRAE American Society of Heating Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2013.
- Calvino, F.; La Gennusa, M.; Morale, M.; Rizzo, G.; Scaccianoce, G. Comparing different control strategies for indoor thermal comfort aimed at the evaluation of the energy cost of quality of building. Appl. Therm. Eng. 2010, 30, 2386–2395. [Google Scholar] [CrossRef] [Green Version]
- Fazenda, P.; Veeramachaneni, K.; Lima, P.; O’Reilly, U.M. Using reinforcement learning to optimize occupant comfort and energy usage in HVAC systems. J. Ambient. Intell. Smart Environ. 2014, 6, 675–690. [Google Scholar] [CrossRef]
- Baracu, T.; Muresan, M.; Badea, A. A comparative analysis of the controllers On-Off and PI for the heating system of a building. In Proceedings of the Francophone Multidisciplinary Colloquium on Materials, Environment and Electronics, Bacau, Romania, May 2013. [Google Scholar]
- Kuboth, S.; Heberle, F.; König-Haagen, A.; Brüggemann, D. Economic model predictive control of combined thermal and electric residential building energy systems. Appl. Energy 2019, 240, 372–385. [Google Scholar] [CrossRef]
- Carrascal, E.; Garrido, I.; Garrido, A.J.; Sala, J.M. Optimization of the heating system use in aged public buildings via model predictive control. Energies 2016, 9, 251. [Google Scholar] [CrossRef]
- Yu, Z.; Dexter, A. Hierarchical fuzzy control of low-energy building systems. Sol. Energy 2010, 84, 538–548. [Google Scholar] [CrossRef]
- Salpakari, J.; Lund, P. Optimal and rule-based control strategies for energy flexibility in buildings with PV. Appl. Energy 2016, 161, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Mbuwir, B.V.; Manna, C.; Spiessens, F.; Deconinck, G. Benchmarking reinforcement learning algorithms for demand response applications. In Proceedings of the 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hauge, The Netherlands, 26–28 October 2020; pp. 289–293. [Google Scholar] [CrossRef]
- Vrettos, E.; Lai, K.; Oldewurtel, F.; Andersson, G. Predictive control of buildings for demand response with dynamic day-ahead and real-time prices. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 2527–2534. [Google Scholar] [CrossRef]
- Maasoumy, M.; Sangiovanni-Vincentelli, A. Total and peak energy consumption minimization of building HVAC systems using model predictive control. IEEE Des. Test Comput. 2012, 29, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Jin, X.; Fang, X.; Fan, B. A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems. Appl. Energy 2016, 183, 700–714. [Google Scholar] [CrossRef]
- Kohonen, R.; Laitinen, A.; Aho, I.; Madjidi, M.; Stephan, M. Study on optimal start/stop operation of hydronic heating systems. In Proceedings of the Building Simulation 1991: Conference of IBPSA, Nice, France, 20–22 August 1991. [Google Scholar]
- Moriyama, T.; De Magistris, G.; Tatsubori, M.; Pham, T.H.; Munawar, A.; Tachibana, R. Reinforcement learning testbed for power-consumption optimization. In Methods and Applications for Modeling and Simulation of Complex Systems; Communications in Computer and Information Science; Li, L., Hasegawa, K., Tanaka, S., Eds.; Springer: Singapore, 2018; pp. 45–59. [Google Scholar] [CrossRef] [Green Version]
- EnergyPlus. Weather Data. Available online: https://energyplus.net/weather (accessed on 13 December 2021).
- Yang, L.; Nagy, Z.; Goffin, P.; Schlueter, A. Reinforcement learning for optimal control of low exergy buildings. Appl. Energy 2015, 156, 577–586. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kotzur, L.; Stolten, D.; Robinius, M. A review on time series aggregation methods for energy system models. Energies 2020, 13, 641. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Velswamy, K.; Huang, B. A long-short term memory recurrent neural network based reinforcement learning controller for office heating ventilation and air conditioning systems. Processes 2017, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Modelica Association. Modelica Language. Available online: https://modelica.org/modelicalanguage.html (accessed on 13 December 2021).
- Beckman, W.A.; Broman, L.; Fiksel, A.; Klein, S.A.; Lindberg, E.; Schuler, M.; Thornton, J. TRNSYS The most complete solar energy system modeling and simulation software. Renew. Energy 1994, 5, 486–488. [Google Scholar] [CrossRef]
- MATLAB. What Is MATLAB? Available online: https://de.mathworks.com/discovery/what-is-matlab.html (accessed on 13 December 2021).
- Zhang, C.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Building HVAC scheduling using reinforcement learning via neural network based model approximation. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation; Association for Computing Machinery: New York, NY, USA, 2019; BuildSys ’19; pp. 287–296. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, I.; Hoes, P.J.; Hensen, J.L.M. A stepwise approach for assessing the appropriate occupant behavior modelling in building performance simulation. J. Build. Perform. Simul. 2020, 13, 362–377. [Google Scholar] [CrossRef]
- Marmaras, C.; Corsaro, M.; Xydas, E.; Cipcigan, L.; Pastorelli, M. Vehicle-to-building control approach for EV charging. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014. [Google Scholar] [CrossRef]
Step | Common Feature |
---|---|
KPIs | Energy consumption Average PMV and PPD, temperature RMSE |
Control baseline | Rule-based control |
Test locations | One location |
Test duration | Annual |
Building and HVAC model | A specific white-box model |
Occupany model | One predefined fixed schedule |
Result visualization | Tables or bar plots with the KPIs Plot of the room temperature profile |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccolini, C.; Sangi, R. Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review. Energies 2022, 15, 1270. https://doi.org/10.3390/en15041270
Ceccolini C, Sangi R. Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review. Energies. 2022; 15(4):1270. https://doi.org/10.3390/en15041270
Chicago/Turabian StyleCeccolini, Clara, and Roozbeh Sangi. 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review" Energies 15, no. 4: 1270. https://doi.org/10.3390/en15041270
APA StyleCeccolini, C., & Sangi, R. (2022). Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review. Energies, 15(4), 1270. https://doi.org/10.3390/en15041270